Trailer assembly for transport of containers of proppant material

Information

  • Patent Grant
  • 10059246
  • Patent Number
    10,059,246
  • Date Filed
    Wednesday, August 9, 2017
    6 years ago
  • Date Issued
    Tuesday, August 28, 2018
    5 years ago
Abstract
A trailer assembly suitable for carrying a container of proppant has a frame with a first side rail and a second side rail extending in generally parallel relation to each other and a plurality of wheels rotatably mounted below the frame. The frame has a plurality of cross members extending between the side rails. First and second outriggers extend across the side rails so as to each have one end extending outwardly of one of the side rails and an opposite end extending outwardly of the other side rail. The first and second outriggers are suitable for receiving the container of proppant thereon. The frame has a first section positioned above the wheels and a second section positioned at a level lower than a level of the first section. The proppant container is placed on the first section.
Description
BACKGROUND
1. Field of the Invention

The present invention relates to container trailer assemblies. Additionally, the present invention relates to systems and apparatus for the transport of proppant material. More particularly, the present invention relates to a trailer assembly that is particularly suitable for the transport of containers of proppant material.


2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98

Hydraulic fracturing is the propagation of fractions in a rock layer caused by the presence of pressurized fluid. Hydraulic fractures may form naturally, in the case of veins or dikes, or may be man-made in order to release petroleum, natural gas, coal seam gas, or other substances for extraction. Fracturing is done from a wellbore drilled into reservoir rock formations. The energy from the injection of a highly-pressurized fracking fluid creates new channels in the rock which can increase the extraction rates and ultimate recovery of fossil fuels. The fracture width is typically maintained after the injection by introducing a proppant into the injected fluid. Proppant is a material, such as grains of sand, ceramic, or other particulates, that prevent the fractures from closing when the injection is stopped.


With the rise of hydraulic fracturing over the past decade, there is a steep climb in proppant demand. Global supplies are currently tight. The number of proppant suppliers worldwide has increased since 2000 from a handful to well over fifty sand, ceramic proppant and resin-coat producers.


By far the dominant proppant is silica sand, made up of ancient weathered quartz, the most common mineral in the Earth's continental crust. Unlike common sand, which often feels gritty when rubbed between the fingers, sand used as a proppant tends to roll to the touch as a result of its round, spherical shape and tightly-graded particle distribution. Sand quality is a function of both deposit and processing. Grain size is critical, as any given proppant must reliably fall within certain mesh ranges, subject to downhole conditions and completion design. Generally, coarser proppant allows the higher flow capacity due to the larger pore spaces between grains. However, it may break down or crush more readily under stress due to the relatively fewer grain-to-grain contact points to bear the stress often incurred in deep oil- and gas-bearing formations.


Typically, in any hydraulic fracturing operation, a large amount of such proppant is required. The transport of proppant presents significant issues and difficulties. Fundamentally, governmental roads requirements establish a limit as to the amount of weight that can be transported over the roads. These weight limits are established so as to avoid damage to the structural integrity of the road and also damage to any bridges, overpasses, or other structures associated with the road. Additionally, there are height requirements on such transport vehicles. Conventionally, all transport vehicles should have a height of less than 13½ feet. As such, the transport vehicle can travel on virtually all roads without issues associated with low overlying bridges and overpasses. Additionally, in the transport of proppant, there are a variety of issues related to the safety of the transport. For example, structures should be provided so as to avoid any shifting of the proppant contents in the container that is being transported. Further, concern should also be directed to the center of gravity associated with the contained proppant on the vehicle. If the center of gravity is too high, then there is an increased likelihood of a potential overturning of the vehicle and a reduction in the handling capability of the vehicle.


Conventionally, a 20 foot ISO container could be utilized so as to transport proppant on a conventional container trailer. Unfortunately, experiments have determined that the transport of sand in such conventional containers is not suitable. If the 20 foot ISO is filled with proppant material, then it would certainly exceed the government weight limits on the road. If the 20 foot ISO container were filled with a lesser amount of proppant material, the material could more easily shift in the container and create a dangerous driving condition. Additionally, if a 20 foot ISO container is minimally filled with proppant, the angle of repose of the proppant in the container would make it extremely difficult to completely empty the proppant material from the container. As such, it would not be possible to empty a conventional 20 foot container. As such, a need has developed so as to avoid the use of a 20 foot container for the transport of proppant material.


Importantly, the weight limits that are imposed by government authorities on the transport of goods on road requires that the weight limit be under 80,000 pounds. This weight limit will include the truck, the trailer and the load that is being transported by the truck and trailer. As such, the weight of the vehicle is of a significant concern when determining the amount of proppant that can be moved by a trailer over the roads. As such, it is desirable to minimize the weight of the truck and trailer while still preserving the structural integrity of the truck and trailer.


In the earlier patent applications by the present inventor (for example, U.S. patent application Ser. No. 13/628,702) a 10 foot ISO container was proposed. In this earlier application, it is found that the 10 foot ISO container has a height of 8.5 feet. As such, such a container would contain less than an optimal amount of proppant. In order to deliver the desired 46,500 pounds of proppant to the site, and in order to provide a proper angle of repose of the proppant material within the container, it was found that an ISO container with a height of 9.5 feet was necessary. If such a container of an increased height were actually used on a conventional container trailer, it would exceed the height requirements for the vehicle. If the conventional container trailer were used, the total weight of the vehicle would be in excess of the 80,000 pound limit. Additionally, the placement of the container on the top of a conventional container trailer would increase the center of gravity to the trailer and, as such, increase the potential for vehicle overturns and reduce the handling capability of the truck. Additionally, a standard container trailer could cause the operator to place the sand container in an improper location along the length of the trailer such that the weight is not properly centered for proper transport.


In the past, various patents have issued relating to container trailers. For example, U.S. Pat. No. 3,958,707, issued on May 25, 1976 to D. L. Deppe, discloses a container transport trailer having a bottomless U-shaped support frame including a cross member and a pair of side members. A lift member is connected to the forward end of the trailer and cooperates with a pair of support arms pivotally connected to the rear ends of the side members of the U-shaped frame to engage against the rear portion of the article.


U.S. Pat. No. 5,839,864, issued on Nov. 24, 1998 to S. K Reynard, teaches a locking system for a container-carrying trailer having a loading platform on which a container can be mounted. The locking system comprises a forward pair of locking devices and a rearward pair of locking devices mounted at forward and rear ends of the loading platform. The locking device is cooperative with respective corner fittings of the container in order to clamp the container to the loading platform.


U.S. Pat. No. 6,109,684, issued on Aug. 29, 2000 to M. A. Reitnouer, discloses a flatbed trailer design that unitizes the three main components of a trailer bed, i.e. the main rails, the cross members and the floor, to create a lightweight and stronger trailer. The trailer design comprises two main rails having dual webs and a plurality of shouldered cross members. These dual web main rails and shouldered cross members have top flanges that are formed by the upper plane of the flooring members. In addition, intermediate flooring supports are used between cross members.


U.S. Pat. No. 7,866,933, issued on Jan. 11, 2011 to Welch et al., teaches a container trailer that includes a coupling to attach the trailer to a tractor, and a frame attached to the coupling. The frame is positioned as a single unit about a container such that the frame can be attached to the container in four regions of the container to lift the container. The trailer has road wheels for long-haul transportation. The trailer frame can be positioned about the container by laterally expanding and retracting, pivoting about a horizontal axis, and pivoting about a vertical axis.


U.S. Pat. No. 8,182,193, issued on May 22, 2012 to Gaudet et al., shows a trailer for transporting freight a container. The trailer has a frame with a front frame section which is adapted to be coupled to a suitable road vehicle. A pair of displaceable horizontal side beams are secured to the front frame section and are provided with a hingeable rear gate formed by a pair of hinge arms. Each of the side beams has a suspension assembly to support a tandem wheel arrangement. Retractable vertical lifting piston cylinders are secured to a portion of the front frame and to the pair of hinge arms and are actuable to lift the pair of horizontal side beams and its wheels above a ground surface. Laterally extendable piston cylinders are also secured to the front frame and the hinge arms to displace the horizontal side beams outwardly and inwardly with respect to one another when lifted off the ground surface. Container lifting posts are secured to opposed ends of the front frame section and the hinge arms for removable connection to a container positioned between the side beams to lift and lower the container therebetween. Container connectors are secured to each of the side beams for securing a container thereto for transportation.


U.S. Patent Publication No. 2013/0004272, published on Jan. 3, 2013 to M. Mintz, provides an apparatus for transporting proppant for use in standard ISO intermodal container and for delivering the proppant to well sites. The apparatus is configured for being inserted into a standard 20 foot container and adapted for transporting frac sand and proppant from a quarry to a well site. A plurality of inlet ports are disposed atop the roof, with the inlet ports receiving the proppant from a proppant supply source into a funnel/hopper. A plurality of outlet ports received the proppant within the funnel/hopper and deliver the proppant to the well site. An in situ valve is disposed within the hopper assembly for effectuating industry standard continuous pressurized discharge of stored proppant material into a discharge pipe for delivery downhole.


