The present invention generally relates to trailer backup assist systems, and more particularly to trailer backup assist systems employing imager-based target detection.
Reversing a vehicle while towing a trailer can be challenging for many drivers, particularly for drivers that drive with a trailer on an infrequent basis or with various types of trailers. Systems used to assist a driver with backing a trailer can determine the position of the trailer relative to the vehicle with imager-based target detection. The accuracy and reliability of this hitch angle determination can be critical to the operation of the backup assist system.
According to one aspect of the present invention, a side mirror assembly of a vehicle is provided. The side mirror assembly includes a body portion and a camera mounted to the body portion for capturing images of a rear and a side-vehicle operating environment. The camera includes a horizontal field of view angle defined by a first horizontal extent intersecting a centerline longitudinal axis of the vehicle and a second horizontal extent making an angle with a lateral axis of the vehicle that intersects the camera.
According to another aspect of the present invention, a side mirror assembly of a vehicle is provided. The side mirror assembly includes a body portion and a camera mounted to the body portion for capturing images of a rear and a side-vehicle operating environment. The camera includes a horizontal field of view angle defined by a first horizontal extent intersecting a centerline longitudinal axis of the vehicle and a second horizontal extent making an angle with a lateral axis of the vehicle that intersects the camera. A controller processes the captured images to generate a 360 degree view of the vehicle on a vehicle display and/or provide trailer reverse guidance during a trailer backup maneuver.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, it is to be understood that the disclosed trailer backup assist system and the related methods may assume various alternative embodiments and orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. While various aspects of the trailer backup assist system and the related methods are described with reference to a particular illustrative embodiment, the disclosed invention is not limited to such embodiments, and additional modifications, applications, and embodiments may be implemented without departing from the disclosed invention. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
Referring to
With respect to the general operation of the trailer backup assist system 10, a steering input device 18 may be provided, such as a rotatable knob 30, for a driver to provide the desired curvature of the trailer 12. As such, the steering input device 18 may be operable between a plurality of selections, such as successive rotated positions of a knob 30, that each provide an incremental change to the desired curvature of the trailer 12. Upon inputting the desired curvature, the controller 28 may generate a steering command for the vehicle 14 to guide the trailer 12 on the desired curvature based on the estimated hitch angle γ and a kinematic relationship between the trailer 12 and the vehicle 14. Therefore, the accuracy of the hitch angle estimation may be critical to operating the trailer backup assist system 10. However, it is appreciated that such a system for instantaneously estimating hitch angle may be used in association with additional or alternative vehicle features, such as trailer sway monitoring.
With reference to the embodiment shown in
Still referring to
Additionally or alternatively, the target may include a number of user-selected points on the trailer 12 and the camera 46 may be employed to track the points on the trailer 12 to determine the hitch angle γ between the vehicle 14 and the trailer 12 based on the movement of the points within successive camera images. The points may be selected by a vehicle operator or other vehicle occupant through a human machine interface (HMI) 80, which may include a vehicle display 82 located within a passenger cab 54 of the vehicle 14. As exemplarily shown in
As shown in
In practice, the points 35a, 35b should be selected when the vehicle 14 and the trailer 12 are in substantial alignment, that is, positioned in a straight line as appearing in the captured image 31 shown in
Referring to
Referring back to
According to one embodiment, the camera 53 may be mounted to a body portion 65 of the side mirror assembly 55 as shown in
According to one embodiment, as shown in
Referring back to
The sensor module 20 generates a plurality of signals indicative of various dynamics of the trailer 12. The signals may include a yaw rate signal, a lateral acceleration signal, and wheel speed signals generated respectively by a yaw rate sensor 25, an accelerometer 27, and the wheel speed sensors 23. Accordingly, in the illustrated embodiment, the yaw rate sensor 25 and the accelerometer 27 are contained within the housed sensor cluster 21, although other configurations are conceivable. It is conceivable that the accelerometer 27, in some embodiments, may be two or more separate sensors and may be arranged at an offset angle, such as two sensors arranged at plus and minus forty-five degrees from the longitudinal direction of the trailer or arranged parallel with the longitudinal and lateral directions of the trailer, to generate a more robust acceleration signal. It is also contemplated that these sensor signals could be compensated and filtered to remove offsets or drifts, and smooth out noise. Further, the controller 28 may utilize processed signals received outside of the sensor system 16, including standard signals from the brake control system 72 and the power assist steering system 62, such as vehicle yaw rate ω1, vehicle speed v1, and steering angle δ, to estimate the trailer hitch angle γ, trailer speed, and related trailer parameters. As described in more detail below, the controller 28 may estimate the hitch angle γ based on the trailer yaw rate ω2, the vehicle yaw rate ω1, and the vehicle speed v1 in view of a kinematic relationship between the trailer 12 and the vehicle 14. The controller 28 of the trailer backup assist system 10 may also utilize the estimated trailer variables and trailer parameters to control the steering system 62, brake control system 72, and the powertrain control system 74, such as to assist backing the vehicle-trailer combination or to mitigate a trailer sway condition.
With reference to the embodiment of the trailer backup assist system 10 shown in
As further shown in
Referring again to the embodiment illustrated in
As also illustrated in
The powertrain control system 74, as shown in the embodiment illustrated in
With continued reference to
As further illustrated in
Still referring to the embodiment shown in
With reference to
As shown in
One embodiment of a kinematic relationship between trailer path radius of curvature r2 at the midpoint of an axle of the trailer 12, steering angle δ of the steered wheels 64 of the vehicle 14, and the hitch angle γ can be expressed in the equation provided below. As such, if the hitch angle γ is provided, the trailer path curvature κ2 can be controlled based on regulating the steering angle δ (where {dot over (β)} is trailer yaw rate and {dot over (η)} is trailer velocity).
This relationship can be expressed to provide the steering angle δ as a function of trailer path curvature κ2 and hitch angle γ.
Accordingly, for a particular vehicle and trailer combination, certain parameters (e.g., D, W and L) of the kinematic relationship are constant and assumed known. V is the vehicle longitudinal speed and g is the acceleration due to gravity. K is a speed dependent parameter which when set to zero makes the calculation of steering angle independent of vehicle speed. For example, vehicle-specific parameters of the kinematic relationship can be predefined in an electronic control system of the vehicle 14 and trailer-specific parameters of the kinematic relationship can be inputted by a driver of the vehicle 14, determined from sensed trailer behavior in response to vehicle steering commands, or otherwise determined from signals provided by the trailer 12. Trailer path curvature κ2 can be determined from the driver input via the steering input device 18. Through the use of the equation for providing steering angle, a corresponding steering command can be generated by the curvature routine 98 for controlling the power assist steering system 62 of the vehicle 14.
In an additional embodiment, an assumption may be made by the curvature routine 98 that a longitudinal distance L between the pivoting connection and the rear axle of the vehicle 14 is equal to zero for purposes of operating the trailer backup assist system 10 when a gooseneck trailer or other similar trailer is connected with a hitch ball or a fifth wheel connector located over a rear axle of the vehicle 14. The assumption essentially assumes that the pivoting connection with the trailer 12 is substantially vertically aligned with the rear axle of the vehicle 14. When such an assumption is made, the controller 28 may generate the steering angle command for the vehicle 14 as a function independent of the longitudinal distance L between the pivoting connection and the rear axle of the vehicle 14. It is appreciated that the gooseneck trailer mentioned generally refers to the tongue configuration being elevated to attach with the vehicle 14 at an elevated location over the rear axle, such as within a bed of a truck, whereby embodiments of the gooseneck trailer may include flatbed cargo areas, enclosed cargo areas, campers, cattle trailers, horse trailers, lowboy trailers, and other conceivable trailers with such a tongue configuration.
