The present invention generally relates to systems for assisting an operator in backing a trailer, and more particularly, to systems using imager-based hitch angle detection.
Reversing a vehicle while towing a trailer can be challenging for many drivers, particularly for drivers that drive with a trailer on an infrequent basis or with various types of trailers. Some systems used to assist an operator in backing a trailer rely on hitch angle measurements to determine the position of the trailer relative to the vehicle. Thus, the accuracy and reliability of the hitch angle measurements can be critical to the operation of the trailer backup assist system. In systems employing imager-based hitch angle detection, improper calibration of an imaging device can lead to inaccurate hitch angle measurements. Furthermore, in instances where the imaging device becomes obstructed, such systems may be forced offline and rendered unable to determine a hitch angle between the vehicle and the trailer. To function properly, some systems require a user to input measurements such as trailer length. This is not only cumbersome on the user but may lead to erroneous measurements being inputted to the system. Accordingly, there is a need for a trailer backup assist system that overcomes the problems mentioned above. The present disclosure is intended to satisfy this need.
According to a first aspect of the present invention, a calibration method is provided herein. The method includes the steps of: using an imaging device to capture an image of a rear bumper; and providing a controller configured to process the captured image, identify a boundary separating the rear bumper from a ground; compare the identified boundary to an ideal boundary, and determine an offset between the identified boundary and the ideal boundary.
Embodiments of the first aspect can include any one or a combination of the following features:
According to a second aspect of the present invention, a trailer backup assist system is provided. The system includes a device configured to sense a trailer and a controller configured to determine a hitch angle between a vehicle and the trailer based on data provided by the device. If the device fails, the controller predicts the hitch angle based on a last known hitch angle, a last known angular velocity of the trailer, and an execution cycle time.
Embodiments of the second aspect can include one or a combination of the following features:
According to a third aspect of the present invention, a method of determining hitch angle between a vehicle and a trailer is provided. The method includes the steps of: selecting at least one hitch angle detection method amongst a plurality of hitch angle detection methods; using the selected at least one hitch angle detection method to determine a hitch angle between a vehicle and a trailer; and transitioning to another hitch angle detection method in the event the selected at least one hitch angle detection method becomes unavailable.
Embodiments of the third aspect can include one or a combination of the following features:
According to a fourth aspect of the present invention, a trailer backup assist system is provided. A steering input device is configured to provide a curvature command based on user input. A controller is configured to estimate a trailer length based on a vehicle and trailer yaw rate. The controller generates a steering command based on the estimated trailer length, the curvature command, a maximum steering angle, and a vehicle speed. The generated steering command is invariant to the estimated trailer length under certain conditions.
Embodiments of the fourth aspect can include one or a combination of the following features:
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, it is to be understood that the disclosed trailer backup assist system and the related methods may assume various alternative embodiments and orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. While various aspects of the trailer backup assist system and the related methods are described with reference to a particular illustrative embodiment, the disclosed invention is not limited to such embodiments, and additional modifications, applications, and embodiments may be implemented without departing from the disclosed invention. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
Referring to
The TBA system 10 also includes an imaging device 34 located at the rear of the vehicle 12 and configured to image a rear-vehicle scene. The imaging device 34 may be centrally located at an upper region of a vehicle tailgate 35 such that the imaging device 34 is elevated relative to the tongue 26 of the trailer 14. The imaging device 34 has a field of view 36 located and oriented to capture one or more images that may include the tongue 26 of the trailer 14 and the hitch ball 30, among other things. Image data is supplied to a controller 38 of the TBA system 10 and is processed by the controller 38 to determine the hitch angle between the vehicle 12 and the trailer 14. Additional information regarding image-based hitch angle detection and associated methodologies can be found in commonly assigned U.S. Pat. No. 9,610,975 to Hu et al., issued Apr. 4, 2017, and entitled “HITCH ANGLE DETECTION FOR TRAILER BACKUP ASSIST SYSTEM,” the entire disclosure of which is incorporated by reference herein.
The controller 38 is configured with a microprocessor 40 and/or other analog and/or digital circuitry for processing one or more logic routines stored in a memory 42. The logic routines may include a hitch angle detection routine 44, an operating routine 46, and a curvature routine 47. Information from the imaging device 34 or other components of the TBA system 10 can be supplied to the controller 38 via a communication network of the vehicle 12, which can include a controller area network (CAN), a local interconnect network (LIN), or other conventional protocols used in the automotive industry. It should be appreciated that the controller 38 may be a stand-alone dedicated controller or may be a shared controller integrated with the imaging device 34 or other component of the TBA system 10 in addition to any other conceivable onboard or off-board vehicle control systems.
With respect to the present embodiment, the controller 38 is configured to communicate with a variety of vehicle equipment. The TBA system 10 may include a vehicle sensor module 48 that monitors certain dynamics of the vehicle 12. The vehicle sensor module 48 may generate a plurality of signals that are communicated to the controller 38 such as a vehicle speed signal generated by a speed sensor 50 and a vehicle yaw rate signal generated by a vehicle yaw rate sensor 52. A trailer sensor module 53 is provided that monitors certain dynamics of the trailer 14. The trailer sensor module 53 includes a trailer yaw rate sensor 54 configured to generate a trailer yaw rate signal that is provided to the controller 38.