It is an object of the present invention to provide a trailer assembly that is able to effectively transport a 10 foot ISO container.


It is another object of the present invention to provide a trailer assembly that facilitates the transport of proppant in containers positioned thereon.


It is another object of the present invention to provide a trailer assembly which is of minimal of weight so as to facilitate the delivery of a maximum amount of proppant within the container positioned thereon.


It is still another object of the present invention to provide a trailer assembly which minimizes the center of gravity of the proppant containing container positioned thereon.


It is still another object of the present invention to provide a trailer assembly which allows multiple empty proppant containers to be positioned thereon.


It is still a further object of the present invention to provide a trailer assembly which allows the proppant-containing container to meet height and weight requirements during the transport of proppant.


It is still another object of the present invention to provide a trailer assembly which is easy to use, relatively inexpensive and easy to manufacture.


These and other objects and advantages of the present invention will become apparent from a reading of the attached specification and appended claims.


BRIEF SUMMARY OF THE INVENTION

The present invention is a trailer assembly which comprises a frame having a first section and a second section, and a plurality of wheels rotatably mounted below the first section so as to allow the frame to move along an underlying surface. The first section is positioned at a higher level than the second section. Each of the first and second sections has length of at least 10 feet. The first section is suitable for receiving a first sand container thereon. The second section is also suitable for receiving a second sand container thereon. The frame has a connector section suitable for connection to a towing vehicle.


The first section has a planar top surface. The second section has a planar top surface. The first section has a top surface extending in a plane approximate 1 foot 9 inches above a plane in which a top surface of the second section extends.


The frame has a first side rail and a second side rail extending in spaced parallel relation to each other. The frame also has a plurality of cross members extending between the first side rail and the second side rail. The first section has a first outrigger extending across the first and second side rails so as to have a first end extending outwardly of the first side rail and a second end extending outwardly of the second side rail. The first section has a second outrigger extending across the first and second side rails so as to have a first end extending outwardly of the first side rail and a second end extending outwardly of the second side rail. The first and second outriggers are suitable for attachment to an underside of the first container.


The second section has a first outrigger extending across the first and second side rails so as to have a first end extending outwardly of the first side rail and a second end extending outwardly of the second side rail. The second section also has a second outrigger extending across the first and second side rails so as to have a first end extending outwardly of the first side rail and a second end extending outwardly of the second side rail. The first and second outriggers of the second section are suitable for attachment to the underside of the second container. The first outrigger is positioned in transverse relationship to the first and second side rails. The second outrigger is positioned in transverse relation to the first and second side rails. The first outrigger of the first section is positioned at an end of the frame. The second outrigger of the first section is positioned adjacent the second section.


The plurality of wheels are positioned below and between the first and second outriggers of the first section. The connector section is a gooseneck connector having a portion extending upwardly from an end of the second section opposite the first section. The connector section has another portion extending away from the second section.


In the present invention, the first container would be an empty container. The empty container would be positioned directly above the wheels. In the present invention, the second container would be a container that is filled with proppant material. When the second container is filled with proppant material, it is placed on the second section of the trailer. Under these circumstances, there would be no first container placed on the first section. When the second container is empty, a pair of containers, i.e. the first container and the second container, can be respectfully placed on the first section and the second section. As such, when the trailer is used to transport proppant to a well site, the second container (filled with proppant) is placed on the second section of the trailer and the truck can serve to tow the trailer to the well site. At the well site, an empty container can he placed on the second section and another empty container can he placed on the first section. As such, a pair of empty containers can be transported from the well site.


The foregoing Section is intended to describe, in generality, the preferred embodiment of the present invention. It is understood that modifications to this preferred embodiment can be made within the scope of the present invention. As such, this Section should not be construed, in any way as limiting of the broad scope of the present invention. The present invention should only be limited by the following claims and their legal equivalents.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a side elevational view of a trailer assembly in accordance with the preferred embodiment of the present invention.



FIG. 2 is a plan view of a trailer assembly of the preferred embodiment of the present invention.



FIG. 3 is a side elevational view of the trailer assembly of the present invention as used in the transport of proppant containers.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, there is shown the trailer assembly 10 in accordance with the preferred embodiment of the present invention. The trailer assembly 10 includes a frame 12 that has a first section 14 and a second section 16. The first section 14 is located at a higher level than the level of the second section 16. The first section 14 has a planar top surface 18. The second section 16 has a planar top surface 20. The planar top surface 18 of the first section 14 is in spaced parallel planar relationship to the planar top surface 20 of the second section 16. Each of the sections 14 and 16 will have a length of at least ten feet. The first section 14 is suitable for receiving a sand container thereon. The second section 16 is also suitable for receiving a sand container thereon. The frame 12 has a connector section 22 at the forward end thereof suitable for connection to a towing vehicle. A plurality of wheels 24 are rotatably mounted below the first section 14 so as to allow the frame 12 to move along an underlying surface.


The first section 14 is located directly above the wheels 24. A first section 14 has its planar surface 18 located about one foot nine inches above the planar top surface 20 of the second section 16. The first section 14 has an end 26 adjacent a rear of the trailer 12. The opposite end 28 is located adjacent to the second section 16.


The second section 16 has the planar top surface 20 extending from the end 28 of the first section 14 to an end 30 adjacent the connector section 22. The second section 16 is suitably welded, bolted, or otherwise connected to the underside of the first section 14 adjacent to the wheels 24. As such, this underslung configuration will minimize the height of the second section 16 so as to allow the heavy weights of a loaded proppant container to be placed thereon in an easy and convenient manner and also to minimize the center of gravity of the trailer 10 while traveling along a road surface.


The connector section 22 is a gooseneck connector having an end adjacent to the end 30 of the second section 16, a portion 32 extending upwardly therefrom, and a generally horizontal portion 34 extending to a coupling 36. Coupling 36 allows the trailer 10 to be suitably joined to a towing vehicle.



FIG. 2 illustrates the frame 10 a plane view. The frame 10 has a first side rail 40 and a second side rail 42 extending in parallel planar relationship to each other. A plurality of cross members 44 extend between the first side rail 40 and the second side rail 42. As such, cross members 44 enhance the structural integrity of the frame 12. These cross members 44, in combination with the side rails 40 and 42 also serve to minimize the weight of the trailer 10.


In FIG. 2, the first section 14 is illustrated as positioned above the wheels 24. In the present invention, the wheels 24 are arranged in tandem. Each of the tires associated with the wheels 24 can be of an expanded form so that the weight of each of the wheels 24 is minimized. In other words, the tires associated with each of the wheels 24 will have a width that is substantially greater than conventional trailer tires. It can be seen that a container placed upon the side rails 40 and 42 in the area of first section 14 will be located above the wheels 24 and between the wheels 24. As such, the wheels 24 will provide substantial support, in combination with the frame 12, for the transport of an empty container on the first section 14.


The second section 16 extends from the first section 14 to the connector section 22. Cross members 44 also extend between the side rails 40 and 42 in the second section 16. The use of the cross members 44, in combination with the side rails 40 and 42, further serve to minimize the weight of the trailer 10 for the transport of substantial quantities of proppant material. As such, the cross members 44, in combination with the side rails 40 and 42, maintain the structural integrity of the trailer 10 while, at the same time, reducing the weight of the trailer such that the loaded container can be transported within the weight limits imposed by governments on roads.


The connector section 22 also has cross members 44 extending between the side rails 40 and 42. The coupling 36 is illustrated adjacent to the forward end 46 of the frame 12.


Importantly, in FIG. 2, the first section 14 has a first outrigger 50 and a second outrigger 52. The first outrigger 50 extends across the first side rail 40 and the second side rail 42 so as to have one end 54 extending outwardly of the first side rail 40 and an opposite end 56 extending outwardly of the second side rail 42. Similarly, the second outrigger 52 extends across the side rails 40 and 42 so as to have an end 58 extending outwardly of the first side rail 40 and an end 60 extending outwardly of the second side rail 42. As such, the outriggers 50 and 52 are suitably configured so as to receive a ten foot ISO container thereon. Suitable connector mechanisms are provided on the outwardly extending portions of the outriggers 50 and 52 so as to secure, in a conventional fashion, with the connectors at the bottom of the container.


The second section 16 includes a first outrigger 62 and a second outrigger 64. The first outrigger 62 has an end 66 which extends outwardly of the first side rail 40 and another end 68 extending outwardly of the second side rail 42. The second outrigger 64 of the second section 16 has an end 70 which extends outwardly of the first side rail 40 and an end 72 which extends outwardly of the second side rail 42. As such, the outriggers 60 and 62 are suitably positioned so as to receive the second container thereon. The location of the loaded container placed upon the outriggers 62 and 64 will centralize the loaded container on the trailer 10 so as to enhance the transport capability of such a container. Suitable locking mechanisms can be provided on the outriggers 62 and 64 so as to secure the underside of the second container.