Referring now to
A kinematic model representation of the vehicle 14 and the trailer 12 can also be used to determine a jackknife angle for the vehicle-trailer combination. Accordingly, with reference to
Solving the above equation for hitch angle γ allows jackknife angle γ(j) to be determined. This solution, which is shown in the following equation, can be used in implementing trailer backup assist functionality in accordance with the disclosed subject matter for monitoring hitch angle γ in relation to jackknife angle.
where,
In certain instances of backing the trailer 12, a jackknife enabling condition can arise based on current operating parameters of the vehicle 14 in combination with a corresponding hitch angle γ. This condition can be indicated when one or more specified vehicle operating thresholds are met while a particular hitch angle γ is present. For example, although the particular hitch angle γ is not currently at the jackknife angle for the vehicle 14 and attached trailer 12, certain vehicle operating parameters can lead to a rapid (e.g., uncontrolled) transition of the hitch angle γ to the jackknife angle for a current commanded trailer curvature and/or can reduce an ability to steer the trailer 12 away from the jackknife angle. One reason for a jackknife enabling condition is that trailer curvature control mechanisms (e.g., those in accordance with the disclosed subject matter) generally calculate steering commands at an instantaneous point in time during backing of a trailer 12. However, these calculations will typically not account for lag in the steering control system of the vehicle 14 (e.g., lag in a steering EPAS controller). Another reason for the jackknife enabling condition is that trailer curvature control mechanisms generally exhibit reduced steering sensitivity and/or effectiveness when the vehicle 14 is at relatively high speeds and/or when undergoing relatively high acceleration.
Jackknife determining information may be received by the controller 28, according to one embodiment, to process and characterize a jackknife enabling condition of the vehicle-trailer combination at a particular point in time (e.g., at the point in time when the jackknife determining information was sampled). Examples of the jackknife determining information include, but are not limited to, information characterizing an estimated hitch angle γ, information characterizing a vehicle accelerator pedal transient state, information characterizing a speed of the vehicle 14, information characterizing longitudinal acceleration of the vehicle 14, information characterizing a brake torque being applied by a brake system of the vehicle 14, information characterizing a powertrain torque being applied to driven wheels of the vehicle 14, and information characterizing the magnitude and rate of driver requested trailer curvature. In this regard, jackknife determining information would be continually monitored, such as by an electronic control unit (ECU) that carries out trailer backup assist (TBA) functionality. After receiving the jackknife determining information, a routine may process the jackknife determining information for determining if the vehicle-trailer combination attained the jackknife enabling condition at the particular point in time. The objective of the operation for assessing the jackknife determining information is determining if a jackknife enabling condition has been attained at the point in time defined by the jackknife determining information. If it is determined that a jackknife enabling condition is present at the particular point in time, a routine may also determine an applicable countermeasure or countermeasures to implement. Accordingly, in some embodiments, an applicable countermeasure will be selected dependent upon a parameter identified as being a key influencer of the jackknife enabling condition. However, in other embodiments, an applicable countermeasure will be selected as being most able to readily alleviate the jackknife enabling condition. In still another embodiment, a predefined countermeasure or predefined set of countermeasures may be the applicable countermeasure(s).
As previously disclosed with reference to the illustrated embodiments, during operation of the trailer backup assist system 10, a driver of the vehicle 14 may be limited in the manner in which steering inputs may be made with the steering wheel 68 of the vehicle 14 due to the power assist steering system 62 being directly coupled to the steering wheel 68. Accordingly, the steering input device 18 of the trailer backup assist system 10 may be used for inputting a desired curvature of the trailer 12, thereby decoupling such commands from being made at the steering wheel 68 of the vehicle 14. However, additional embodiments of the trailer backup assist system 10 may have the capability to selectively decouple the steering wheel 68 from movement of steerable wheels of the vehicle 14, thereby allowing the steering wheel 68 to be used for commanding changes in the desired curvature of a trailer 12 or otherwise selecting a desired backing path during such trailer backup assist.
As described herein, the trailer backup assist system 10 may employ a camera 46 to track targets such as sticker 52 and/or user-selected points (e.g., points 35a, 35b;
Referring to
At step 190, the trailer yaw rate may be supplied to the controller 28 via yaw rate sensor 25 (
It is to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This patent application is a continuation of U.S. patent application Ser. No. 14/924,851, which was filed on Oct. 28, 2015, now U.S. Pat. No. 9,836,060, entitled “TRAILER BACKUP ASSIST SYSTEM WITH TARGET MANAGEMENT.” The aforementioned related application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3542390 | Fikes et al. | Nov 1970 | A |
3605088 | Savelli | Sep 1971 | A |
3787077 | Sanders | Jan 1974 | A |
3833928 | Gavit et al. | Sep 1974 | A |
3860257 | Mesley | Jan 1975 | A |