A steering input device 55 is provided to enable a driver to control or otherwise modify a desired curvature (e.g., desired curvature 56;
The knob 58 may be rotatable about a rotational axis extending through a top surface or face of the knob 58. In other embodiments, the knob 58 may be rotatable about a rotational axis extending substantially parallel to a top surface or face of the knob 58. Furthermore, the steering input device 55, according to additional embodiments, may include alternative devices for providing the desired input, such as a joystick, a keypad, a series of depressible buttons or switches, a sliding input device, various user interfaces on a touch-screen display, a vision-based system for receiving gestures, a control interface on a portable device, and other conceivable input devices as generally understood by one having ordinary skill in the art. It is contemplated that the steering input device 55 may also function as an input device for other features, such as providing inputs for other vehicle features or systems.
According to one embodiment, the controller 38 of the TBA system 10 may control the power assist steering system 57 of the vehicle 12 to operate steered wheels 60 of the vehicle 12 for moving the vehicle 12 in such a manner that the trailer 14 reacts in accordance with the desired curvature 56 of the backing path of the trailer 14. The power assist steering system 57 may be an electric power-assisted steering (EPAS) system that includes an electric steering motor 62 for turning the steered wheels 60 to a steering angle based on a steering command generated by the controller 38, whereby the steering angle may be sensed by a steering angle sensor 64 of the power assist steering system 57 and provided to the controller 38. The steering command may be provided for autonomously steering the vehicle 12 during a backup maneuver and may alternatively be provided manually via a rotational position (e.g., a steering wheel angle) of a steering wheel 66 or the rotatable knob 58. However, in some embodiments, the steering wheel 66 of the vehicle 12 may be mechanically coupled with the steered wheels 60 of the vehicle 12, such that the steering wheel 66 moves in concert with steered wheels 60 via an internal torque, thereby preventing manual intervention with the steering wheel 66 during autonomous steering of the vehicle 12. In such instances, the power assist steering system 57 may include a torque sensor 68 that senses torque (e.g., gripping and/or turning) on the steering wheel 66 that is not expected from autonomous control of the steering wheel 66 and therefore indicative of manual intervention by the driver. In some embodiments, external torque applied to the steering wheel 66 may serve as a signal to the controller 38 that the driver has taken manual control and for the TBA system 10 to discontinue autonomous steering functionality.
The controller 38 of the TBA system 10 may also communicate with a vehicle brake control system 70 of the vehicle 12 to receive vehicle speed information such as individual wheel speeds of the vehicle 12. Additionally or alternatively, vehicle speed information may be provided to the controller 38 by a powertrain control system 72 and/or the speed sensor 50, among other conceivable means. It is conceivable that individual wheel speeds may be used to determine a vehicle yaw rate, which can be provided to the controller 38 in the alternative, or in addition to, the vehicle yaw rate measured by yaw rate sensor 52 of the vehicle sensor module 48. In some embodiments, the controller 38 may provide braking commands to the vehicle brake control system 70, thereby allowing the TBA system 10 to regulate the speed of the vehicle 12 during a backup maneuver of the trailer 14. It should be appreciated that the controller 38 may additionally or alternatively regulate the speed of the vehicle 12 via interaction with the powertrain control system 72.
Through interaction with the power assist steering system 57, the vehicle brake control system 70, and/or the powertrain control system 72 of the vehicle 12, the potential for unacceptable trailer backup conditions can be reduced. Examples of unacceptable trailer backup conditions include, but are not limited to, a vehicle over-speed condition, a high hitch angle rate, hitch angle dynamic instability, a trailer jackknife condition, sensor failure, and the like. In such circumstances, the driver may be unaware of the failure until the unacceptable trailer backup condition is imminent or already happening. Therefore, it is disclosed herein that the controller 38 of the TBA system 10 can generate an alert signal corresponding to a notification of an actual, impending, and/or anticipated unacceptable trailer backup condition, and prior to driver intervention, generate a counter measure to prevent such an unacceptable trailer backup condition.
According to one embodiment, the controller 38 may communicate with one or more devices, including a vehicle alert system 74, which may prompt visual, auditory, and tactile warnings. For instance, vehicle brake lights 76 and vehicle emergency flashers may provide a visual alert and a vehicle horn 78 and/or speaker 80 may provide an audible alert. Additionally, the controller 38 and/or vehicle alert system 74 may communicate with a human machine interface (HMI) 82 of the vehicle 12. The HMI 82 may include a touchscreen vehicle display 84 such as a center-stack mounted navigation or entertainment display capable of displaying images indicating the alert. Such an embodiment may be desirable to notify the driver of the vehicle 12 that an unacceptable trailer backup condition is afoot. Further, it is contemplated that the controller 38 may communicate via wireless communication with one or more electronic portable devices such as portable electronic device 86, which is embodied as a smartphone. The portable electronic device 86 may include a display 88 for displaying one or more images and other information to a user. In response, the portable electronic device 86 may provide feedback information, such as visual, audible, and tactile alerts.
When the imaging device 34 is installed on the vehicle 12, it is important to minimize errors arising during installation or at a later time. Such errors generally result from improper alignment between the imaging device 34 and the vehicle 12 in terms of yaw, pitch, and roll. These errors may be caused by various factors such as manufacturing variability, part-to-part variability over time, damage to the vehicle, or parts replacement, for example, all of which have the potential of changing the alignment between the imaging device 34 and the vehicle 12. Initially, these errors are calibrated before the imaging device 34 can be used to support functions such as imager-based hitch angle detection. If not properly calibrated, the resultant errors may negatively impact the accuracy and robustness of functions instituted by the imaging device 34.