FIG. 3 illustrates the manner in which a first container 90 is secured to the first section 14 of the frame 12 of the trailer 10 and the manner in which the second container 92 is secured to the second section 16 of the frame 12 of the trailer 10. In normal use, the first container 90 would be an empty container. This empty container is positioned on the first section 14 directly above the wheels 24 such that the empty container 90 can be transported from the well site. As illustrated in FIG. 3, the second container 92 is also an empty container. The empty container 92 is placed upon the outriggers 62 and 64 of the second section 16 so as to be transported from the well site. In this manner, the trailer 10 is suitable for transporting a plurality of empty containers from the well site.


Dimensional indications are provided on FIG. 3. As can be seen, the first container 90 will extend upwardly so as to have a height of thirteen feet three inches above the road surface. The container 90 has a height of nine feet six inches. As such, the total height of the first container 90 above the road will be three inches less than the height requirement of 13.5 feet Since the second container 92 is positioned at a lower level than that of the first container 90, the height of the second container 92 will have no effect during its transport along the road surface. Each of the containers 90 and 92 are suitably positioned on the trailer 10 in an optimal manner so as to enhance the handling capability of the truck during the transport of the containers 90 and 92 from the well site.


Importantly, in the present invention, when it is desired to transport proppant to the well site, only a single container can be used. The single container can be filled with 46,500 pounds of proppant. This 9.5 foot tall container will provide a proper angle of repose of the proppant within the container such that the proppant can be properly discharged from the container through an outlet at the bottom of the container.


In view of the great weight of the filled container, a single container can be used on the trailer 10 during transport to the well site. This single container would be in the nature of container 92. Container 92 is properly filled with proppant and placed upon the second section 16 of the frame 12. It can be seen that the weight of the proppant in the container 92 is properly centralized on the trailer 12 by being positioned on the lower second section 16. Additionally, the use of the lower second section 16 will create a lower center-of-gravity of the load on the trailer 10. As such, the handling characteristics of the trailer 10 are greatly improved and the possibilities of an overturn are avoided. The load in the container 92 is properly supported by the truck and by the wheels 24 so as to distribute the load of the container over a relatively wide and long area. As such, shifting of the load is effectively avoided. The unique structure of the trailer 10 creates a minimal weight trailer for this intended purpose so that the load can be safely and easily transported within the weight limits imposed upon roads.


In the configuration shown in FIG. 3, when a loaded container is transported, the first container 90 should not be placed on the first section 14. The placement of the container 90 on the first section 14 during the transport of the loaded container 92 could exceed the weight limits of the road.


Once the loaded container 92 reaches the well site, the container 92 can be released from the locking mechanisms associated with the outriggers 62 and 64 and the load can be lifted and delivered for proper discharge. Subsequently, empty containers, such as containers 90 and 92, can be put on the trailer 10 for transport back to the proppant supplying location.


The present application is a continuation which claims priority to and the benefit of U.S. application Ser. No. 15/219,359, filed on Jul. 26, 2016, and titled “Trailer Assembly for Transport of Containers of Proppant Material,” which is a continuation of U.S. application Ser. No. 13/854,405, filed on Apr. 1, 2013, and titled “Trailer Assembly for Transport of Containers of Proppant Material,” each of which are incorporated herein in their entireties by reference.


The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction can be made within the scope of the appended claims without departing from the true spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.

Claims
  • 1. A trailer for transporting fracking proppant containers, the trailer comprising: a skeletal frame structure with a front end and a rear end, the front end including a connector portion for attachment of the trailer to a towing vehicle, and the rear end having wheels attached thereto to allow the trailer to roll relative to a support surface, the frame comprising: one or more lower portions having a platform of latticed support members that form a support platform having selectively positioned cross members to provide structural support to the frame for an empty or a full fracking proppant container, at least one of the one or more lower portions having an elevation above the support surface less than that of the connector portion, the one or more lower portions having a plurality of outrigger members that span a width of the one or more lower portions and extend outwardly therefrom substantially flush with the support platform, the cross members being arranged between the plurality of outrigger members, the outrigger members having connector mechanisms for use in securing the fracking proppant container to the one or more lower portions and one or more open spaces underlying the fracking proppant containers when positioned on the trailer, and the one or more lower portions further having an elevation of less than four feet above the support surface, so that when an empty fracking proppant container having a height of about 9.5 feet is placed on the one or more lower portions, an overall height of the fracking proppant container above the support surface reduces a risk of exceeding about 13.5 feet.
  • 2. The trailer of claim 1, wherein at least one of the one or more lower portions at least partially overlaps at least a second portion of the trailer.
  • 3. The trailer of claim 1, wherein a length of each of the one or more lower portions is at least about 10 feet, so that each of the one or more lower portions can support a fracking proppant container having a 10 foot length.
  • 4. The trailer of claim 1, wherein an empty fracking proppant container is positioned to overlie the wheels, and respective ends of the respective plurality of outrigger members extend outwardly from the one or more lower portions such that the respective ends form the widest portion of the trailer, and the cross members being selectively arranged to reduce a weight of the trailer to enable larger quantities of fracking proppant to be positioned within the fracking proppant container when positioned on the trailer.
  • 5. The trailer of claim 2, wherein one or more full fracking proppant container is positioned on the one or more lower portions, and wherein an empty fracking proppant container is positioned on the second portion.
  • 6. The trailer of claim 2, wherein the second portion of the trailer comprises the rear end of the skeletal frame structure.
  • 7. The trailer of claim 6, the second portion having a platform of latticed support members that form a support platform having selectively positioned cross members to provide structural support to the frame for an empty or a full fracking proppant container.
  • 8. The trailer of claim 7, the platform of latticed support members of the second portion comprising a first side rail extending in a parallel planar position to a second side rail, wherein the selectively positioned cross members extend between the first side rail and the second side rail of the second portion.
  • 9. The trailer of claim 8, the second portion having a plurality of outrigger members that span a width of the second portion and extend outwardly therefrom substantially flush with the support platform of the second portion, the selectively positioned cross members being arranged between the plurality of outrigger members, the outrigger members having connector mechanisms for use in securing the fracking proppant container to the second portion, the wheels being mounted to the frame in a position between the plurality of outrigger members of the second portion.
  • 10. The trailer of claim 9, wherein the plurality of outrigger members extend outwardly of the first side rail of the second portion, and extend outwardly of the second side rail of the second portion so as to receive the fracking proppant container thereon.
  • 11. The trailer of claim 7, wherein a length of the second portion is at least about 10 feet, so that the second portion can support the fracking proppant container having a 10 foot length.
  • 12. The trailer of claim 7, the support platform of the second portion having an elevation less than that of the connector portion.
  • 13. The trailer of claim 7, the support platform of the second portion having an elevation greater than that of the one or more lower portions.
  • 14. The trailer of claim 7, the support platform of the second portion being positioned parallel to the support platform of the one or more lower portions.
  • 15. The trailer of claim 1, the platform of latticed support members of the one or more lower portions comprising a first side rail extending in a parallel planar position to a second side rail, wherein the selectively positioned cross members extend between the first side rail and the second side rail of the one or more lower portions.
  • 16. The trailer of claim 15, wherein the plurality of outrigger members extend outwardly of the first side rail of the one or more lower portions, and extend outwardly of the second side rail of the one or more lower portions, so as to receive the fracking proppant container thereon.
  • 17. The trailer of claim 1, the connector portion comprising a first side rail extending in a parallel planar position to a second side rail, wherein selectively positioned cross members extend between the first side rail and the second side rail of the connector portion.
  • 18. The trailer of claim 1, wherein the one or more lower portion, the second portion, and the connector portion each comprise a first side rail extending in a parallel planar position to a second side rail, and wherein the first side rail and the second side rail for each of the one or more lower portion, the second portion, and the connector portion extend in a parallel planar position with respect to each other.
RELATED APPLICATIONS

The present application is a continuation which claims priority to and the benefit of U.S. application Ser. No. 15/219,359, filed on Jul. 26, 2016, and titled “Trailer Assembly for Transport of Containers of Proppant Material,” which is a continuation of U.S. application Ser. No. 13/854,405, filed on Apr. 1, 2013, and titled “Trailer Assembly for Transport of Containers of Proppant Material,” each of which are incorporated herein in their entireties by reference.