4040006 | Kimmel | Aug 1977 | A |
4042132 | Bohman et al. | Aug 1977 | A |
4122390 | Kollitz et al. | Oct 1978 | A |
4212483 | Howard | Jul 1980 | A |
4277804 | Robison | Jul 1981 | A |
4366966 | Ratsko et al. | Jan 1983 | A |
4735432 | Brown | Apr 1988 | A |
4752080 | Rogers | Jun 1988 | A |
4848449 | Martinet et al. | Jul 1989 | A |
4848499 | Martinet et al. | Jul 1989 | A |
4852901 | Beasley et al. | Aug 1989 | A |
4943080 | Reimer | Jul 1990 | A |
5001639 | Breen | Mar 1991 | A |
5056905 | Jensen | Oct 1991 | A |
5097250 | Hernandez | Mar 1992 | A |
5108123 | Rubenzik | Apr 1992 | A |
5108158 | Breen | Apr 1992 | A |
5132851 | Bomar et al. | Jul 1992 | A |
5152544 | Dierker, Jr. et al. | Oct 1992 | A |
5155683 | Rahim | Oct 1992 | A |
5191328 | Nelson | Mar 1993 | A |
5244226 | Bergh | Sep 1993 | A |
5246242 | Penzotti | Sep 1993 | A |
5247442 | Kendall | Sep 1993 | A |
5282641 | McLaughlin | Feb 1994 | A |
5289892 | Notsu | Mar 1994 | A |
5290057 | Pellerito | Mar 1994 | A |
5455557 | Noll et al. | Oct 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5521633 | Nakajima et al. | May 1996 | A |
5523947 | Breen | Jun 1996 | A |
5541778 | DeFlorio | Jul 1996 | A |
5558350 | Kimbrough et al. | Sep 1996 | A |
5559696 | Borenstein | Sep 1996 | A |
5579228 | Kimbrough et al. | Nov 1996 | A |
5631656 | Hartman et al. | May 1997 | A |
5650764 | McCullough | Jul 1997 | A |
5690347 | Juergens et al. | Nov 1997 | A |
5719713 | Brown | Feb 1998 | A |
5747683 | Gerum et al. | May 1998 | A |
5821852 | Fairchild | Oct 1998 | A |
5947588 | Huang | Sep 1999 | A |
5980048 | Rannells, Jr. et al. | Nov 1999 | A |
6041582 | Tiede et al. | Mar 2000 | A |
6042196 | Nakamura et al. | Mar 2000 | A |
6124709 | Allwine | Sep 2000 | A |
6142372 | Wright | Nov 2000 | A |
6151175 | Osha | Nov 2000 | A |
6182010 | Berstis | Jan 2001 | B1 |
6198992 | Winslow | Mar 2001 | B1 |
6217177 | Rost | Apr 2001 | B1 |
6218828 | Bates et al. | Apr 2001 | B1 |
6223104 | Kamen et al. | Apr 2001 | B1 |
6223114 | Boras et al. | Apr 2001 | B1 |
6268800 | Howard | Jul 2001 | B1 |
6292094 | Deng et al. | Sep 2001 | B1 |
6318747 | Ratican | Nov 2001 | B1 |
6351698 | Kubota et al. | Feb 2002 | B1 |
6411898 | Ishida et al. | Jun 2002 | B2 |
6472865 | Tola et al. | Oct 2002 | B1 |
6480104 | Wall et al. | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6494476 | Masters et al. | Dec 2002 | B2 |
6498977 | Wetzel et al. | Dec 2002 | B2 |
6526335 | Treyz et al. | Feb 2003 | B1 |
6539288 | Ishida et al. | Mar 2003 | B2 |
6568093 | Kogiso et al. | May 2003 | B2 |
6577952 | Geier et al. | Jun 2003 | B2 |
6587760 | Okamoto | Jul 2003 | B2 |
6593960 | Sugimoto et al. | Jul 2003 | B1 |
6655710 | Lindell et al. | Dec 2003 | B2 |
6668225 | Oh et al. | Dec 2003 | B2 |
6683539 | Trajkovic et al. | Jan 2004 | B2 |
6704653 | Kuriya et al. | Mar 2004 | B2 |
6712378 | Austin | Mar 2004 | B1 |
6801125 | McGregor et al. | Oct 2004 | B1 |
6806809 | Lee et al. | Oct 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6837432 | Tsikos et al. | Jan 2005 | B2 |
6838979 | Deng et al. | Jan 2005 | B2 |
6854557 | Deng et al. | Feb 2005 | B1 |
6857494 | Kobayashi et al. | Feb 2005 | B2 |
6879240 | Kruse | Apr 2005 | B2 |
6933837 | Gunderson et al. | Aug 2005 | B2 |
6956468 | Lee et al. | Oct 2005 | B2 |
6959970 | Tseng | Nov 2005 | B2 |
6970184 | Hirama et al. | Nov 2005 | B2 |
6989739 | Li | Jan 2006 | B2 |
6999856 | Lee et al. | Feb 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7006127 | Mizusawa et al. | Feb 2006 | B2 |
7008088 | Pisciotti | Mar 2006 | B2 |
7028804 | Eki et al. | Apr 2006 | B2 |
7032705 | Zheng et al. | Apr 2006 | B2 |
7039504 | Tanaka et al. | May 2006 | B2 |
7046127 | Boddy | May 2006 | B2 |
7058493 | Inagaki | Jun 2006 | B2 |
7085634 | Endo et al. | Aug 2006 | B2 |
7089101 | Fischer et al. | Aug 2006 | B2 |
7136754 | Hahn et al. | Nov 2006 | B2 |
7142098 | Lang et al. | Nov 2006 | B2 |
7154385 | Lee et al. | Dec 2006 | B2 |
7159890 | Craig et al. | Jan 2007 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7167785 | Lohberg et al. | Jan 2007 | B2 |
7170285 | Spratte | Jan 2007 | B2 |
7171330 | Kruse et al. | Jan 2007 | B2 |
7195267 | Thompson | Mar 2007 | B1 |
7204504 | Gehring et al. | Apr 2007 | B2 |
7219913 | Atley | May 2007 | B2 |
7225891 | Gehring et al. | Jun 2007 | B2 |
7229139 | Lu et al. | Jun 2007 | B2 |
7237790 | Gehring et al. | Jul 2007 | B2 |
7239958 | Grougan et al. | Jul 2007 | B2 |
7269489 | Deng et al. | Sep 2007 | B2 |
7272481 | Einig et al. | Sep 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7352388 | Miwa et al. | Apr 2008 | B2 |
7353110 | Kim | Apr 2008 | B2 |
7401871 | Lu et al. | Jul 2008 | B2 |
7405557 | Spratte et al. | Jul 2008 | B2 |
7413266 | Lenz et al. | Aug 2008 | B2 |
7425889 | Widmann et al. | Sep 2008 | B2 |
7447585 | Tandy, Jr. et al. | Nov 2008 | B2 |
7451020 | Goetting et al. | Nov 2008 | B2 |
7463137 | Wishart et al. | Dec 2008 | B2 |
7504995 | Lawrence et al. | Mar 2009 | B2 |
7532109 | Takahama et al. | May 2009 | B2 |
7537256 | Gates et al. | May 2009 | B2 |
7540523 | Russell et al. | Jun 2009 | B2 |
7548155 | Schutt et al. | Jun 2009 | B2 |
7568716 | Dietz | Aug 2009 | B2 |
7619680 | Bingle et al. | Nov 2009 | B1 |
7623952 | Unruh et al. | Nov 2009 | B2 |
7640108 | Shimizu et al. | Dec 2009 | B2 |
7648153 | Metternich et al. | Jan 2010 | B2 |
7658524 | Johnson et al. | Feb 2010 | B2 |
7688221 | Watanabe | Mar 2010 | B2 |
7690737 | Lu | Apr 2010 | B2 |
7692557 | Medina et al. | Apr 2010 | B2 |
7702133 | Muramatsu et al. | Apr 2010 | B2 |
7706944 | Tanaka et al. | Apr 2010 | B2 |
7715953 | Shepard | May 2010 | B2 |
7731302 | Tandy, Jr. et al. | Jun 2010 | B2 |
7777615 | Okuda | Aug 2010 | B2 |
7793965 | Padula | Sep 2010 | B2 |
7798263 | Tandy, Jr. et al. | Sep 2010 | B2 |
7878545 | Rhymer et al. | Feb 2011 | B2 |
7904222 | Lee et al. | Mar 2011 | B2 |
7905507 | Perri | Mar 2011 | B2 |
7950751 | Offerle et al. | May 2011 | B2 |
7953536 | Katrak | May 2011 | B2 |
7969326 | Sakakibara | Jun 2011 | B2 |