Referring to
At step 95, a benchmark installation is prepared. For example, the benchmark installation includes positioning the imaging device in the ideal orientation relative to the vehicle. In the embodiment of
At step 105, edge detection is conducted on the captured image. For purposes of illustration,
In contrast, steps 120-150 are generally conducted on the assembly line and are repeated for each vehicle of the same model. For purposes of understanding, steps 120-150 will be described with respect to the embodiment of vehicle 12 shown in
Alternatively, if the position of the identified boundary fails to overlap with the position of the stored ideal boundary 111, the controller 38 determines an offset between the identified boundary and the stored ideal boundary 111 at step 145. For purposes of illustration,
It should be appreciated that the imaging device 34 may be calibrated multiple times during the life of the vehicle 12. For example, it is contemplated that the foregoing steps may be executed at regular time intervals, once per ignition cycle, if replacement of the imaging device 34 is detected, and/or if a collision is detected. It is further contemplated that the controller 38 may inhibit calibration of the imaging device 34 in instances where the orientation and/or position of the rear bumper 96 have changed substantially, the shape of the identified boundary 146 is unable to be matched to the stored ideal boundary 111 (typically due to damage or modification of the rear bumper 96), the rear bumper 96 is not securely attached to the vehicle 12, or the imaging device 34 is not securely fixed to the vehicle 12 (e.g., the tailgate 35 is not secure), for example. Additionally or alternatively, the calibration of the imaging device 34 may be inhibited if the values of components X, Y, and 0 exceed a predetermined threshold(s) or if the error between pixels of the boundary and the identified boundary exceed a threshold.
In the event the controller 38 inhibits calibration of the imaging device 34, a warning may be provided to a user of the TBA system 10. The warning may be generated by the controller 38 and carried out by existing vehicle components such as the display 34, speaker 80, for example, as well as portable electronic device 86. It is contemplated that the warning may be visual, auditory, haptic, or a combination thereof. In instances where damage to the vehicle 12 is detected (e.g., via inertial and/or perimeter sensors), the TBA system 10 may store a corresponding Diagnostic Trouble Code (DTC) and/or warn the user that the imaging device 34 and/or rear bumper 96 may require repair.
As described herein, the TBA system 10 features imager-based hitch angle detection, among other things. As a downside, there are instances where the imaging device 34 may be obstructed from tracking the trailer 14 or other objects in the imaged scene useful for hitch angle detection. For example, obstruction may occur when debris or other objects are deposited on the lens of the imaging device 34, the imaging device 34 experiences glare due to direct impingement of sunlight, or is unable to reliably image key features in the scene. In such instances where the imaging device 34 becomes obstructed, it is contemplated that the TBA system 10 may report the condition to the driver and may additionally cease imager-based hitch angle detection along with any other functions that rely on the processing of image data. While such instances are generally infrequent, the driver may become frustrated nonetheless if certain functions of the TBA system 10 become unavailable. Accordingly, a solution is needed that minimizes the downtime of image-based hitch angle detection due to the inability of the imaging device 34 to reliably image the scene.
In such a situation, the TBA system 10 may be configured to predict hitch angles using a “predictive model method,” which may be embodied in the hitch angle detection routine 44 and will be described in greater detail below with reference to
where:
γ is the hitch angle (β−α) between the vehicle 12 and the trailer 14,
δ is the steering angle of steered wheels 60 of the vehicle 12,
L is the drawbar length between the hitch 32 and a rear axle 155 of the vehicle 12,
D is the trailer length between the hitch 32 and effective axle 20 of the trailer 14,
W is the wheelbase length between a front axle 157 and the rear axle 155 of the vehicle 12, and
ν is the longitudinal speed of the vehicle 12. It is to be noted that the function
tan δ corresponds to the yaw rate of the vehicle 12 and can be otherwise supplied by vehicle yaw rate sensor 52 (
In calculating the angular velocity {dot over (γ)} of the trailer 14, it is assumed that the trailer length D, drawbar length L, and wheelbase length W are known. The steering angle δ and the longitudinal speed ν may be readily provided to the controller 38 by steering angle sensor 64 (
However, if the imaging device 34 suddenly becomes obstructed such that imager-based hitch angle detection becomes unavailable, the controller 38 can predict the hitch angle based on predetermined information including a last known hitch angle, a last known angular velocity of the trailer 14, and an execution cycle time of the image processor (e.g., microprocessor 40,
γp=γlk+{dot over (γ)}lktc (2)
where:
γp is a predicted hitch angle,
γlk is the last known hitch angle,
{dot over (γ)}lk is the last known angular velocity of the trailer 14, and
tc is the execution cycle time of the image processor. Thus, so long as the controller 38 is able to iterate equation 1 at least once before the imaging device 34 becomes obstructed, the controller 38 will have sufficient information to predict the hitch angle γp by iterating equation 2. The controller 38 may again calculate the angular velocity {dot over (γ)} of the trailer 14 by substituting the predicted hitch angle γp into equation 1, followed in turn by again predicting the hitch angle γp using the recalculated angular velocity {dot over (γ)} as the last known angular velocity {dot over (γ)}lk in equation 2. Thus, through stepwise reiteration of equations 1 and 2, the controller 38 is able predict the hitch angle in instances where imager-based hitch detection is unavailable or otherwise unreliable.