US Referenced Citations (571)
Number Name Date Kind
137871 Worsley Apr 1873 A
150894 Safely May 1874 A
384443 Hoover Jun 1888 A
448238 Johnson Mar 1891 A
710611 Ray Oct 1902 A
711632 Johnson Oct 1902 A
917649 Otto Apr 1909 A
1143641 McGregor Jun 1915 A
1331883 Stuart Feb 1920 A
1344768 Messiter Jun 1920 A
1434488 Forsythe et al. Nov 1922 A
1520560 Burno Dec 1923 A
1506936 Lea Sep 1924 A
1526527 Butler Feb 1925 A
1573664 Wetherill Feb 1926 A
1807447 Smith May 1931 A
1850000 Fernand Mar 1932 A
1932320 Steward Oct 1933 A
1973312 Hardinge Sep 1934 A
2020628 Woodruff Nov 1935 A
2233005 Garlinghouse Feb 1941 A
2255448 Morris Sep 1941 A
2293160 Miller et al. Aug 1942 A
2368672 McNamara Feb 1945 A
2381103 Frank Aug 1945 A
2385245 Willoughby Sep 1945 A
2413661 Stokes Dec 1946 A
2423879 De Frees Jul 1947 A
2563470 Kane Aug 1951 A
2564020 Mengel Aug 1951 A
2603342 Martinson Jul 1952 A
2616758 Meyers Nov 1952 A
2622771 Tulou Dec 1952 A
2652174 Shea et al. Sep 1953 A
2670866 Glesby Mar 1954 A
2678145 Ejuzwiak et al. May 1954 A
2693282 Sensibar Nov 1954 A
2700574 Tourneau Jan 1955 A
2792262 Hathom Apr 1955 A
2774515 Johansson et al. Dec 1956 A
2791973 Dorey May 1957 A
2801125 Page et al. Jul 1957 A
2808164 Glendinning Oct 1957 A
2812970 Martinson Nov 1957 A
2837369 Stopps Jun 1958 A
2865521 Fisher et al. Dec 1958 A
2873036 Noble Feb 1959 A
2894666 Campbell, Jr. Jul 1959 A
2988235 Ronyak Jun 1961 A
2994460 Matthews Aug 1961 A
3041113 Sackett Jun 1962 A
3049248 Heltzel et al. Aug 1962 A
3064832 Heltzel Nov 1962 A
3083879 Coleman Apr 1963 A
3090527 Rensch May 1963 A
3109389 Karlsson Nov 1963 A
3122258 Raymond Feb 1964 A
3134606 Oyler May 1964 A
3135432 McKinney Jun 1964 A
3163127 Gutridge et al. Dec 1964 A
3187684 Ortner Jun 1965 A
3198494 Curran et al. Aug 1965 A
3199585 Cronberger Aug 1965 A
3248026 Kemp Apr 1966 A
3255927 Ruppert et al. Jun 1966 A
3265443 Simas Aug 1966 A
3270921 Nadolske et al. Sep 1966 A
3281006 Tonchung Oct 1966 A
3294306 Areddy Dec 1966 A
3318473 Jones et al. May 1967 A
3326572 Murray Jun 1967 A
3343688 Ross Sep 1967 A
3353599 Swift Nov 1967 A
3354918 Coleman Nov 1967 A
3378152 Warner Apr 1968 A
3387570 Pulcrano et al. Jun 1968 A
3396675 Stevens Aug 1968 A
3397654 Snyder Aug 1968 A
3406995 McCarthy Oct 1968 A
3407971 Oehler Oct 1968 A
3425599 Sammarco et al. Feb 1969 A
3455474 Truncali Jul 1969 A
3476270 Cox et al. Nov 1969 A
3486787 Campbell Dec 1969 A
3499694 Coppel Mar 1970 A
3508762 Pratt Apr 1970 A
3524567 Coleman Aug 1970 A
3528570 Pase Sep 1970 A
3561633 Morrison et al. Feb 1971 A
3587834 Dugge Jun 1971 A
3596609 Ortner Aug 1971 A
3601244 Ort et al. Aug 1971 A
3602400 Cooke Aug 1971 A
3650567 Danielson Mar 1972 A
3653521 Bridge Apr 1972 A
3661293 Gerhard et al. May 1972 A
3692363 Tenebaum et al. Sep 1972 A
3704797 Suykens Dec 1972 A
3721199 Hassenauer Mar 1973 A
3729121 Cannon Apr 1973 A
3734215 Smith May 1973 A
3738511 Lemon et al. Jun 1973 A
3752511 Racy Aug 1973 A
3777909 Rheinfrank Dec 1973 A
3785534 Smith Jan 1974 A
3800712 Krug, Jr. Apr 1974 A
3802584 Sackett Apr 1974 A
3817261 Rogge Jun 1974 A
3820762 Bostrom et al. Jun 1974 A
3827578 Hough Aug 1974 A
3840141 Allom et al. Oct 1974 A
3854612 Snape Dec 1974 A
3861716 Baxter et al. Jan 1975 A
3883005 Stevens May 1975 A
3909223 Schmidt Sep 1975 A
3913933 Visser et al. Oct 1975 A
3933100 Dugge Jan 1976 A
3963149 Fassauer Jun 1976 A
3970123 Poulton et al. Jul 1976 A
3986708 Heltzel et al. Oct 1976 A
3997089 Clarke et al. Dec 1976 A
4003301 Norton Jan 1977 A
4004700 Empey Jan 1977 A
4057153 Weaver Nov 1977 A
4058239 Van Mill Nov 1977 A
4063656 Lambert Dec 1977 A
4073410 Melcher Feb 1978 A
4125195 Sasadi Nov 1978 A
4138163 Calvert et al. Feb 1979 A
4178117 Brugler Dec 1979 A
4204773 Bates May 1980 A
4210273 Hegele Jul 1980 A
4210963 Ricciardi et al. Jul 1980 A
RE30358 Sensibar Aug 1980 E
4222498 Brock Sep 1980 A
4227732 Kish Oct 1980 A
4232884 DeWitt Nov 1980 A
4239424 Pavolka Dec 1980 A
4245820 Muryn Jan 1981 A
4247228 Gray et al. Jan 1981 A
4247370 Nijhawan et al. Jan 1981 A
4258953 Johnson Mar 1981 A
4265266 Kierbow et al. May 1981 A
4278190 Oory et al. Jul 1981 A
4282988 Hulbert, Jr. Aug 1981 A
4287921 Sanford Sep 1981 A
4287997 Rolfe et al. Sep 1981 A
4289353 Merritt Sep 1981 A
4299597 Oetiker et al. Nov 1981 A
4306895 Thompson et al. Dec 1981 A
4329106 Adler May 1982 A
4350241 Wenzel Sep 1982 A
4359176 Johnson Nov 1982 A
4363396 Wolf et al. Dec 1982 A
4395052 Rash Jul 1983 A
4397406 Croley Aug 1983 A
4398653 Daloisio Aug 1983 A
4402392 Fabian et al. Sep 1983 A
4407202 McCormick Oct 1983 A
4408886 Sampson et al. Oct 1983 A
4410106 Kierbow et al. Oct 1983 A
4420285 Loyer et al. Dec 1983 A
4427133 Kierbow et al. Jan 1984 A
4428504 Bassett et al. Jan 1984 A
4449861 Saito et al. May 1984 A
4453645 Usui et al. Jun 1984 A
4474204 West Oct 1984 A
4475672 Whitehead Oct 1984 A
4478155 Cena et al. Oct 1984 A
4483462 Heintz Nov 1984 A
4513755 Baroni Apr 1985 A
4525071 Horowitz Jun 1985 A
4526353 Stomp Jul 1985 A
4532098 Campbell Jul 1985 A
4534869 Seibert Aug 1985 A
4552573 Weis Nov 1985 A
4569394 Sweatman et al. Feb 1986 A
4570967 Allnut Feb 1986 A
4571143 Hellerich Feb 1986 A
4588605 Frei et al. May 1986 A
4608931 Ruhmann et al. Sep 1986 A
4619531 Dunstan Oct 1986 A
4624729 Bresciani et al. Nov 1986 A
4626155 Hlinsky et al. Dec 1986 A
4626166 Jolly Dec 1986 A
4628825 Taylor et al. Dec 1986 A
4639015 Pitts Jan 1987 A
4648584 Wamser Mar 1987 A
4660733 Snyder et al. Apr 1987 A
4701095 Berryman et al. Oct 1987 A
4714010 Smart Dec 1987 A
4715754 Scully Dec 1987 A
4738774 Patrick Apr 1988 A
4741273 Sherwood May 1988 A
4761039 Hilaris Aug 1988 A
4798039 Deglise Jan 1989 A
4801389 Brannon et al. Jan 1989 A
4819830 Schultz Apr 1989 A
4836510 Weber et al. Jun 1989 A
4836735 Dennehy Jun 1989 A
4848605 Wise Jul 1989 A
4882784 Tump Nov 1989 A
4889219 Key Dec 1989 A
4901649 Fehrenbach et al. Feb 1990 A
4909378 Webb Mar 1990 A
4909556 Koskinen Mar 1990 A
4917019 Hesch et al. Apr 1990 A
4919583 Speakman, Jr. Apr 1990 A
4923358 Van Mill May 1990 A
4946068 Erickson et al. Aug 1990 A
4947760 Dawson et al. Aug 1990 A
4949714 Orr Aug 1990 A
4954975 Kalata Sep 1990 A
4956821 Fenelon Sep 1990 A
4964243 Reiter Oct 1990 A
4975205 Sloan Dec 1990 A
4975305 Biginelli Dec 1990 A
4988115 Steinke Jan 1991 A
4995522 Barr Feb 1991 A
5004400 Handke Apr 1991 A
5028002 Whitford Jul 1991 A
5042538 Wiese Aug 1991 A
5069352 Harbolt et al. Dec 1991 A
5080259 Hadley Jan 1992 A
5082304 Preller Jan 1992 A
5102281 Handke Apr 1992 A
5102286 Fenton Apr 1992 A
5105858 Levinson Apr 1992 A
5131524 Uehara Jul 1992 A
5167719 Tamaki Dec 1992 A
5190182 Copas et al. Mar 1993 A
5195861 Handke Mar 1993 A
5199826 Lawrence Apr 1993 A
5201546 Lindsay Apr 1993 A
5224635 Wise Jul 1993 A
5253746 Friesen et al. Oct 1993 A
5253776 Decroix et al. Oct 1993 A
5265763 Heinrici et al. Nov 1993 A
5280883 Ibar Jan 1994 A
5286158 Zimmerman Feb 1994 A
5286294 Ebi et al. Feb 1994 A
5290139 Hedrick Mar 1994 A
5317783 Williamson Jun 1994 A
5320046 Hesch Jun 1994 A
5324097 DeCap Jun 1994 A
5339996 Dubbert Aug 1994 A
5345982 Nadeau et al. Sep 1994 A
5358137 Shuert et al. Oct 1994 A
5373792 Pileggi et al. Dec 1994 A
5392946 Holbrook et al. Feb 1995 A