7974444 | Hongo | Jul 2011 | B2 |
8010252 | Getman et al. | Aug 2011 | B2 |
8010253 | Lundquist | Aug 2011 | B2 |
8036792 | Dechamp | Oct 2011 | B2 |
8038166 | Piesinger | Oct 2011 | B1 |
8044776 | Schofield et al. | Oct 2011 | B2 |
8044779 | Hahn et al. | Oct 2011 | B2 |
8068019 | Bennie et al. | Nov 2011 | B2 |
8073594 | Lee et al. | Dec 2011 | B2 |
8138899 | Ghneim | Mar 2012 | B2 |
8139109 | Schmiedel et al. | Mar 2012 | B2 |
8157284 | McGhie et al. | Apr 2012 | B1 |
8165770 | Getman et al. | Apr 2012 | B2 |
8167444 | Lee et al. | May 2012 | B2 |
8170726 | Chen et al. | May 2012 | B2 |
8174576 | Akatsuka et al. | May 2012 | B2 |
8180543 | Futamura et al. | May 2012 | B2 |
8190364 | Rekow | May 2012 | B2 |
8191915 | Freese, V et al. | Jun 2012 | B2 |
8192036 | Lee et al. | Jun 2012 | B2 |
8192064 | Johnson et al. | Jun 2012 | B2 |
8205704 | Kadowaki et al. | Jun 2012 | B2 |
8215436 | DeGrave et al. | Jul 2012 | B2 |
8223204 | Hahn | Jul 2012 | B2 |
8224078 | Boncyk et al. | Jul 2012 | B2 |
8244442 | Craig et al. | Aug 2012 | B2 |
8260518 | Englert | Sep 2012 | B2 |
8267485 | Barlsen et al. | Sep 2012 | B2 |
8280607 | Gatti et al. | Oct 2012 | B2 |
8290657 | Lavoie | Oct 2012 | B2 |
8308182 | Ortmann et al. | Nov 2012 | B2 |
8310353 | Hinninger et al. | Nov 2012 | B2 |
8319614 | Takano | Nov 2012 | B2 |
8319618 | Gomi et al. | Nov 2012 | B2 |
8319663 | Von Reyher et al. | Nov 2012 | B2 |
8326504 | Wu et al. | Dec 2012 | B2 |
8332097 | Chiba et al. | Dec 2012 | B2 |
8342560 | Albers et al. | Jan 2013 | B2 |
8374749 | Tanaka | Feb 2013 | B2 |
8380390 | Sy et al. | Feb 2013 | B2 |
8380416 | Offerle et al. | Feb 2013 | B2 |
8390696 | Komoto et al. | Mar 2013 | B2 |
8393632 | Vortmeyer et al. | Mar 2013 | B2 |
8401744 | Chiocco | Mar 2013 | B2 |
8414171 | Kawamura | Apr 2013 | B2 |
8427288 | Schofield et al. | Apr 2013 | B2 |
8451107 | Lu et al. | May 2013 | B2 |
8469125 | Yu et al. | Jun 2013 | B2 |
8471691 | Zhang et al. | Jun 2013 | B2 |
8498770 | Takano | Jul 2013 | B2 |
8504243 | Kageyama | Aug 2013 | B2 |
8548680 | Ryerson et al. | Oct 2013 | B2 |
8548683 | Cebon et al. | Oct 2013 | B2 |
8576115 | Basten | Nov 2013 | B2 |
8626382 | Obradovich | Jan 2014 | B2 |
8645015 | Oetiker et al. | Feb 2014 | B2 |
8675953 | Elwell et al. | Mar 2014 | B1 |
8755984 | Rupp et al. | Jun 2014 | B2 |
8807261 | Subrt et al. | Aug 2014 | B2 |
8811698 | Kono et al. | Aug 2014 | B2 |
8823796 | Shen et al. | Sep 2014 | B2 |
8825221 | Hueger et al. | Sep 2014 | B2 |
8825328 | Rupp et al. | Sep 2014 | B2 |
8833789 | Anderson | Sep 2014 | B2 |
8836786 | Seger et al. | Sep 2014 | B2 |
8868329 | Ikeda et al. | Oct 2014 | B2 |
8886400 | Kossira et al. | Nov 2014 | B2 |
8888120 | Trevino | Nov 2014 | B2 |
8909426 | Rhode et al. | Dec 2014 | B2 |
8928757 | Maekawa et al. | Jan 2015 | B2 |
8930140 | Trombley et al. | Jan 2015 | B2 |
8939462 | Adamczyk et al. | Jan 2015 | B2 |
8955865 | Fortin et al. | Feb 2015 | B2 |
8957786 | Stempnik et al. | Feb 2015 | B2 |
8972109 | Lavoie et al. | Mar 2015 | B2 |
9008913 | Sears et al. | Apr 2015 | B1 |
9013286 | Chen et al. | Apr 2015 | B2 |
9026311 | Pieronek et al. | May 2015 | B1 |
9042603 | Elwart et al. | May 2015 | B2 |
9082315 | Lin et al. | Jul 2015 | B2 |
9094583 | Shih et al. | Jul 2015 | B2 |
9102271 | Trombley et al. | Aug 2015 | B2 |
9108598 | Headley | Aug 2015 | B2 |
9114832 | Wang et al. | Aug 2015 | B2 |
9120358 | Motts et al. | Sep 2015 | B2 |
9120359 | Chiu et al. | Sep 2015 | B2 |
9132856 | Shepard | Sep 2015 | B2 |
9156496 | Greenwood et al. | Oct 2015 | B2 |
9164955 | Lavoie et al. | Oct 2015 | B2 |
9180890 | Lu et al. | Nov 2015 | B2 |
9187124 | Trombley et al. | Nov 2015 | B2 |
9208686 | Takamatsu | Dec 2015 | B2 |
9227474 | Liu | Jan 2016 | B2 |
9238483 | Hafner et al. | Jan 2016 | B2 |
9248858 | Lavoie et al. | Feb 2016 | B2 |
9264672 | Lynam | Feb 2016 | B2 |
9296422 | Lavoie | Mar 2016 | B2 |
9315151 | Taylor et al. | Apr 2016 | B2 |
9315212 | Kyrtsos et al. | Apr 2016 | B1 |
9321483 | Headley | Apr 2016 | B2 |
9335162 | Kyrtsos et al. | May 2016 | B2 |
9340228 | Xu et al. | May 2016 | B2 |
9352777 | Lavoie et al. | May 2016 | B2 |
9393996 | Goswami et al. | Jul 2016 | B2 |
9400897 | Bruening et al. | Jul 2016 | B2 |
9428188 | Schwindt et al. | Aug 2016 | B2 |
9434414 | Lavoie | Sep 2016 | B2 |
9464913 | Brown et al. | Oct 2016 | B2 |
9499018 | Gehrke et al. | Nov 2016 | B2 |
9500497 | Lavoie et al. | Nov 2016 | B2 |
9508189 | Han et al. | Nov 2016 | B2 |
9520063 | Noh | Dec 2016 | B2 |
9610974 | Herzog et al. | Apr 2017 | B2 |
9616923 | Lavoie | Apr 2017 | B2 |
9623904 | Lavoie et al. | Apr 2017 | B2 |
9676377 | Hafner et al. | Jun 2017 | B2 |
9798953 | Hu | Oct 2017 | B2 |
9836060 | Ghneim et al. | Dec 2017 | B2 |
9840278 | Lavoie et al. | Dec 2017 | B2 |
10046800 | Hu et al. | Aug 2018 | B2 |
20010024333 | Rost | Sep 2001 | A1 |
20010037164 | Hecker | Nov 2001 | A1 |
20020128764 | Hecker et al. | Sep 2002 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20030234512 | Holub | Dec 2003 | A1 |
20040017285 | Zielinski et al. | Jan 2004 | A1 |
20040021291 | Haug et al. | Feb 2004 | A1 |
20040093139 | Wildey et al. | May 2004 | A1 |
20040119822 | Custer et al. | Jun 2004 | A1 |
20040130441 | Lee et al. | Jul 2004 | A1 |
20040222881 | Deng et al. | Nov 2004 | A1 |
20050000738 | Gehring et al. | Jan 2005 | A1 |
20050046696 | Lang et al. | Mar 2005 | A1 |
20050073433 | Gunderson et al. | Apr 2005 | A1 |
20050074143 | Kawai | Apr 2005 | A1 |
20050128059 | Vause | Jun 2005 | A1 |
20050146607 | Linn et al. | Jul 2005 | A1 |
20050206224 | Lu | Sep 2005 | A1 |
20050206225 | Offerle et al. | Sep 2005 | A1 |
20050206229 | Lu et al. | Sep 2005 | A1 |
20050206231 | Lu et al. | Sep 2005 | A1 |
20050236201 | Spannheimer et al. | Oct 2005 | A1 |
20050236896 | Offerle et al. | Oct 2005 | A1 |
20060041358 | Hara | Feb 2006 | A1 |
20060071447 | Gehring et al. | Apr 2006 | A1 |
20060076828 | Lu et al. | Apr 2006 | A1 |
20060103511 | Lee et al. | May 2006 | A1 |