The predictive model method outlined above may be implemented for extended durations. However, as time progresses, the predicted hitch angle may begin to deviate from the true or actual hitch angle. Referring to
The degree error between the predicted hitch angle and the true hitch angle is determined by the following equation:
where:
e is the degree error,
e0 is an initial degree error at the moment the imaging device 34 becomes obstructed (e.g., 0.5 to 1 degree depending on the accuracy of hitch angle detection),
s is an accumulative vehicle travel distance determined by an odometer of the vehicle 12, and
D is the trailer length, which is assumed to be known.
Knowing the degree error e, the error band is determined by the following equations:
γ+=γp+e (4)
γ−=γp−e (5)
where:
γ+ is the upper error band,
γ− is the lower error band,
γp is the predicted hitch angle determined from equation 2, and
e is the degree error determined from equation 3. Alternatively, the determination of the upper and lower error bands may include an error adjustment incorporated into each iteration of equation 1. That is, the angular velocity {dot over (γ)} determined using equation 1 is adjusted by a percentage error and the adjusted angular velocity is then used as the last known angular velocity {dot over (γ)}lk when predicting the hitch angle γp in equation 2.
Specifically, with respect to the upper error band γ+, the adjustment made to the angular velocity {dot over (γ)} is given by the following equation:
{dot over (γ)}adj={dot over (γ)}+|{dot over (γ)}ε| (6)
With respect to the lower error band γ−, the adjustment made to the angular velocity {dot over (γ)} is given by the following equation:
{dot over (γ)}adj={dot over (γ)}−|{dot over (γ)}ε| (7)
where:
{dot over (γ)}adj is an adjusted angular velocity,
{dot over (γ)} is the angular velocity determined in equation 1, and
ε is a percentage error and is derived through experimentation. Accordingly, from equations 6 and 7, it can be seen that the adjusted angular velocity {dot over (γ)}adj associated with the upper and lower error bands will differ and therefore produce different predicted hitch angles γp when used as the last known angular velocity {dot over (γ)}lk in equation 2. Thus, equation 2 is iterated twice, once using the adjusted angular velocity {dot over (γ)}adj determined in equation 6, and a second time using the adjusted angular velocity {dot over (γ)}adj determined in equation 7. Each of the resulting predicted hitch angles γp is then used in the corresponding equation 4, 5 to determine the upper error band γ+ and the lower error band γ−, respectively.
In the event the upper error band γ+ approaches or reaches the maximum controllable hitch angle or the lower error band γ− reaches the minimum controllable hitch angle, the controller 38 may enact a countermeasure. For example the countermeasure may include providing steering commands to the power assist steering system 57 (
In the present embodiment, the controller 38 implements error band determination and functions both as an image processor and steering controller. In alternative embodiments where the image processor and steering controller are separate, it is contemplated that error band determination may be implemented by the image processor, steering controller, or a combination thereof. Generally, if the image processor and steering controller are together used to implement error band determination, additional traffic on the vehicle communication network (e.g., CAN bus) can be avoided at the expense of requiring additional hardware. If error band determination is only implemented using the steering controller, greater accuracy can be achieved at the expense of increased traffic on the vehicle communication network. Alternatively, if error band determination is only implemented using the image processor, additional traffic on the vehicle communication network can be avoided at the expense of accuracy. In instances where only one of the image processor and the steering controller is used to implement error band determination, a copy of the same may be supplied to the other of the image processor and the steering controller. Typically it is preferable to implement error band determination using both the image processor and the steering controller when there is no network interface (e.g., CAN interface) to accommodate the transmission of error band signals.
It is to be understood that the predictive model method described herein can be used to mitigate failure in other devices configured to sense the trailer 14. Such devices may include yaw rate sensors, Hall effect sensors, rotational potentiometers, and the like. In operation, data from these devices may be used by a controller to predict the hitch angle between a vehicle and a trailer. Accordingly, if one of these devices becomes unavailable, through failure or some other factor, the predictive model method may be used to determine the hitch angle.
Referring to
At step 175, the controller 38 uses the selected at least one hitch angle detection method to determine a hitch angle between a vehicle 12 and a trailer 14. In determining the hitch angle, other related data may become available such as, but not limited to, hitch angle error band, hitch angle rate, hitch angle rate error band, hitch angle accuracy, etc. According to one embodiment, it is contemplated that all of the hitch angle detection methods may be used in parallel to determine the hitch angle and the hitch angle determined by the hitch angle detection method having the highest confidence score is used by the TBA system 10 to employ functions related to the backing of the trailer 14. In other embodiments, only the hitch angle detection method having the highest confidence score is used. Alternatively, some, but not all, of the hitch angle detection methods may be used in parallel, if desired. In any event, it is contemplated that the number of selected hitch angle detection methods may be limited by the hardware capabilities of the TBA system 10 or certain components thereof (e.g., the imaging device 34 and controller 38). As such, the number of hitch angle detection methods used in parallel may be selected so as to minimize computational strain on the TBA system 10 and/or related components. Furthermore, it is contemplated that the controller 38 may limit the speed of the vehicle 12 based on the confidence score assigned to the at least one selected hitch angle detection method. That is, the lower the confidence score, the greater the speed restriction imposed on the vehicle 12. To limit the speed of the vehicle 12, the controller 38 may output a brake command to the vehicle brake control system 70 of the vehicle 12.