5402915 Hogan Apr 1995 A
5413154 Hurst, Jr. et al. May 1995 A
5429259 Robin Jul 1995 A
5441321 Karpisek Aug 1995 A
5465829 Kruse Nov 1995 A
5470175 Jensen et al. Nov 1995 A
5470176 Corcoran et al. Nov 1995 A
5493852 Stewart Feb 1996 A
5498119 Faivre Mar 1996 A
5507514 Jacques Apr 1996 A
5538286 Hoff Jul 1996 A
5549278 Sidler Aug 1996 A
5564599 Barber et al. Oct 1996 A
5570743 Padgett et al. Nov 1996 A
5590976 Kilheffer et al. Jan 1997 A
5601181 Lindhorst Feb 1997 A
5602761 Spoerre et al. Feb 1997 A
5613446 DiLuigi et al. Mar 1997 A
5617974 Sawyer Apr 1997 A
5647514 Toth et al. Jul 1997 A
RE35580 Heider et al. Aug 1997 E
5667298 Musil Sep 1997 A
5687881 Rouse et al. Nov 1997 A
5690466 Gaddis et al. Nov 1997 A
5697535 Coleman Dec 1997 A
5706614 Wiley et al. Jan 1998 A
5718555 Swalheim Feb 1998 A
5722552 Olson Mar 1998 A
5722688 Garcia Mar 1998 A
5746258 Huck May 1998 A
5761854 Johnson et al. Jun 1998 A
5762222 Liu Jun 1998 A
5772390 Walker Jun 1998 A
5782524 Heider et al. Jul 1998 A
5785421 Milek Jul 1998 A
5803296 Olson Sep 1998 A
5806863 Heger et al. Sep 1998 A
5836480 Epp et al. Nov 1998 A
5845799 Deaton Dec 1998 A
5876172 Di Rosa Mar 1999 A
5906471 Schwoerer May 1999 A
5911337 Bedeker Jun 1999 A
5924829 Hastings Jul 1999 A
5927558 Bruce Jul 1999 A
5960974 Kee Oct 1999 A
5971219 Karpisek Oct 1999 A
5993202 Yamazaki et al. Nov 1999 A
5997099 Collins Dec 1999 A
6002063 Bilak et al. Dec 1999 A
6006918 Hart Dec 1999 A
6069118 Hinkel et al. May 2000 A
6077068 Okumura Jun 2000 A
6092974 Roth Jul 2000 A
6109486 Lee Aug 2000 A
6120233 Adam Sep 2000 A
D431358 Willemsen Oct 2000 S
6155175 Rude et al. Dec 2000 A
6186654 Gunteret et al. Feb 2001 B1
6190107 Lanigan et al. Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6196590 Kim Mar 2001 B1
6205938 Foley et al. Mar 2001 B1
6210088 Crosby Apr 2001 B1
6231284 Kordel May 2001 B1
6247594 Garton Jun 2001 B1
6263803 Dohr et al. Jul 2001 B1
6269849 Fields Aug 2001 B1
6273154 Laug Aug 2001 B1
6283212 Hinkel et al. Sep 2001 B1
6286986 Grimland Sep 2001 B2
6296109 Nohl Oct 2001 B1
6306800 Samuel et al. Oct 2001 B1
6328156 Otsman Dec 2001 B1
6328183 Coleman Dec 2001 B1
6364584 Taylor Apr 2002 B1
6374915 Andrews Apr 2002 B1
6382446 Hinkle et al. May 2002 B1
6390742 Breeden May 2002 B1
6401983 McDonald et al. Jun 2002 B1
6412422 Dohr et al. Jul 2002 B2
6415909 Mitchell et al. Jul 2002 B1
6416271 Pigott et al. Jul 2002 B1
6422413 Hall et al. Jul 2002 B1
6425725 Ehlers Jul 2002 B1
6450522 Yamada et al. Sep 2002 B1
6457291 Wick Oct 2002 B2
6498976 Ehlbeck et al. Dec 2002 B1
6505760 Werner Jan 2003 B1
6508387 Simon et al. Jan 2003 B1
6508615 Taylor Jan 2003 B2
6523482 Wingate Feb 2003 B2
6537002 Gloystein Mar 2003 B2
6557896 Stobart May 2003 B1
6575614 Tosco et al. Jun 2003 B2
6660693 Miller et al. Dec 2003 B2
6663373 Yoshida Dec 2003 B2
6666573 Grassi Dec 2003 B2
6675066 Moshgbar Jan 2004 B2
6675073 Kieman et al. Jan 2004 B2
6705449 Wagstaffe Mar 2004 B2
6720290 England et al. Apr 2004 B2
6772912 Schall et al. Aug 2004 B1
6774318 Beal et al. Aug 2004 B2
6776235 England Aug 2004 B1
6783032 Fons Aug 2004 B2
6811048 Lau Nov 2004 B2
6828280 England et al. Dec 2004 B2
6835041 Albert Dec 2004 B1
6882960 Miller Apr 2005 B2
6902061 Elstone Jun 2005 B1
6915854 England et al. Jul 2005 B2
6953119 Wening Oct 2005 B1
6955127 Taylor Oct 2005 B2
6964551 Friesen Nov 2005 B1
6968946 Shuert Nov 2005 B2
6974021 Boevers Dec 2005 B1
7008163 Russell Mar 2006 B2
7051661 Herzog et al. May 2006 B2
7084095 Lee et al. Aug 2006 B2
7104425 Le Roy Sep 2006 B2
7140516 Bothor Nov 2006 B2
7146914 Morton et al. Dec 2006 B2
7201290 Mehus et al. Apr 2007 B2
7214028 Boasso May 2007 B2
7240681 Salk Jul 2007 B2
7252309 Eng Soon et al. Aug 2007 B2
7284579 Elgan et al. Oct 2007 B2
7284670 Schmid Oct 2007 B2
7316333 Wegner Jan 2008 B2
7367271 Early May 2008 B2
7377219 Brandt May 2008 B2
7410623 Mehus et al. Aug 2008 B2
7475796 Garton Jan 2009 B2
7500817 Furrer et al. Mar 2009 B2
7513280 Brashears et al. Apr 2009 B2
7591386 Hooper Sep 2009 B2
7640075 Wietgrefe Dec 2009 B2
7695538 Cheng Apr 2010 B2
7753637 Benedict et al. Jul 2010 B2
7798558 Messier Sep 2010 B2
7802958 Garcia et al. Sep 2010 B2
7803321 Lark et al. Sep 2010 B2
7837427 Beckel Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845516 Pessin et al. Dec 2010 B2
7858888 Lucas et al. Dec 2010 B2
7867613 Smith Jan 2011 B2
7891304 Herzog et al. Feb 2011 B2
7891523 Mehus et al. Feb 2011 B2
7896198 Mehus et al. Mar 2011 B2
7921783 Forbes et al. Apr 2011 B2
7967161 Townsend Jun 2011 B2
7980803 Brandstätter et al. Jul 2011 B2
7997213 Gauthier et al. Aug 2011 B1
7997623 Williams Aug 2011 B2
8083083 Mohns Dec 2011 B1
8201520 Meritt Jun 2012 B2
8313278 Simmons et al. Nov 2012 B2
8366349 Beachner Feb 2013 B2
8375690 LaFargue et al. Feb 2013 B2
8379927 Taylor Feb 2013 B2
8387824 Wietgrefe Mar 2013 B2
8393502 Renyer et al. Mar 2013 B2
8424666 Berning et al. Apr 2013 B2
8469065 Schroeder et al. Jun 2013 B2
D688351 Oren Aug 2013 S
8505780 Oren Aug 2013 B2
8544419 Spalding et al. Oct 2013 B1
8545148 Wanek-Pusset et al. Oct 2013 B2
8562022 Nadeau et al. Oct 2013 B2
8573387 Trimble Nov 2013 B2
8573917 Renyer Nov 2013 B2
8585341 Oren Nov 2013 B1
D694670 Oren Dec 2013 S
8616370 Allegretti Dec 2013 B2
8622251 Oren Jan 2014 B2
8636832 Stutzman et al. Jan 2014 B2
8646641 Moir Feb 2014 B2
8662525 Dierks et al. Mar 2014 B1
8668430 Oren Mar 2014 B2
D703582 Oren Apr 2014 S
8820559 Beitler et al. Sep 2014 B2
8827118 Oren Sep 2014 B2
8881749 Smith Nov 2014 B1
8887914 Allegretti Nov 2014 B2
8905266 De Brabanter Dec 2014 B2
8915691 Mintz Dec 2014 B2
9051801 Mintz Jun 2015 B1
9052034 Wegner et al. Jun 2015 B1
D740556 Huber Oct 2015 S
9162261 Smith Oct 2015 B1
9267266 Cutler et al. Feb 2016 B2
9296572 Houghton et al. Mar 2016 B2
9309064 Sheesley Apr 2016 B2
9410414 Tudor Aug 2016 B2
D780883 Schaffner et al. Mar 2017 S
D783771 Stegemoeller et al. Apr 2017 S
D783772 Stegemoeller, III et al. Apr 2017 S
9624036 Luharuka et al. Apr 2017 B2
9688492 Stutzman et al. Jun 2017 B2
9796318 Nolasco Oct 2017 B1
9796319 Oren Oct 2017 B1
20010022308 Epp et al. Sep 2001 A1
20010038777 Cassell Nov 2001 A1
20010045338 Ransil et al. Nov 2001 A1
20020134550 Leeson et al. Sep 2002 A1
20020139643 Peltier et al. Oct 2002 A1
20030006248 Gill et al. Jan 2003 A1
20030111470 Fouillet et al. Jun 2003 A1
20030145418 Ikeda et al. Aug 2003 A1
20030156929 Russell Aug 2003 A1
20040065699 Schoer et al. Apr 2004 A1
20040074922 Bother et al. Apr 2004 A1
20040084874 McDougall et al. May 2004 A1
20040206646 Goh Oct 2004 A1
20040245284 Mehus et al. Dec 2004 A1
20050158158 Porta Jul 2005 A1
20050201851 Jonkka Sep 2005 A1
20060012183 Marchiori et al. Jan 2006 A1
20060027582 Beach Feb 2006 A1
20060053582 Engel et al. Mar 2006 A1
20060091072 Schmid et al. May 2006 A1
20060151058 Salaoras et al. Jul 2006 A1
20060180062 Furrer et al. Aug 2006 A1
20060180232 Glewwe et al. Aug 2006 A1
20060239806 Yelton Oct 2006 A1
20060267377 Lusk et al. Nov 2006 A1
20060277783 Garton Dec 2006 A1
20060289166 Stromquist et al. Dec 2006 A1
20070096537 Hicks May 2007 A1
20070125543 McNeel et al. Jun 2007 A1
20070194564 Garceau et al. Aug 2007 A1
20080008562 Beckel et al. Jan 2008 A1