20060111820 | Goetting et al. | May 2006 | A1 |
20060142936 | Dix | Jun 2006 | A1 |
20060155455 | Lucas et al. | Jul 2006 | A1 |
20060171704 | Bingle et al. | Aug 2006 | A1 |
20060176370 | Chen et al. | Aug 2006 | A1 |
20060190147 | Lee et al. | Aug 2006 | A1 |
20060244579 | Raab | Nov 2006 | A1 |
20060250501 | Widmann et al. | Nov 2006 | A1 |
20060287821 | Lin | Dec 2006 | A1 |
20060293800 | Bauer et al. | Dec 2006 | A1 |
20070019421 | Kregness et al. | Jan 2007 | A1 |
20070027581 | Bauer et al. | Feb 2007 | A1 |
20070057816 | Sakakibara et al. | Mar 2007 | A1 |
20070058273 | Ito et al. | Mar 2007 | A1 |
20070090688 | Haemmerling et al. | Apr 2007 | A1 |
20070132560 | Nystrom et al. | Jun 2007 | A1 |
20070152424 | Deng et al. | Jul 2007 | A1 |
20070198190 | Bauer et al. | Aug 2007 | A1 |
20070216136 | Dietz | Sep 2007 | A1 |
20070285808 | Beale | Dec 2007 | A1 |
20080027599 | Logan et al. | Jan 2008 | A1 |
20080027635 | Tengler et al. | Jan 2008 | A1 |
20080143593 | Graziano et al. | Jun 2008 | A1 |
20080147277 | Lu et al. | Jun 2008 | A1 |
20080180526 | Trevino | Jul 2008 | A1 |
20080186384 | Ishii et al. | Aug 2008 | A1 |
20080231701 | Greenwood et al. | Sep 2008 | A1 |
20080312792 | Dechamp | Dec 2008 | A1 |
20090005932 | Lee et al. | Jan 2009 | A1 |
20090063053 | Basson et al. | Mar 2009 | A1 |
20090079828 | Lee et al. | Mar 2009 | A1 |
20090085775 | Otsuka et al. | Apr 2009 | A1 |
20090093928 | Getman et al. | Apr 2009 | A1 |
20090153663 | Ramos | Jun 2009 | A1 |
20090198425 | Englert | Aug 2009 | A1 |
20090228182 | Waldbauer et al. | Sep 2009 | A1 |
20090231441 | Walker et al. | Sep 2009 | A1 |
20090248346 | Fennel et al. | Oct 2009 | A1 |
20090271078 | Dickinson | Oct 2009 | A1 |
20090300701 | Karaoguz et al. | Dec 2009 | A1 |
20090306854 | Dechamp | Dec 2009 | A1 |
20090306861 | Schumann et al. | Dec 2009 | A1 |
20100060739 | Salazar | Mar 2010 | A1 |
20100063702 | Sabelstrom et al. | Mar 2010 | A1 |
20100156667 | Bennie et al. | Jun 2010 | A1 |
20100156671 | Lee et al. | Jun 2010 | A1 |
20100157061 | Katsman et al. | Jun 2010 | A1 |
20100171828 | Ishii | Jul 2010 | A1 |
20100194888 | McElroy et al. | Aug 2010 | A1 |
20100222964 | Dechamp | Sep 2010 | A1 |
20100324770 | Ramsey et al. | Dec 2010 | A1 |
20100332049 | Sy et al. | Dec 2010 | A1 |
20110001825 | Hahn | Jan 2011 | A1 |
20110018231 | Collenberg | Jan 2011 | A1 |
20110022282 | Wu et al. | Jan 2011 | A1 |
20110050903 | Vorobiev | Mar 2011 | A1 |
20110063425 | Tieman | Mar 2011 | A1 |
20110087398 | Lu et al. | Apr 2011 | A1 |
20110102583 | Kinzalow | May 2011 | A1 |
20110112721 | Wang et al. | May 2011 | A1 |
20110125457 | Lee et al. | May 2011 | A1 |
20110149077 | Robert | Jun 2011 | A1 |
20110153198 | Kokkas et al. | Jun 2011 | A1 |
20110160956 | Chung et al. | Jun 2011 | A1 |
20110216199 | Trevino et al. | Sep 2011 | A1 |
20110257860 | Getman et al. | Oct 2011 | A1 |
20120039537 | Keys | Feb 2012 | A1 |
20120041658 | Turner | Feb 2012 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120062744 | Schofield et al. | Mar 2012 | A1 |
20120062745 | Han | Mar 2012 | A1 |
20120086808 | Lynam | Apr 2012 | A1 |
20120095649 | Klier et al. | Apr 2012 | A1 |
20120109471 | Wu | May 2012 | A1 |
20120112434 | Albers et al. | May 2012 | A1 |
20120170286 | Bodem et al. | Jul 2012 | A1 |
20120185131 | Headley | Jul 2012 | A1 |
20120191285 | Woolf et al. | Jul 2012 | A1 |
20120200706 | Greenwood et al. | Aug 2012 | A1 |
20120212616 | Usami et al. | Aug 2012 | A1 |
20120221168 | Zeng et al. | Aug 2012 | A1 |
20120224059 | Takamatsu | Sep 2012 | A1 |
20120229639 | Singleton | Sep 2012 | A1 |
20120265416 | Lu et al. | Oct 2012 | A1 |
20120271512 | Rupp et al. | Oct 2012 | A1 |
20120271514 | Lavoie et al. | Oct 2012 | A1 |
20120271515 | Rhode et al. | Oct 2012 | A1 |
20120271522 | Rupp et al. | Oct 2012 | A1 |
20120283909 | Dix | Nov 2012 | A1 |
20120283910 | Lee et al. | Nov 2012 | A1 |
20120310594 | Watanabe | Dec 2012 | A1 |
20120314073 | Shimoda et al. | Dec 2012 | A1 |
20120316732 | Auer | Dec 2012 | A1 |
20130006472 | McClain et al. | Jan 2013 | A1 |
20130024064 | Shepard | Jan 2013 | A1 |
20130027195 | Van Wiemeersch et al. | Jan 2013 | A1 |
20130038731 | Brey et al. | Feb 2013 | A1 |
20130057397 | Cutler | Mar 2013 | A1 |
20130076007 | Goode | Mar 2013 | A1 |
20130082453 | Padula | Apr 2013 | A1 |
20130120161 | Wakabayashi et al. | May 2013 | A1 |
20130120572 | Kwon | May 2013 | A1 |
20130128047 | Lee | May 2013 | A1 |
20130158803 | Headley | Jun 2013 | A1 |
20130158863 | Skvarce et al. | Jun 2013 | A1 |
20130179038 | Goswami et al. | Jul 2013 | A1 |
20130207834 | Mizutani et al. | Aug 2013 | A1 |
20130226390 | Luo et al. | Aug 2013 | A1 |
20130229524 | Vovkushevsky et al. | Sep 2013 | A1 |
20130250114 | Lu | Sep 2013 | A1 |
20130261843 | Kossira et al. | Oct 2013 | A1 |
20130268160 | Trombley et al. | Oct 2013 | A1 |
20140005918 | Qiang | Jan 2014 | A1 |
20140012465 | Shank et al. | Jan 2014 | A1 |
20140025260 | McClure | Jan 2014 | A1 |
20140052337 | Lavoie et al. | Feb 2014 | A1 |
20140058614 | Trombley et al. | Feb 2014 | A1 |
20140058622 | Trombley et al. | Feb 2014 | A1 |
20140058655 | Trombley et al. | Feb 2014 | A1 |
20140058668 | Trombley et al. | Feb 2014 | A1 |
20140067154 | Yu et al. | Mar 2014 | A1 |
20140067155 | Yu et al. | Mar 2014 | A1 |
20140085472 | Lu | Mar 2014 | A1 |
20140088797 | McClain et al. | Mar 2014 | A1 |
20140088824 | Ishimoto | Mar 2014 | A1 |
20140121883 | Shen et al. | May 2014 | A1 |
20140125795 | Yerke | May 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140168415 | Ihlenburg et al. | Jun 2014 | A1 |
20140172232 | Rupp et al. | Jun 2014 | A1 |
20140183841 | Jones | Jul 2014 | A1 |
20140188344 | Lavoie | Jul 2014 | A1 |
20140188346 | Lavoie | Jul 2014 | A1 |
20140210456 | Crossman | Jul 2014 | A1 |
20140218506 | Trombley et al. | Aug 2014 | A1 |
20140218522 | Lavoie et al. | Aug 2014 | A1 |
20140222288 | Lavoie et al. | Aug 2014 | A1 |
20140236532 | Trombley et al. | Aug 2014 | A1 |