At step 180, the controller 38 transitions to another hitch angle detection method if the selected at least one hitch angle detection method becomes unavailable. As described herein, imager-based hitch angle detection is reliant on the ability of the imaging device 34 to accurately capture images of a rear-vehicle scene and typically including the trailer 14 or components thereof. As such, when the imaging device 34 is obstructed by debris on the lens, glare from the sun, etc., the image quality of the images captured by the imaging device 34 may suffer. Accordingly, there may be instances where some hitch angle detection methods are available and others become unavailable.
The controller 38 may determine that a particular hitch angle detection method becomes unavailable if the image quality of the captured images falls below a threshold associated with the particular hitch angle detection method. Thus, in embodiments where only the hitch angle detection method having the highest confidence score is used and suddenly becomes unavailable, the controller 38 may transition to another hitch angle detection method that is available and has the next highest confidence score. In embodiments where some, but not all, of the hitch angle detection methods are used in parallel, if one of the selected hitch angle detection methods suddenly becomes unavailable, the controller 38 may replace it with another hitch angle detection method that is available and has the highest confidence score amongst the unselected hitch angle detection methods. In this manner, the total selected hitch angle detection methods in use remains the same. By using more than one hitch angle detection method, the hitch angle may be determined at greater intervals since it is possible that each selected hitch angle detection method may require a certain period of time in which to determine the hitch angle. Thus, by increasing the number of hitch angle detection methods in use, the likelihood that a hitch angle can be determined at any given point in time is increased.
At step 185, the controller 38 predicts the hitch angle during the transitioning between the at least one selected hitch angle detection method and another hitch angle detection method or if each of the plurality of hitch angle detection methods become unavailable. To predict the hitch angle, the controller 38 may use the predictive model method described previously herein. Regardless of which method(s) is used to determine the hitch angle, the controller 38 may apply a digital filter to the determined hitch angle and other trailer related data in some embodiments. At step 190, the controller 38 uses the determined or predicted hitch angle to control at least one of a hitch angle operating range, a speed limit of the vehicle 12, and the desired curvature 56 (
Existing TBA systems may employ a curvature routine that requires an operator to measure the trailer length D for input into system memory. Such systems exhibit certain drawbacks, such as the introduction of human error and/or the inability for the TBA system to operate immediately upon connecting, for example, trailer 14 with vehicle 12. Accordingly, the present controller 38 may incorporate a yaw-rate based routine embodied in the curvature routine 47 (
As shown in
Referring to
ϕ(δmaxb, {circumflex over (D)}) corresponds to an effective jackknife angle {circumflex over (γ)}jk and is provided by the following equation:
where:
δmaxb is a constant defined by a maximum steering angle δmax less a configurable buffer Δbuf, where Δbuf≥0,
{circumflex over (D)} is an estimated trailer length,
L is the drawbar length and is assumed to be known, and
W is the vehicle wheelbase and is assumed to be known. The effective jackknife angle {circumflex over (γ)}jk may be less than a theoretical jackknife angle, since in practice, the controller 38 may generate some overshoot in hitch angle, and it is generally desirable to retain additional steering lock to ensure quick transitioning from maximum curvature to zero curvature.
Γ({circumflex over (γ)}jk, {circumflex over (D)}) corresponds to the maximum effective curvature {circumflex over (k)}2max and is provided by the following equation:
where:
{circumflex over (γ)}jk is the effective jackknife angle determined by equation 8,
L is the drawbar length, and
{circumflex over (D)} is the estimated trailer length. With respect to this disclosure, the curvature input scaling module 200, as defined by the sequential input-output of the composition ϕ(δmaxb, {circumflex over (D)})∘Γ({circumflex over (γ)}jk, {circumflex over (D)})·k(t), is denoted by K(k(t), δmaxb, {circumflex over (D)}) for purposes of simplicity.
With reference to
where:
{circumflex over (k)}2(t) is the curvature input,
L is the drawbar length, and
{circumflex over (D)} is the estimated trailer length.
The reference hitch angle {circumflex over (γ)}ref(t), as provided by the curvature mapping module 204, and the estimated hitch angle {circumflex over (γ)}(t), as provided by the estimator 202, are received by a subtractor 206 configured to generate a signal e(t) defined by the reference hitch angle {circumflex over (γ)}ref(t) less the estimated hitch angle {circumflex over (γ)}(t). The estimated hitch angle {circumflex over (γ)}(t) is provided by the following equation:
where:
ω1(t) is the vehicle yaw rate,
ω2(t) is the trailer yaw rate,
L is the drawbar length,
{circumflex over (D)} is the estimated trailer length, and
ν(t) is vehicle speed. In real-time implementation, a Kalman filter may be used with the estimated hitch angle {circumflex over (γ)}(t) along with an internal state measurement thereof.
The signal e(t) is provided to a proportional-integral (PI) controller 208 to generate a control variable u(t) defined by the following equation:
u(t)=Kpe(t)+Ki∫0te(τ)dτ, (12)
where:
e(t) is the signal generated by the subtractor 206,
Kp is a proportional coefficient having a non-negative value, and
Ki is an integral coefficient having a non-negative value.
