This invention generally relates to a drive motor with integral braking for a vehicle component.
Various types of drive motors can be used to operate vehicle components. Alternating current (AC) motors and brush direct current (DC) motors are often used for these applications. Conventional AC and brush DC motors include a rotor and a stator. The rotor is a rotating center member and the stator is a non-rotating member that surrounds the rotor. Current is supplied to coils in the stator, which generates a magnetic field causing the rotor to rotate and generate drive torque.
Traditionally, AC and brush DC motors require separate external braking components due to the complexity of electro-magnetic stator and rotor components. This increases cost and assembly time. Further, more packaging space is required for the external braking components. Depending on where the drive motor is located, e.g. vehicle wheel, driveline, axle, etc., this additional packaging space is not always available.
For the above reasons, it would be desirable provide a drive motor for a vehicle component that includes integral braking. The drive motor should be compact and easily adaptable to drive various vehicle components in addition to overcoming other deficiencies in the prior art as outlined above.
A drive motor includes a stator and a motor rotor mounted for rotation relative to the stator to generate an output torque for driving a vehicle component. A brake rotor is formed on the motor rotor. At least one brake pad is selectively moved into engagement with the brake rotor to generate a braking force for the vehicle component.
The stator includes a first plurality of poles with each pole being surrounded by a coil. The motor rotor includes a second plurality of poles. Current is switched between the coils to bring poles from the second plurality of poles into alignment with corresponding poles from the first plurality of poles to rotate the motor rotor and generate an output torque to drive the vehicle component.
In one example, the stator is formed as a cylindrical member defining a central cavity. The motor rotor is positioned within the central cavity. The first plurality of poles is formed about an inner circumferential surface of the central cavity and the second plurality of poles is formed about an external circumferential surface of the motor rotor. In another example, the positions of the motor rotor and stator are reversed. The motor rotor is formed as a cylindrical member defining a central cavity and the stator is positioned within the central cavity.
The brake rotor is preferably formed on at least one end face of the motor rotor. When the motor rotor is formed as a cylindrical member, the brake rotor is generally formed as a ring-shaped member. When the motor rotor is positioned within a stator that is formed as a cylindrical member, the brake rotor is generally formed as a disc.
The subject invention provides integral braking on a drive motor for a vehicle component and eliminates the need for separate external braking components. These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A drive motor assembly 10 for driving a vehicle component 12 is shown in
As shown in
The actuator 30 can be any type of actuator known in the art. The actuator 30 should include at least one axially movable element that will move the brake pads 26 into engagement with the brake rotor 22 as indicated by the arrows in
One example of the drive motor assembly 10 is shown in
Preferably, the drive motor assembly 10 is a brushless DC variable reluctance motor of conventional electromagnetic design where the magnetic poles 44 of the motor rotor 40 are formed from a material common with the brake rotor 22. In a multi-pole variable reluctance motor, the magnetic poles 44 are formed on the motor rotor 40 itself. Preferably, the motor rotor 40 and the stator 42 are formed from a laminate including laminated iron with the magnetic poles being formed as part of the laminate. The laminate includes a plurality of layers that are stacked together as known. Each layer has a predetermined thickness.
The brake rotor 22 can be integrally formed on the end face 24 as part of the same laminate. The layers can be the same thickness as the motor rotor layers or can have a greater layer thickness. Optionally, the brake rotor 22 can be formed from a different material that is attached to the end face 24. Any known braking material could be used.
In either configuration, the brake rotor 22 defines a generally planar end face 36 that engages an end face 38 of the brake pads 26. The actuator 30 moves the brake pads 26 into contact with the brake rotor 22 such that the respective end faces 36, 38 engage each other.
The drive motor assembly 10 also includes the stator 42 that is fixed to a non-rotating vehicle structure 28. The stator 42 includes a plurality of corresponding magnetic poles 50. Coils or windings 52 are mounted to the stator 42 to surround each of the magnetic poles 50.
In the embodiment of
The motor rotor 40 is mounted within the inner central cavity 56 of the stator 42. In the embodiment shown in
The magnetic poles 50 of the stator 42 preferably alternate between three-phases A, B, C. As current is switched between the coils 52, a magnetic field is generated that proceeds around the stator 42, bringing the out-of-phase magnetic poles 44 of the motor rotor 40 into alignment with corresponding magnetic poles 50 of the stator 42. This alignment process generates rotation of the motor rotor 40 and generates output torque to drive the vehicle component 12. As shown in an example in
Another disclosed embodiment of a drive motor assembly 80 with integral braking is shown in
In the embodiment of
The magnetic poles 88 of the stator 86 in this configuration alternate between four-phases A, B, C, D. As current is switched between the coils 90, a magnetic field is generated that proceeds around the stator 86 bringing out of phase magnetic poles 84 of the motor rotor 82 into alignment with the corresponding poles 88 of the stator 86. This alignment process generates rotation of the motor rotor 82 and generates output torque to drive the vehicle component 12. As shown in
The configuration of
In either configuration, the brake rotor 22, 100 can be formed on only one end face of the motor rotor 40, 82, or can be formed on both end faces of the motor rotor 40, 82.
Another example of a vehicle application using a drive motor assembly 130 incorporating the subject invention is shown in
The braking mechanism 132 includes a brake rotor 144 formed on a rotating component 146 of the drive motor assembly 130. Brake pads 148 are mounted to a non-rotating structure 150. An actuator 152 provides a mechanical or electrical input signal to move the brake pads 148 into engagement with the brake rotor 144 to achieve a park condition.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
The application is a continuation of Ser. No. 10/884,410, filed on Jul. 1, 2004, which claims priority to U.S. Provisional Application No. 60/525,510, filed on Nov. 26, 2003.
Number | Date | Country | |
---|---|---|---|
60525510 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10884410 | Jul 2004 | US |
Child | 11501334 | Aug 2006 | US |