20140249691 | Hafner et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140267689 | Lavoie | Sep 2014 | A1 |
20140267727 | Alaniz | Sep 2014 | A1 |
20140277941 | Chiu et al. | Sep 2014 | A1 |
20140277942 | Kyrtsos et al. | Sep 2014 | A1 |
20140297128 | Lavoie et al. | Oct 2014 | A1 |
20140297129 | Lavoie et al. | Oct 2014 | A1 |
20140303847 | Lavoie | Oct 2014 | A1 |
20140307095 | Wierich | Oct 2014 | A1 |
20140309888 | Smit et al. | Oct 2014 | A1 |
20140324295 | Lavoie | Oct 2014 | A1 |
20140343795 | Lavoie | Nov 2014 | A1 |
20140354811 | Weber | Dec 2014 | A1 |
20140358429 | Shutko et al. | Dec 2014 | A1 |
20140379217 | Rupp et al. | Dec 2014 | A1 |
20150002669 | Reed et al. | Jan 2015 | A1 |
20150002670 | Bajpai | Jan 2015 | A1 |
20150035256 | Klank et al. | Feb 2015 | A1 |
20150057903 | Rhode et al. | Feb 2015 | A1 |
20150066296 | Trombley et al. | Mar 2015 | A1 |
20150066298 | Sharma et al. | Mar 2015 | A1 |
20150077557 | Han et al. | Mar 2015 | A1 |
20150105975 | Dunn | Apr 2015 | A1 |
20150115571 | Zhang et al. | Apr 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150120143 | Schlichting | Apr 2015 | A1 |
20150134183 | Lavoie et al. | May 2015 | A1 |
20150138340 | Lavioe | May 2015 | A1 |
20150142211 | Shehata et al. | May 2015 | A1 |
20150149040 | Hueger et al. | May 2015 | A1 |
20150158527 | Hafner et al. | Jun 2015 | A1 |
20150165850 | Chiu et al. | Jun 2015 | A1 |
20150172582 | Kiyohara et al. | Jun 2015 | A1 |
20150179075 | Lee | Jun 2015 | A1 |
20150191200 | Tsubaki et al. | Jul 2015 | A1 |
20150197278 | Boos et al. | Jul 2015 | A1 |
20150203156 | Hafner et al. | Jul 2015 | A1 |
20150210254 | Pieronek et al. | Jul 2015 | A1 |
20150210317 | Hafner et al. | Jul 2015 | A1 |
20150217692 | Yanagawa | Aug 2015 | A1 |
20150217693 | Pliefke et al. | Aug 2015 | A1 |
20150232031 | Kitaura et al. | Aug 2015 | A1 |
20150235484 | Kraeling et al. | Aug 2015 | A1 |
20150251602 | Baur et al. | Sep 2015 | A1 |
20150269444 | Lameyre et al. | Sep 2015 | A1 |
20150344028 | Gieseke et al. | Dec 2015 | A1 |
20150369613 | Stadler | Dec 2015 | A1 |
20160001705 | Greenwood et al. | Jan 2016 | A1 |
20160006922 | Boudreau et al. | Jan 2016 | A1 |
20160009288 | Yu | Jan 2016 | A1 |
20160023601 | Windeler | Jan 2016 | A1 |
20160023603 | Vico et al. | Jan 2016 | A1 |
20160039456 | Lavoie et al. | Feb 2016 | A1 |
20160052548 | Singh et al. | Feb 2016 | A1 |
20160059780 | Lavoie | Mar 2016 | A1 |
20160059888 | Bradley et al. | Mar 2016 | A1 |
20160059889 | Herzog et al. | Mar 2016 | A1 |
20160096549 | Herzog et al. | Apr 2016 | A1 |
20160121889 | Shimomura | May 2016 | A1 |
20160129939 | Singh et al. | May 2016 | A1 |
20160152263 | Singh | Jun 2016 | A1 |
20160153778 | Singh et al. | Jun 2016 | A1 |
20160207526 | Franz et al. | Jul 2016 | A1 |
20160229452 | Lavoie et al. | Aug 2016 | A1 |
20160280267 | Lavoie et al. | Sep 2016 | A1 |
20160304088 | Barth | Oct 2016 | A1 |
20160304122 | Herzog et al. | Oct 2016 | A1 |
20160320477 | Heimberger | Nov 2016 | A1 |
20170073005 | Ghneim et al. | Mar 2017 | A1 |
20170101130 | Lavoie | Apr 2017 | A1 |
20170106796 | Lavoie et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
101833869 | Sep 2010 | CN |
201923085 | Aug 2011 | CN |
102582686 | Sep 2013 | CN |
203292137 | Nov 2013 | CN |
3923676 | Jan 1991 | DE |
3931518 | Apr 1991 | DE |
3208595 | Aug 1992 | DE |
9208595 | Aug 1992 | DE |
19526702 | Feb 1997 | DE |
10030738 | Aug 2001 | DE |
10031244 | Jan 2002 | DE |
10065230 | Jul 2002 | DE |
10122562 | Jul 2002 | DE |
10154612 | May 2003 | DE |
10312548 | May 2004 | DE |
10333998 | Feb 2005 | DE |
102004050149 | Apr 2006 | DE |
102005042957 | Mar 2007 | DE |
102005043466 | Mar 2007 | DE |
102005043467 | Mar 2007 | DE |
102005043468 | Mar 2007 | DE |
102006002294 | Jul 2007 | DE |
102006048947 | Apr 2008 | DE |
102006056408 | Jun 2008 | DE |
102008020838 | Nov 2008 | DE |
102007029413 | Jan 2009 | DE |
102008045436 | Mar 2010 | DE |
102006035021 | Apr 2010 | DE |
102008043675 | May 2010 | DE |
102009007990 | Aug 2010 | DE |
102009012253 | Sep 2010 | DE |
102009027041 | Dec 2010 | DE |
102009038552 | Feb 2011 | DE |
102010004920 | Jul 2011 | DE |
102010006323 | Aug 2011 | DE |
102008004158 | Oct 2011 | DE |
102008004159 | Oct 2011 | DE |
102008004160 | Oct 2011 | DE |
102010021052 | Nov 2011 | DE |
102010029184 | Nov 2011 | DE |
102010045519 | Mar 2012 | DE |
102011104256 | Jul 2012 | DE |
102011101990 | Oct 2012 | DE |
102012005707 | Oct 2012 | DE |
202012010517 | Dec 2012 | DE |
102011108440 | Jan 2013 | DE |
102011120814 | Jun 2013 | DE |
102012006206 | Oct 2013 | DE |
102012206133 | Oct 2013 | DE |
102012019234 | Apr 2014 | DE |
102013000198 | Jul 2014 | DE |
0418653 | Mar 1991 | EP |
0433858 | Jun 1991 | EP |
1245445 | Oct 2002 | EP |
1361543 | Nov 2003 | EP |
1442931 | Aug 2004 | EP |
1593552 | Mar 2007 | EP |
1810913 | Jul 2007 | EP |
2199188 | Jun 2010 | EP |
2388180 | Nov 2011 | EP |
2431225 | Mar 2012 | EP |
2452549 | May 2012 | EP |
2487454 | Aug 2012 | EP |
2551132 | Jan 2013 | EP |
2644477 | Oct 2013 | EP |
2682329 | Jan 2014 | EP |
2803944 | Nov 2014 | EP |
2515379 | Apr 1983 | FR |
2980750 | Apr 2013 | FR |
2265587 | Oct 1993 | GB |
2342630 | Apr 2000 | GB |
2398048 | Aug 2004 | GB |
2398049 | Aug 2004 | GB |
2398050 | Aug 2004 | GB |
61006458 | Jan 1986 | JP |
6159491 | Mar 1986 | JP |
6385568 | Jun 1988 | JP |
01095980 | Apr 1989 | JP |
01095981 | Apr 1989 | JP |
08289286 | Nov 1996 | JP |
09267762 | Oct 1997 | JP |
09328078 | Dec 1997 | JP |
10001063 | Jan 1998 | JP |
11124051 | May 1999 | JP |
11278319 | Oct 1999 | JP |
2000267181 | Sep 2000 | JP |
2002012172 | Jan 2002 | JP |
2002068032 | Mar 2002 | JP |
2003034261 | Feb 2003 | JP |
2003148938 | May 2003 | JP |
2004114879 | Apr 2004 | JP |
3716722 | Nov 2005 | JP |
2008027138 | Feb 2008 | JP |
2008027138 | Feb 2008 | JP |
2008123028 | May 2008 | JP |
2012105158 | May 2012 | JP |
2012166647 | Sep 2012 | JP |
2014002056 | Jan 2014 | JP |
2014034289 | Feb 2014 | JP |
1020060012710 | Feb 2006 | KR |