20080029546 Schuld Feb 2008 A1
20080029553 Culleton Feb 2008 A1
20080058228 Wilson Mar 2008 A1
20080179054 McGough et al. Jul 2008 A1
20080179324 McGough et al. Jul 2008 A1
20080213073 Benedict et al. Sep 2008 A1
20080226434 Smith et al. Sep 2008 A1
20080264641 Slabaugh et al. Oct 2008 A1
20080277423 Garton Nov 2008 A1
20080315558 Cesterino Dec 2008 A1
20090038242 Cope Feb 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090223143 Esposito Sep 2009 A1
20090278326 Rowland et al. Nov 2009 A1
20100021258 Kim Jan 2010 A1
20100037572 Cheng Feb 2010 A1
20100038143 Burnett et al. Feb 2010 A1
20100040446 Renyer Feb 2010 A1
20100065466 Perkins Mar 2010 A1
20100072308 Hermann et al. Mar 2010 A1
20100080681 Bain Apr 2010 A1
20100108711 Wietgrefe May 2010 A1
20100129193 Sherrer May 2010 A1
20100199668 Coustou et al. Aug 2010 A1
20100207371 Van Houdt et al. Aug 2010 A1
20100278621 Redekop Nov 2010 A1
20100288603 Schafer Nov 2010 A1
20100320727 Haut et al. Dec 2010 A1
20110011893 Cerny Jan 2011 A1
20110017693 Thomas Jan 2011 A1
20110101040 Weissbrod May 2011 A1
20110109073 Williams May 2011 A1
20110121003 Moir May 2011 A1
20110127178 Claussen Jun 2011 A1
20110160104 Wu et al. Jun 2011 A1
20110162838 Mackenzie et al. Jul 2011 A1
20110168593 Neufeld et al. Jul 2011 A1
20110222983 Dugic et al. Sep 2011 A1
20110297702 Hildebrandt et al. Dec 2011 A1
20120017812 Renyer Jan 2012 A1
20120090956 Brobst Apr 2012 A1
20120103848 Allegretti et al. May 2012 A1
20120219391 Teichrob et al. Aug 2012 A1
20120247335 Stutzman et al. Oct 2012 A1
20120255539 Kolecki Oct 2012 A1
20130004272 Mintz Jan 2013 A1
20130022441 Uhryn et al. Jan 2013 A1
20130206415 Sheesley Aug 2013 A1
20130209204 Sheesley Aug 2013 A1
20130233545 Mahoney Sep 2013 A1
20130284729 Cook et al. Oct 2013 A1
20130309052 Luharuka Nov 2013 A1
20130323005 Rexius et al. Dec 2013 A1
20140020765 Oren Jan 2014 A1
20140020892 Oren Jan 2014 A1
20140023465 Oren et al. Jan 2014 A1
20140034662 Chalmers et al. Feb 2014 A1
20140044507 Naizer et al. Feb 2014 A1
20140077484 Harrell Mar 2014 A1
20140083554 Harris Mar 2014 A1
20140093319 Harris et al. Apr 2014 A1
20140097182 Sheesley Apr 2014 A1
20140166647 Sheesley Jun 2014 A1
20140203046 Allegretti Jul 2014 A1
20140234059 Thomeer Aug 2014 A1
20140305769 Eiden et al. Oct 2014 A1
20140321950 Krenek et al. Oct 2014 A1
20140377042 McMahon Dec 2014 A1
20150004895 Hammers et al. Jan 2015 A1
20150069052 Allegretti et al. Mar 2015 A1
20150079890 Stutzman et al. Mar 2015 A1
20150086307 Stefan Mar 2015 A1
20150086308 McIver et al. Mar 2015 A1
20150107822 Tudor Apr 2015 A1
20150110565 Harris Apr 2015 A1
20150115589 Thiessen Apr 2015 A1
20150159232 Zucchi et al. Jun 2015 A1
20150209829 De Siqueira et al. Jul 2015 A1
20150284183 Houghton et al. Oct 2015 A1
20160148813 Rogers et al. May 2016 A1
20160177678 Morris et al. Jun 2016 A1
20160185522 Herman et al. Jun 2016 A1
20160273355 Gosney et al. Sep 2016 A1
20160280480 Smith et al. Sep 2016 A1
20170129721 Harris et al. May 2017 A1
20170217353 Vander Pol Aug 2017 A1
20170349226 Oren Dec 2017 A1
20180009401 Miller Jan 2018 A1
Foreign Referenced Citations (56)
Number Date Country
2023138 Feb 1992 CA
2791088 Mar 2013 CA
2037354 May 1989 CN
2059909 Aug 1990 CN
2075632 Apr 1991 CN
1329562 Jan 2002 CN
2517684 Oct 2002 CN
1635965 Jul 2005 CN
2913250 Jun 2007 CN
201390486 Jan 2010 CN
101823630 Sep 2010 CN
102101595 Jun 2011 CN
201881469 Jun 2011 CN
102114985 Jul 2011 CN
203033469 Jul 2013 CN
103350017 Oct 2013 CN
3108121 Sep 1982 DE
3342281 Jun 1985 DE
4217329 May 1993 DE
20317967 Mar 2004 DE
0019967 Dec 1980 EP
322283 Jun 1989 EP
0564969 Oct 1993 EP
0997607 May 2000 EP
1052194 Nov 2000 EP
1167236 Jan 2002 EP
1775190 Apr 2007 EP
1795467 Jun 2007 EP
2062832 May 2009 EP
2311757 Apr 2011 EP
2173445 Oct 1973 FR
2640598 Jun 1990 FR
1296736 Nov 1972 GB
2204847 Nov 1988 GB
2374864 Oct 2002 GB
S4871029 Sep 1973 JP
S4876041 Sep 1973 JP
S58161888 Oct 1983 JP
410087046 Apr 1998 JP
10264882 Oct 1998 JP
11034729 Feb 1999 JP
2012011046 May 2013 MX
1990008082 Jul 1990 WO
1992002437 Feb 1992 WO
1993001997 Feb 1993 WO
1993006031 Apr 1993 WO
1996025302 Aug 1996 WO
2006039757 Apr 2006 WO
2007005054 Jan 2007 WO
2007057398 May 2007 WO
2007061310 May 2007 WO
2008012513 Jan 2008 WO
2010026235 Mar 2010 WO
2012021447 Feb 2012 WO
2012058059 May 2012 WO
2011099358 Jun 2013 WO
Non-Patent Literature Citations (192)
Entry
Smith, Ryan E., Prefab Architecture, A Guide to Modular Design and Construction, John Wiley & Sons, Inc., 2010.
OSHA-NIOSH, Hazard Alert: Worker Exposure to Silica during Hydraulic Fracturing, Jun. 2012.
Tremoglie, Michael P., Legal NewsLine, OSHA, NIOSH issue Tracking health alert (/stories/510527440-oshaniosh-issue-fracking-health-alert), Jun. 25, 2012.
Beckwith, Robin, Proppants: Where in the World, Journal of Petroleum Technology, Apr. 2011.
Final Office Action dated Feb. 27, 2018 for co-pending U.S. Appl. No. 15/143,942.
Yergin, Daniel, The Quest: Energy, Security, and the Remaking of the Modern World, 2011.
Gold, Russell, The Boom: How Fracking Ignited the American Energy Revolution and Changed the World, 2014.
Yergin, Daniel, Stepping on the Gas, Wall Street Journal, Apr. 2, 2011.
Raimi, Daniel et al., Dunn County and Watford City, North Dakota: A case study of the fiscal effects of Bakken shale development, Duke University Energy Initiative, May 2016.
Local Economic Impacts Related to Marcellus Shale Development, The Center for Rural Pennyslvania, Sep. 2014.
Eagle Ford Shale Task Force Report, Railroad Commission of Texas, Convened and Chaired by David Porter, Mar. 2013.
Sandbox Logistics LLC et al v. Grit Energy Solutions LLC, 3:16-cv-00012, 73.Parties' P.R. 4-3 Joint Claim Construction and Prehearing Statement by Oren Technologies LLC, SandBox Enterprises LLC, SandBox Logistics LLC, Nov. 17, 2016.
Beard, Tim, Fracture Design in Horizontal Shale Wells—Data Gathering to Implementation, EPA Hydraulic Fracturing Workshop, Mar. 10-11, 2011.
Economic Impact of the Eagle Ford Shale, Center for Community and Business Research at the University of Texas at San Antonio's Institute for Economic Development, Sep. 2014.
Kelsey, Timothy W. et al., Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009, The Marcellus Shale Education & Training Center, Aug. 2011.
2006 Montana Commercial Vehicle Size and Weight and Safety Trucker's Handbook, Montana Department of Transportation Motor Carrier Services Division, Fifth Edition, Jun. 2010.
Budzynski, Brian W., Never Meant to Take the Weight, Roads & Bridges, Apr. 2015.
Interstate Weight Limits, 23 C.F.R. § 658, Apr. 1, 2011.
VIN Requirements, 49 C.F.R. § 565, Oct. 1, 2011.
Benson, Mary Ellen et al., Frac Sand in the United States—A Geological and Industry Overview, U.S. Department of the Interior, U.S. Geological Survey, 2015-2017.
Beekman, Thomas J. et al., Transportation Impacts of the Wisconsin Fracture Sand Industry, Wisconsin Department Df Transportation, Mar. 2013.
U.S. Silica Company, Material Safety Data Sheet, Jan. 2011.
Texas Transportation Code, Chapter 621, General Provisions Relating to Vehicle Size and Weight (Sec. 621.101 affective Sep. 1, 2005 and Section 621.403 effective Sep. 1, 1995).