The control variable u(t) is provided to a hitch angle controller 210 along with the estimated trailer length {circumflex over (D)} and the estimated hitch angle {circumflex over (γ)}(t), as provided by the estimator 202, and a vehicle speed υ(t), as provided by speed sensor 50 (
where:
u(t) is the control variable generated by the PI controller 208,
{circumflex over (D)} is the estimated trailer length,
{circumflex over (γ)}(t) is the estimated hitch angle provided by the estimator 202,
W is the vehicle wheelbase,
{circumflex over (D)} is the estimated trailer length, and
υ(t) is the vehicle speed as provided by speed sensor 50 (
When the controller 38 is configured according to the embodiment shown in
In this manner, the closed-loop dynamics are shaped in a uniform manner.
It is to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
3542390 | Fikes et al. | Nov 1970 | A |
3605088 | Savelli | Sep 1971 | A |
3756624 | Taylor | Sep 1973 | A |
3787077 | Sanders | Jan 1974 | A |
3833928 | Gavit et al. | Sep 1974 | A |
3860257 | Mesley | Jan 1975 | A |
3944972 | Chandler | Mar 1976 | A |
4040006 | Kimmel | Aug 1977 | A |
4042132 | Bohman et al. | Aug 1977 | A |
4122390 | Kollitz et al. | Oct 1978 | A |
4212483 | Howard | Jul 1980 | A |
4320267 | Greve et al. | Mar 1982 | A |
4366966 | Ratsko et al. | Jan 1983 | A |
4430637 | Koch-Ducker et al. | Feb 1984 | A |
4518044 | Wiegardt et al. | May 1985 | A |
4735432 | Brown | Apr 1988 | A |
4752080 | Rogers | Jun 1988 | A |
4848449 | Martinet et al. | Jul 1989 | A |
4848499 | Martinet et al. | Jul 1989 | A |
4852901 | Beasley et al. | Aug 1989 | A |
4897642 | DiLullo et al. | Jan 1990 | A |
4943080 | Reimer | Jul 1990 | A |
4947097 | Tao | Aug 1990 | A |
5001639 | Breen | Mar 1991 | A |
5056905 | Jensen | Oct 1991 | A |
5097250 | Hernandez | Mar 1992 | A |
5108123 | Rubenzik | Apr 1992 | A |
5108158 | Breen | Apr 1992 | A |
5132851 | Bomar et al. | Jul 1992 | A |
5142278 | Moallemi et al. | Aug 1992 | A |
5152544 | Dierker, Jr. et al. | Oct 1992 | A |
5191328 | Nelson | Mar 1993 | A |
5244226 | Bergh | Sep 1993 | A |
5246242 | Penzotti | Sep 1993 | A |
5247442 | Kendall | Sep 1993 | A |
5261495 | Szymczak | Nov 1993 | A |
5270689 | Hermann | Dec 1993 | A |
5282641 | McLaughlin | Feb 1994 | A |
5289892 | Notsu | Mar 1994 | A |
5290057 | Pellerito | Mar 1994 | A |
5313389 | Yasui | May 1994 | A |
5359165 | Leveque et al. | Oct 1994 | A |
5430261 | Malone | Jul 1995 | A |
5436413 | Katakami | Jul 1995 | A |
5442810 | Jenquin | Aug 1995 | A |
5455557 | Noll et al. | Oct 1995 | A |
5521633 | Nakajima et al. | May 1996 | A |
5523947 | Breen | Jun 1996 | A |
5541778 | DeFlorio | Jul 1996 | A |
5558350 | Kimbrough et al. | Sep 1996 | A |
5559696 | Borenstein | Sep 1996 | A |
5579228 | Kimbrough et al. | Nov 1996 | A |
5586814 | Steiner | Dec 1996 | A |
5631656 | Hartman et al. | May 1997 | A |
5650764 | McCullough | Jul 1997 | A |
5690347 | Juergens et al. | Nov 1997 | A |
5719713 | Brown | Feb 1998 | A |
5747683 | Gerum et al. | May 1998 | A |
5821852 | Fairchild | Oct 1998 | A |
5905433 | Wortham | May 1999 | A |
5951035 | Phillips, Jr. et al. | Sep 1999 | A |
5957232 | Shimizu et al. | Sep 1999 | A |
5969325 | Hecht et al. | Oct 1999 | A |
5970619 | Wells | Oct 1999 | A |
5980048 | Rannells, Jr. et al. | Nov 1999 | A |
5999091 | Wortham | Dec 1999 | A |
6041582 | Tiede et al. | Mar 2000 | A |
6042196 | Nakamura et al. | Mar 2000 | A |
6056371 | Lin et al. | May 2000 | A |
6100795 | Otterbacher et al. | Aug 2000 | A |
6111524 | Lesesky et al. | Aug 2000 | A |
6124709 | Allwine | Sep 2000 | A |
6142372 | Wright | Nov 2000 | A |
6151175 | Osha | Nov 2000 | A |
6178650 | Thibodeaux | Jan 2001 | B1 |
6198992 | Winslow | Mar 2001 | B1 |
6217177 | Rost | Apr 2001 | B1 |