1020070034729 | Mar 2007 | KR |
2014123575 | Aug 2014 | NO |
200930010 | Jul 2009 | TW |
8503263 | Aug 1985 | WO |
0044605 | Aug 2000 | WO |
2005005200 | Jan 2005 | WO |
2005116688 | Dec 2005 | WO |
2006042665 | Apr 2006 | WO |
2012059207 | May 2012 | WO |
2012103193 | Aug 2012 | WO |
2013048994 | Apr 2013 | WO |
2013070539 | May 2013 | WO |
2013081984 | Jun 2013 | WO |
2014006500 | Jan 2014 | WO |
2014019730 | Feb 2014 | WO |
2014037500 | Mar 2014 | WO |
2014070047 | May 2014 | WO |
2014092611 | Jun 2014 | WO |
2014174027 | Oct 2014 | WO |
2015074027 | May 2015 | WO |
2015187467 | Dec 2015 | WO |
Entry |
---|
SH. Azadi, H.R. Rezaei Nedamani, and R. Kazemi, “Automatic Parking of an Articulated Vehicle Using ANFIS”, Global Journal of Science, Engineering and Technology (ISSN: 2322-2441), 2013, pp. 93-104, Issue No. 14. |
F. Cuesta and A. Ollero, “Intelligent System for Parallel Parking of Cars and Tractor-Trailers”, Intelligent Mobile Robot Navigation, STAR, 2005, pp. 159-188, Springer-Verlag Berlin Heidelberg. |
Kristopher Bunker, “2012 Guide to Towing”, Trailer Life, 2012, pp. 1-42. |
“IBall Wireless Trailer Hitch Camera”, Product Listing, Amazon, Nov. 2, 2010, pp. 1-5. |
M. Wagner, D. Zoebel, and A. Meroth, “An Adaptive Software and Systems Architecture for Driver Assistance Systems Based on Service Orientation” International Journal of Machine Learning and Computing, Oct. 2011, vol. 1, No. 4, pp. 359-365. |
“Surround View System”, ASL—Vision 360, 2010, pp. 1. |
Jae Il Roh, Hyunsuk Lee, Woojin Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics, Dec. 7-11, 2011; Phuket, Thailand, pp. 2890-2895. |
Young Jin Lee, Sung Won Park, Hyeun Cheol Cho, Dong Seop Han, Geun Jo Han, and Kwon Soon Lee; “Development of Auto Alignment System Between Trailer and Freight Wagon Using Electronic Sensors for Intermodal Transportation” IEEE, 2010, pp. 1211-1215. |
“Back-Up and Utility Light System”, Back-Up Buddy Inc., Plainville, MA, pp. 1-2; date unknown. |
Ford Motor Company, “09 F-150”, Brochure, www.fordvehicles.com, pp. 1-30. |
Michael Paine, “Heavy Vehicle Object Detection Systems”, Vehicle Design and Research Pty Lmited for VicRoads, Jun. 2003, pp. 1-22. |
A.M.C. Odhams; R.L. Roebuck; C. Cebon, “Implementation of Active Steering on a Multiple Trailer Long Combination Vehicle”, Cambridge University, Engineering Department; Cambridge, United Kingdom, pp. 1-13; date unknown. |
Dougloas Newcomb, “Range Rover Evoque's Surround Camera System”, Tech Feature Friday, Article, Jun. 15, 2012, pp. 1-2. |
“Trailer Vision”, Trailer Vision Ltd., Brochure, www.trailervision.co.uk, pp. 1-4; date unknown. |
Micah Steele, R. Brent Gillespie, “Shared Control Between Human and Machine: Using a Haptic Steering Wheel to Aid in Land Vehicle Guidance”, University of Michigan, pp. 1-5; date unknown. |
Laszlo Palkovics, Pal Michelberger, Jozsef Bokor, Peter Gaspar, “Adaptive Identification for Heavy-Truck Stability Control”, Vehicle Systems Dynamics Supplement, vol. 25, No. sup1, 1996, pp. 502-518. |
David Hodo, John Hung, Bob Selfridge, Andrew Schwartz, “Robotic DGM Tow Vehicle Project Overview”, Auburn University, US Army Corp of Engineers, pp. 1-9; date unknown. |
“Convenience and Loadspace Features” Jaguar Land Rover Limited, 2012, pp. 1-15, http://www.landrover.com/us/en/lr/all-new-range-rover/explore/. |
“Rearview Parking Assist Systems”, Donmar Sunroofs & Accessories, Brochure, Aug. 2013, pp. 1-13. |
“Alpine Electronics Introduces Two New Drive Assist Solutions”, Alpine Electronics of America, Inc., Jan. 7, 2010, pp. 1-2. |
“Delphi Lane Departure Warning”, Delphi Corporation, Troy, Michigan pp. 1-2; date unknown. |
Jesus Morales, Anthony Mandow, Jorge L. Martinez, and Alfonso Garcia-Cerezo, “Driver Assistance System for Backward Maneuvers in Passive Multi-trailer Vehicles”, International Conference on Intelligent Robots and Systems (IROS), Oct. 7-12, 2012, pp. 4853-4858. |
“The Vehicle Rear Lighting System for Safe Driving in Reverse”, White Night Rear Lighting Systems, Cruiser Stainless Accessories, pp. 1-3; date unknown. |
Microsoft, Navigation System, Sync Powered by Microsoft, Ford Motor Company, Jul. 2009, 196 pgs. |
SH.Azadi et al., Automatic Parking of an Articulated Vehicle Using ANFIS, Global Journal of Science, Engineering and Technology, GJSET Publishing, 2013, Issue 14, 2013, pp. 93-104. |
“Ford Super Duty: Truck Technologies”, Brochure, Sep. 2011, 2 pages. |
Kristopher Bunker, “2012 Guide to Towing”, Trailer Life, 2012, 38 pages. |
A. Gonzalez-Cantos, “Backing-Up Maneuvers of Autonomous Tractor-Trailer Vehicles using the Qualitative Theory of Nonlinear Dynamical Systems,” International Journal of Robotics Research, Jan. 2009, vol. 28, 1 page. |
L. Chu, Y. Fang, M. Shang, J. Guo, F. Zhou, “Estimation of Articulation Angle for Tractor Semi-Trailer Based on State Observer”, ACM Digital Library, ICMTMA '10 Proceedings of the 2010 International Conference on Measuring Technology and Automation, vol. 2, Mar. 2010, 1 page. |
M. Wagner, D. Zoebel, and A. Meroth, “Adaptive Software and Systems Architecture for Driver Assistance Systems” International Journal of Machine Learning and Computing, Oct. 2011, vol. 1, No. 4, 7 pages. |
F.W. Kienhöfer; D. Cebon, “An Investigation of ABS Strategies for Articulated Vehicles”, Cambridge University, Engineering Department, United Kingdom, date unknown, 13 pages. |
C .Lundquist; W. Reinelt; O. Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, ZF Lenksysteme GmbH, Schwäbisch Gmünd, Germany, 2006 (SAE Int'l) Jan. 2006, 8 pages. |
Zhe Leng; Minor, M., “A Simple Tractor-Trailer Backing Control Law for Path Following”, IEEE, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference, Oct. 2010, 2 pages. |
Kinjo, H.; Maeshiro, M.; Uezato, E.; Yamamoto, T., “Adaptive Genetic Algorithm Observer and its Application to Trailer Truck Control System”, IEEE, SICE-ICASE International Joint Conference, Oct. 2006, 2 pgs. |
J. Roh; H. Lee; W. Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics; Phuket, Thailand, Dec. 2011, 6 pages. |