Garner, Dwight, Visions of an Age When Oil Isn't King, New York Times, Sep. 20, 2011.
Arrows Up, Inc., Jumbo BTS—Bulk Transport System, Aug. 1, 2014.
Arrows Up, Inc., Reusable Packaging Association, Member Spotlight: John Allegretti, President & CEO, Arrows Up, Inc., Jun. 23, 2016.
Seed Today, Arrows Up, Inc. Bulk Transport System (BTS), Country Journal Publishing Co., Decatur, IL, Mar. 2, 2011.
SeedQuest, Arrows Up, Inc. launches innovative bulk transport system for see, Barrington, IL, Mar. 2, 2011.
Monster Tanks, Inc., Sand Monster Website, http://monstertanksinc.com/sandmonster.html, 2012.
Solaris Oilfield Infrastructure, Mobile Sand Silo System, 2016.
Final Office Action dated Sep. 27, 2016 for co-pending U.S. Appl. No. 13/555,635.
Non- Final Office Action dated Mar. 23, 2016 for co-pending U.S. Appl. No. 13/555,635.
Final Office Action dated Jul. 30, 2015 for co-pending U.S. Appl. No. 13/555,635.
Non-Final Office Action dated Oct. 22, 2014 for co-pending U.S. Appl. No. 13/555,635.
Final Office Action dated Jun. 21, 2016 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Feb. 23, 2016 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Sep. 22, 2015 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Jul. 28, 2015 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Mar. 24, 2015 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Sep. 18, 2014 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/831,924.
Non-Final Office Action dated Feb. 16, 2016 for co-pending U.S. Appl. No. 14/831,924.
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/923,920.
Non-Final Office Action dated Feb. 9, 2016 for co-pending U.S. Appl. No. 14/923,920.
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/943,111.
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 14/943,111.
Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 14/948,494.
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/948,494.
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/144,296.
Non-Final Office Action dated Jul. 25, 2016 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Apr. 28, 2016 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Oct. 6, 2015 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Aug. 6, 2015 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Apr. 29, 2015 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Dec. 17, 2014 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Sep. 4, 2014 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Sep. 24, 2013 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated May 14, 2013 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Jul. 5, 2016 for co-pending U.S. Appl. No. 14/996,362.
Non-Final Office Action dated Jul. 6, 2016 for co-pending U.S. Appl. No. 15/144,450.
Final Office Action dated Sep. 29, 2016 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 13/768,962.
Final Office Action dated Oct. 9, 2015 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated May 1, 2015 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 15/152,744.
Non-Final Office Action dated Apr. 13, 2016 for co-pending U.S. Appl. No. 14/738,485.
Non-Final Office Action dated Sep. 7, 2016 for co-pending U.S. Appl. No. 14/841,942.
Final Office Action dated May 12, 2016 for co-pending U.S. Appl. No. 14/841,942.
Non-Final Office Action dated Nov. 30, 2015 for co-pending U.S. Appl. No. 14/841,942.
Non-Final Office Action dated Jul. 21, 2016 for co-pending U.S. Appl. No. 15/083,596.
Non-Final Office Action dated Aug. 19, 2016 for co-pending U.S. Appl. No. 15/084,613.
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/143,942.
Final Office Action dated Sep. 1, 2016 for co-pending U.S. Appl. No. 14/848,447.
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/848,447.
International Search Report for related International Application No. PCT/US2012/066639, dated Feb. 25, 2013.
International Search Report for related International Application No. PCT/US2013/035442, dated Jun. 23, 2013.
International Search Report for related International Application No. PCT/US2013/032819, dated May 23, 2013.
International Search Report for related International Application No. PCT/US2013/049028, dated Mar. 4, 2014.
International Preliminary Report on Patentability for PCT/US2012/066639, dated Feb. 26, 2013.
International Preliminary Report on Patentability for PCT/US2013/032819, dated Sep. 23, 2014.
International Search Report for PCT/US2015/012990, dated May 6, 2015. (15 pages).
FS-35 Desert Frac-Sander& NOV (National Oilwell Varco). Mar. 19, 2012. (https://web.archive.org/web/20120319070423/http://www.nov.com/Well_Service_and_Completion/Frac_Sand_Handling_Equipment/Frac_Sanders/FS-35.aspx).
File History for U.S. Appl. No. 61/538,616, Robert A. Harris, Sep. 23, 2011. (21 pages).
International Search Report for PCT/US2015/024810, dated Jul. 8, 2015. (13 pages).
European Search Report for Application No. 15167039.5, dated Sep. 8, 2015. (7 pages).
SandBox Logistics, “Mine to Wellhead Logistics,” Houston, TX, May, 2013.
SandBox Logistics, LLC, screenshots from video made in Apr. 2013 and publicly shown in May, 2013, Arnegard, North Dakota.
International Search Report for PCT/US15/35635, dated Oct. 30, 2015. (12 pages).
PCT International Search Report for PCT/US15/49074, dated Dec. 17, 2015. (11 pages).
PCT International Search Report for PCT/US15/57601, dated May 6, 2016. (11 pages).
SandBox Logistics, LLC, screenshots from video dated Sep. 19, 2013.
SandBox Logistics, LLC, screenshots from video dated Aug. 22, 2014.
SandBox Logistics, LLC, screenshots from video dated Oct. 11, 2013.
SandBox Logistics, LLC, screenshots from video dated Apr. 10, 2013.
Grit Energy Solutions, LLC, Fidelity, Screenshots from video dated May 16, 2014.
Grit Energy Solutions, LLC, Gate, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack.
Grit Energy Solutions, LLC, Screen, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack.
Grit Energy Solutions, LLC, The Grit Stack System—Live Frac, Screenshots from video dated Jun. 15, 2015, https://www.youtube.com/user/gritstack.
Grit Energy Solutions, LLC, The Grit Stack System, Screenshots from video dated Feb. 7, 2014, https://www.youtube.com/user/gritstack.
Frac Sand Primer by Brian D. Olmen, Kelrick, LLC, from Hydraulic Fracturing by Michael Berry Smith and Carl Montgomery (CRC Press, Dec. 16, 2015), p. 384.
Premier Silica LLC, Sands Application in the Energy Market, Irving, TX, Copyright 2016.
Getty, John, Montana Tech; ASTM International, Overview of Proppants and Existing Standards and Practices, Jacksonville, FL, Jan. 29, 2013.
Non-Final Office Action dated May 13, 2016 for co-pending U.S. Appl. No. 14/986,826.
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/922,836.
Non-Final Office Action dated Feb. 4, 2016 for co-pending U.S. Appl. No. 14/922,836.
Final Office Action dated Aug. 25, 2016 for co-pending U.S. Appl. No. 14/927,614.
Non-Final Office Action dated Mar. 1, 2016 for co-pending U.S. Appl. No. 14/927,614.
Non-Final Office Action dated Apr. 29, 2016 for co-pending U.S. Appl. No. 14/943,182.
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/882,973.
Non-Final Office Action dated Feb. 11, 2016 for co-pending U.S. Appl. No. 14/882,973.