6218828 | Bates et al. | Apr 2001 | B1 |
6223104 | Kamen et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6268800 | Howard | Jul 2001 | B1 |
6292094 | Deng et al. | Sep 2001 | B1 |
6318747 | Ratican | Nov 2001 | B1 |
6351698 | Kubota et al. | Feb 2002 | B1 |
6389342 | Kanda | May 2002 | B1 |
6409288 | Yoshida et al. | Jun 2002 | B2 |
6472865 | Tola et al. | Oct 2002 | B1 |
6480104 | Wall et al. | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6494476 | Masters et al. | Dec 2002 | B2 |
6498977 | Wetzel et al. | Dec 2002 | B2 |
6501376 | Dieckmann et al. | Dec 2002 | B2 |
6539288 | Ishida et al. | Mar 2003 | B2 |
6567731 | Chandy | May 2003 | B2 |
6568093 | Kogiso et al. | May 2003 | B2 |
6577952 | Geier et al. | Jun 2003 | B2 |
6601386 | Hori et al. | Aug 2003 | B1 |
6636197 | Goldenberg et al. | Oct 2003 | B1 |
6668225 | Oh et al. | Dec 2003 | B2 |
6687609 | Hsiao et al. | Feb 2004 | B2 |
6704653 | Kuriya et al. | Mar 2004 | B2 |
6712378 | Austin | Mar 2004 | B1 |
6750406 | Komatsu et al. | Jun 2004 | B2 |
6801125 | McGregor et al. | Oct 2004 | B1 |
6806809 | Lee et al. | Oct 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6837432 | Tsikos et al. | Jan 2005 | B2 |
6838979 | Deng et al. | Jan 2005 | B2 |
6847916 | Ying | Jan 2005 | B1 |
6854557 | Deng et al. | Feb 2005 | B1 |
6857494 | Kobayashi et al. | Feb 2005 | B2 |
6879240 | Kruse | Apr 2005 | B2 |
6956468 | Lee et al. | Oct 2005 | B2 |
6959970 | Tseng | Nov 2005 | B2 |
6999856 | Lee et al. | Feb 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7006127 | Mizusawa et al. | Feb 2006 | B2 |
7008088 | Pisciotti | Mar 2006 | B2 |
7028804 | Eki et al. | Apr 2006 | B2 |
7032705 | Zheng et al. | Apr 2006 | B2 |
7036840 | Kwilinski | May 2006 | B2 |
7038667 | Vassallo et al. | May 2006 | B1 |
7039504 | Tanaka et al. | May 2006 | B2 |
7046127 | Boddy | May 2006 | B2 |
7058493 | Inagaki | Jun 2006 | B2 |
7085634 | Endo et al. | Aug 2006 | B2 |
7089101 | Fischer et al. | Aug 2006 | B2 |
7117077 | Michi et al. | Oct 2006 | B2 |
7136754 | Hahn et al. | Nov 2006 | B2 |
7139650 | Lubischer | Nov 2006 | B2 |
7154385 | Lee et al. | Dec 2006 | B2 |
7159890 | Craig et al. | Jan 2007 | B2 |
7165820 | Rudd, III | Jan 2007 | B2 |
7167785 | Lohberg et al. | Jan 2007 | B2 |
7170285 | Spratte | Jan 2007 | B2 |
7171330 | Kruse et al. | Jan 2007 | B2 |
7175194 | Ball | Feb 2007 | B2 |
7191865 | Spark | Mar 2007 | B2 |
7204504 | Gehring et al. | Apr 2007 | B2 |
7219913 | Atley | May 2007 | B2 |
7225891 | Gehring et al. | Jun 2007 | B2 |
7229139 | Lu et al. | Jun 2007 | B2 |
7237790 | Gehring et al. | Jul 2007 | B2 |
7239958 | Grougan et al. | Jul 2007 | B2 |
7255061 | Denton | Aug 2007 | B2 |
7269489 | Deng et al. | Sep 2007 | B2 |
7272481 | Einig et al. | Sep 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7309075 | Ramsey et al. | Dec 2007 | B2 |
7310084 | Shitanaka et al. | Dec 2007 | B2 |
7315299 | Sunda et al. | Jan 2008 | B2 |
7319927 | Sun et al. | Jan 2008 | B1 |
7401871 | Lu et al. | Jul 2008 | B2 |
7405557 | Spratte et al. | Jul 2008 | B2 |
7413266 | Lenz et al. | Aug 2008 | B2 |
7425889 | Widmann et al. | Sep 2008 | B2 |
7436298 | Yuasa et al. | Oct 2008 | B2 |
7447585 | Tandy, Jr. et al. | Nov 2008 | B2 |
7451020 | Goetting et al. | Nov 2008 | B2 |
7463137 | Wishart et al. | Dec 2008 | B2 |
7504995 | Lawrence et al. | Mar 2009 | B2 |
7532109 | Takahama et al. | May 2009 | B2 |
7540523 | Russell et al. | Jun 2009 | B2 |
7546191 | Lin et al. | Jun 2009 | B2 |
7548155 | Schutt et al. | Jun 2009 | B2 |
7550686 | Girke et al. | Jun 2009 | B2 |
7568716 | Dietz | Aug 2009 | B2 |
7623952 | Unruh et al. | Nov 2009 | B2 |
7648153 | Metternich et al. | Jan 2010 | B2 |
7690737 | Lu | Apr 2010 | B2 |
7696862 | Herschell et al. | Apr 2010 | B2 |
7706944 | Tanaka et al. | Apr 2010 | B2 |