A. Gonzalez-Cantos; J.I. Maza; A. Ollero, “Design of a Stable Backing Up Fuzzy Control of Autonomous Articulated Vehicles for Factory Automation”, Dept. of Systems Engineering and Automatic Control, University of Seville, Spain, 2001, 5 pages. |
Altafini, C.; Speranzon, A.; Wahlberg, B., “A Feedback Control Scheme for Reversing a Truck and Trailer Vehicle”, IEEE, Robotics and Automation, IEEE Transactions, Dec. 2001, vol. 17, No. 6, 2 pages. |
Zare, A. Sharafi; M. Kamyad, A.V., “A New Approach in Intelligent Trailer Parking”, IEEE, 2010 2nd International Mechanical and Electrical Technology (ICMET), Sep. 2010, 1 page. |
Tanaka, K.; Sano, M., “A Robust Stabilization Problem of Fuzzy Control Systems and its Application to Backing up Control of a Truck-trailer”, IEEE Transactions on Fuzzy Systems, May 1994, vol. 2, No. 2, 1 page. |
Sharafi, M. Zare; A. Kamyad; A.V. Nikpoor, S., “Intelligent Parking Method for Truck in Presence of Fixed and Moving Obstacles and Trailer in Presence of Fixed Obstacles: Advanced Fuzzy Logic Technologies in Industrial Applications”, IEEE, 2010 International Electronics and Information Engineering (ICEIE), Aug. 2010, vol. 2, 1 page. |
Hodo, D. W.; Hung, J.Y.; Bevly, D. M.; Millhouse, S., “Effects of Sensor Placement and Errors on Path Following Control of a Mobile Robot-Trailer System”, IEEE, American Control Conference, Jul. 2007, 1 page. |
Sharafi, M. Zare; A. Kamyad; A.V. Nikpoor, S., “Intelligent Parking Method for Trailers in Presence of Fixed and Moving Obstacles”, IEEE, 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Aug. 2010, vol. 6, 1 page. |
Chieh Chen; Tomizuka, M., “Steering and Independent Braking Control for Tractor-Semitrailer Vehicles in Automated Highway Systems”, IEEE, Proceedings of the 34th IEEE Conference on Decision and Control, Dec. 1995, vol. 2, 1 page. |
P. Bolzern, R.M. Desantis, A. Locatelli, “An Input-Output Linearization Approach to the Control of an n-Body Articulated Vehicle”, J. Dyn. Sys., Meas., Control, Sep. 2001, vol. 123, No. 3, 3 pages. |
Dieter Zöbel, David Polock, Philipp Wojke, “Steering Assistance for Backing Up Articulated Vehicles”, Systemics, Cybernetics and Informatics; vol. 1, No. 5, date unknown, 6 pages. |
J.R. Billing; J.D. Patten; R.B. Madill, “Development of Configurations for Infrastructure-Friendly Five- and Six-Axle SemiTrailers”, National Research Council of Canada and Ontario Ministry of Transportation, date unknown, 11 pages. |
Jesus Morales, Anthony Mandow, Jorge L. Martinez, and Alfonso Garcia-Cerezo, “Driver Assistance System for Backward Maneuvers in Passive Multi-Trailer Vehicles”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2012, 7 pages. |
Cedric Pradalier and Kane Usher, “Experiments in Autonomous Reversing of a Tractor-Trailer System”, 6th International Conference on Field and Service Robotics, inria-00195700, Version 1, Dec. 2007, 10 pages. |
Andri Riid, Alar Leibak, Ennu Rüstern, “Fuzzy Backing Control of Truck and Two Trailers”, Tallinn University of Technology; Tallinn, Estonia, date unknown, 6 pages. |
Jane Mcgrath, “How to Avoid Jackknifing”, A Discovery Company, date unknown, 3 pages. |
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, 14 pages. |
Jujnovich, B.; Roebuck, R.; Odhams, A.; David, C., “Implementation of Active Rear Steering of a Tractor Semitrailer”, Cambridge University, Engineering Department; Cambridge, United Kingdom, date unknown, 10 pages. |
A.M.C. Odhams; R.L. Roebuck; C. Cebon, “Implementation of Active Steering on a Multiple Trailer Long Combination Vehicle”, Cambridge University, Engineering Department; Cambridge, United Kingdom, date unknown, 13 pages. |
Cedric Pradalier and Kane Usher, “Robust Trajectory Tracking for a Reversing Tractor-Trailer System”, (Draft), Field and Service Robotics Conference, CSIRO ICT Centre, Jul. 2007, 16 pages. |
Stahn, R.; Heiserich, G.; Stopp, A., “Laser Scanner-Based Navigation for Commercial Vehicles”, IEEE, 2007 IEEE Intelligent Vehicles Symposium, Jun. 2007, 1 page. |
Lee Yong H.; Weiwen Deng; Chin Yuen-Kwok Steve; Mckay Neil, “Feasibility Study for a Vehicle-Trailer Backing Up Control”, Refdoc.fr, SAE Transactions, vol. 113, No. 6, 2004, 1 page. |
A.M.C. Odhams; R.L. Roebuck; B.A. Jujnovich; D. Cebon, “Active Steering of a Tractor-Semi-Trailer” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Journals, vol. 225, No. 7, Jul. 2011, 1 page. |
Haviland, G S, “Automatic Brake Control for Trucks—What Good Is It?”, TRID, Society of Automotive Engineers, Sep. 1968, 1 page. |
William E. Travis; David W. Hodo; David M. Bevly; John Y. Hung, “UGV Trailer Position Estimation Using a Dynamic Base RTK System”, American Institute of Aeronautics and Astronautics, date unknown, 12 pages. |
“VSE Electronic Trailer Steering”, ETS for Trailers, version 2009, VSE Trailer Systems B.V., 2009, 28 pages. |
“Telematics Past, Present, and Future,” Automotive Service Association, www.ASAshop.org, May 2008, 20 pages. |
“Fully Automatic Trailer Tow Hitch With Lin Bus,” https://webista.bmw.com/webista/show?id=1860575499&lang=engb&print=1, date unknown, 5 pages. |
“VBOX Yaw Rate Sensor With Integral Accelerometers,” Racelogic, www.racelogic.co.uk, date unknown, 2 pages. |
P.D.C.R Jayarathna; J.V Wijayakulasooriya; S.R Kodituwakku, “Fuzzy Logic and Neural Network Control Systems for Backing up a Truck and a Trailer”, International Journal of Latest Trends in Computing, vol. 2, No. 3, Sep. 2011, 8 pages. |
Olof Enqvist, “AFS-Assisted Trailer Reversing,” Institutionen för systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, 57 pages. |
Novak, Domen; Dovzan, Dejan; Grebensek, Rok; Oblak, Simon, “Automated Parking System for a Truck and Trailer, International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research”, Florence, 2007, WoridCat.org, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20170120828 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14924851 | Oct 2015 | US |
Child | 14965017 | US |