Non-Final Office Action dated Aug. 11, 2016 for co-pending U.S. Appl. No. 13/625,675.
Final Office Action dated Nov. 11, 2015 for co-pending U.S. Appl. No. 13/625,675.
Non-Final Office Action dated Mar. 11, 2015 for co-pending U.S. Appl. No. 13/625,675.
Non-Final Office Action dated Oct. 27, 2016 for co-pending U.S. Appl. No. 15/219,676.
Non-Final Office Action dated Nov. 9, 2016 for co-pending U.S. Appl. No. 14/948,494.
Final Office Action dated Nov. 4, 2016 for co-pending U.S. Appl. No. 14/738,485.
Non-Final Office Action dated Dec. 28, 2016 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Jan. 13, 2017 for co-pending U.S. Appl. No. 14/923,920.
Final Office Action dated Jan. 12, 2017 for co-pending U.S. Appl. No. 14/841,942.
Non-Final Office Action dated Dec. 23, 2016 for co-pending U.S. Appl. No. 14/485,686.
Non-Final Office Action dated Jan. 27, 2017 for co-pending U.S. Appl. No. 14/485,687.
Non-Final Office Action dated Dec. 20, 2016 for co-pending U.S. Appl. No. 14/831,924.
Final Office Action dated Jan. 19, 2017 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Nov. 25, 2016 for co-pending U.S. Appl. No. 15/152,744.
Non-Final Office Action dated Dec. 15, 2016 for co-pending U.S. Appl. No. 14/848,447.
Non-Final Office Action dated Dec. 9, 2016 for co-pending U.S. Appl. No. 14/927,614.
International Search Report for PCT Application No. PCT/US2016/050859 dated Dec. 9, 2016.
Non-Final Office Action dated Feb. 24, 2017 for co-pending U.S. Appl. No. 14/943,182.
Non-Final Office Action dated Feb. 14, 2017 for co-pending U.S. Appl. No. 14/943,111.
Final Office Action dated Mar. 7, 2017 for co-pending U.S. Appl. No. 15/144,296.
Non-Final Office Action dated Apr. 6, 2017 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated Mar. 6, 2017 for co-pending U.S. Appl. No. 15/152,744.
Non-Final Office Action dated Apr. 3, 2017 for co-pending U.S. Appl. No. 13/555,635.
International Search Report and Written Opinion for PCT/US2017/012271, dated May 22, 2017.
Non-Final Office Action dated Apr. 24, 2017 for co-pending U.S. Appl. No. 14/738,485.
Final Office Action dated May 4, 2017 for co-pending U.S. Appl. No. 15/143,942.
Final Office Action dated May 30, 2017 for co-pending U.S. Appl. No. 13/625,675.
Final Office Action dated Apr. 19, 2017 for co-pending U.S. Appl. No. 15/219,640.
Non-Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 15/219,640.
Final Office Action dated May 2, 2017 for co-pending U.S. Appl. No. 15/219,676.
Non-Final Office Action dated May 10, 2017 for co-pending U.S. Appl. No. 14/882,973.
Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Jul. 3, 2017 for co-pending U.S. Appl. No. 14/923,920.
Non-Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 15/589,185.
Final Office Action dated Jun. 7, 2017 for co-pending U.S. Appl. No. 14/848,447.
Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 14/485,687.
Final Office Action dated Jun. 6, 2017 for co-pending U.S. Appl. No. 14/927,614.
Final Office Action dated Jun. 21, 2017 for co-pending U.S. Appl. No. 14/943,182.
Non-Final Office Action dated Jul. 26, 2017 for co-pending U.S. Appl. No. 15/463,201.
Final Office Action dated Jul. 27, 2017 for co-pending U.S. Appl. No. 14/738,485.
Non-Final Office Action dated Aug. 3, 2017 for co-pending U.S. Appl. No. 15/219,676.
Beckwith, Robin, Proppants: Where in the World, Proppant Shortage, JPT, Apr. 2011 (6 pages).
Kullman, John, The Complicated World of Proppant Selection . . . , South Dakota School of Mines & Technology, Oct. 2011 (65 pages).
Lafollette, Randy, Key Considerations for Hydraulic Fracturing of Gas Shales, BJ Services Company, Sep. 9, 2010 (53 pages).
WW Trailers Inc., Model GN2040EZ datasheet, Portland, OR, Jan. 2007 (4 pages).
WW Trailers Inc., Model GN204S9A datasheet, Portland, OR, Jan. 2007 (4 pages).
Final Office Action dated Jan. 22, 2018 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Jan. 25, 2018 for co-pending U.S. Appl. No. 15/602,666.
Final Office Action dated Feb. 6, 2018 for co-pending U.S. Appl. No. 15/475,354.
Non-Final Office Action dated Feb. 9, 2018 for co-pending U.S. Appl. No. 15/587,926.
Non-Final Office Action dated Feb. 15, 2018 for co-pending U.S. Appl. No. 14/922,836.
Final Office Action dated Dec. 27, 2017 for co-pending U.S. Appl. No. 14,943,182.
Randy Lafollette, Key Considerations for Hydraulic Fracturing of Gas Shales, May 12, 2010.
Case No. 4:17-cv-00589, Plaintiffs' P.R. 3-1 and 3-2 Infringement Contentions and Disclosures, Jun. 8, 2017.
Final Office Action dated Oct. 13, 2017 for co-pending U.S. Appl. No. 15/398,950.
Non-Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 15/413,822.
Non-Final Office Action dated Oct. 5, 2017 for co-pending U.S. Appl. No. 14/848,447.
Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 14/922,836.
Non-Final Office Action dated Sep. 27, 2017 for co-pending U.S. Appl. No. 14/996,362.
Non-Final Office Action dated Sep. 28, 2017 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/475,354.
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/143,942.
International Search Report and Written Opinion for PCT/US17134603 dated Aug. 22, 2017.
Non-Final Office Action dated Aug. 30, 2017 for co-pending U.S. Appl. No. 14/943,182.
Non-Final Office Action dated Aug. 4, 2017 for co-pending U.S. Appl. No. 13/625,675.
Non-Final Office Action dated Apr. 26, 2018 for co-pending U.S. Appl. No. 15/616,783.
Final Office Action dated Apr. 23, 2018 for co-pending U.S. Appl. No. 14/848,447.
Final Office Action dated Mar. 16, 2018 for co-pending U.S. Appl. No. 14/996,362.
Final Office Action dated Mar. 14, 2018 for co-pending U.S. Appl. No. 15/144,450.
ISO 1496-1: International Standard, Series 1 Freight Containers—Specification and Testing—Part 1, General Cargo Containers, Fifth Edition, Aug. 15, 1990.
ISO 6346: International Standard, Freight Containers—Coding, Identification and Marking, Third Edition, Dec. 1, 1995.
ISO/IEC 15416: International Standard, Information Technology—Automatic Identification and Data Capture Techniques—Bar Code Print Quality Test Specification—Linear Symbols, First Edition, Aug. 15, 2000.
Hoel, Lester A., Giuliano, Genevieve and Meyer, Michael D., Portions of Intermodal Transportation: Moving Freight in a Global Economy, Copyright Eno Transportation Foundation, 2011.
International Organization for Standardization, ISO 668:1995(E).
International Organization for Standardization, ISO 668:1995(E)/Amd.1:2005(E).
International Organization for Standardization, ISO 668:1995(E)/Amd.2:2005(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.1:1993(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.2:1998(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.3:2005(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.4:2006(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.5:2006(E).
Rastikian, K. et al., Modelling of sugar drying in a countercurrent cascading rotary dryer from stationary profiles of temperature and moisture, Journal of Food Engineering 41 (1999).
Continuations (2)
Number Date Country
Parent 15219359 Jul 2016 US
Child 15672334 US
Parent 13854405 Apr 2013 US
Child 15219359 US