7715953 | Shephard | May 2010 | B2 |
7731302 | Tandy, Jr. et al. | Jun 2010 | B2 |
7744109 | Groh | Jun 2010 | B2 |
7760077 | Day | Jul 2010 | B2 |
7777615 | Okuda et al. | Aug 2010 | B2 |
7793965 | Padula | Sep 2010 | B2 |
7798263 | Tandy, Jr. et al. | Sep 2010 | B2 |
7825782 | Hermann | Nov 2010 | B2 |
7827917 | Henderson | Nov 2010 | B1 |
7837004 | Yasuda | Nov 2010 | B2 |
7878545 | Rhymer et al. | Feb 2011 | B2 |
7904222 | Lee et al. | Mar 2011 | B2 |
7905507 | Perri | Mar 2011 | B2 |
7932815 | Martinez et al. | Apr 2011 | B2 |
7950751 | Offerle et al. | May 2011 | B2 |
7953536 | Katrak | May 2011 | B2 |
7969326 | Sakakibara | Jun 2011 | B2 |
7974444 | Hongo | Jul 2011 | B2 |
8010252 | Getman et al. | Aug 2011 | B2 |
8010253 | Lundquist | Aug 2011 | B2 |
8033955 | Farnsworth | Oct 2011 | B2 |
8036792 | Dechamp | Oct 2011 | B2 |
8038166 | Piesinger | Oct 2011 | B1 |
8044776 | Schofield et al. | Oct 2011 | B2 |
8044779 | Hahn et al. | Oct 2011 | B2 |
8068019 | Bennie et al. | Nov 2011 | B2 |
8073594 | Lee et al. | Dec 2011 | B2 |
8108116 | Mori et al. | Jan 2012 | B2 |
8138865 | North et al. | Mar 2012 | B2 |
8138899 | Ghneim | Mar 2012 | B2 |
8139109 | Schmiedel et al. | Mar 2012 | B2 |
8157284 | McGhie et al. | Apr 2012 | B1 |
8165770 | Getman et al. | Apr 2012 | B2 |
8167444 | Lee et al. | May 2012 | B2 |
8170726 | Chen et al. | May 2012 | B2 |
8174576 | Akatsuka et al. | May 2012 | B2 |
8179238 | Roberts, Sr. et al. | May 2012 | B2 |
8180543 | Futamura et al. | May 2012 | B2 |
8190364 | Rekow | May 2012 | B2 |
8191915 | Freese et al. | Jun 2012 | B2 |
8192036 | Lee et al. | Jun 2012 | B2 |
8215436 | DeGrave et al. | Jul 2012 | B2 |
8223204 | Hahn | Jul 2012 | B2 |
8224078 | Boncyk et al. | Jul 2012 | B2 |
8244442 | Craig et al. | Aug 2012 | B2 |
8260518 | Englert | Sep 2012 | B2 |
8267485 | Barlsen et al. | Sep 2012 | B2 |
8279067 | Berger et al. | Oct 2012 | B2 |
8280607 | Gatti et al. | Oct 2012 | B2 |
8308182 | Ortmann et al. | Nov 2012 | B2 |
8326504 | Wu et al. | Dec 2012 | B2 |
8332097 | Chiba et al. | Dec 2012 | B2 |
8342560 | Albers et al. | Jan 2013 | B2 |
8362888 | Roberts, Sr. et al. | Jan 2013 | B2 |
8374749 | Tanaka | Feb 2013 | B2 |
8380390 | Sy et al. | Feb 2013 | B2 |
8380416 | Offerle et al. | Feb 2013 | B2 |
8390696 | Komoto et al. | Mar 2013 | B2 |
8393632 | Vortmeyer et al. | Mar 2013 | B2 |
8401744 | Chiocco | Mar 2013 | B2 |
8427288 | Schofield et al. | Apr 2013 | B2 |
8430792 | Noll | Apr 2013 | B2 |
8451107 | Lu et al. | May 2013 | B2 |
8469125 | Yu et al. | Jun 2013 | B2 |
8504243 | Kageyama | Aug 2013 | B2 |
8519948 | Cruz-Hernandez et al. | Aug 2013 | B2 |
8548680 | Ryerson et al. | Oct 2013 | B2 |
8548683 | Cebon et al. | Oct 2013 | B2 |
8571758 | Klier et al. | Oct 2013 | B2 |
8576115 | Basten | Nov 2013 | B2 |
8626382 | Obradovich | Jan 2014 | B2 |
8675953 | Elwell et al. | Mar 2014 | B1 |
8755982 | Heckel et al. | Jun 2014 | B2 |
8755984 | Rupp et al. | Jun 2014 | B2 |
8768535 | Kossira et al. | Jul 2014 | B2 |
8786417 | Holmen et al. | Jul 2014 | B2 |
8798860 | Dechamp | Aug 2014 | B2 |
8807261 | Subrt et al. | Aug 2014 | B2 |
8825328 | Rupp et al. | Sep 2014 | B2 |
8833789 | Anderson | Sep 2014 | B2 |
8886400 | Kossira et al. | Nov 2014 | B2 |
8888120 | Trevino | Nov 2014 | B2 |
8888121 | Trevino et al. | Nov 2014 | B2 |
8909426 | Rhode et al. | Dec 2014 | B2 |
8930140 | Trombley et al. | Jan 2015 | B2 |
8939462 | Adamczyk et al. | Jan 2015 | B2 |
8955865 | Fortin et al. | Feb 2015 | B2 |
8972109 | Lavoie et al. | Mar 2015 | B2 |
9008913 | Sears et al. | Apr 2015 | B1 |
9026311 | Pieronek et al. | May 2015 | B1 |
9033284 | Van Staagen | May 2015 | B2 |
9042603 | Elwart et al. | May 2015 | B2 |
9082315 | Lin et al. | Jul 2015 | B2 |
9102271 | Trombley et al. | Aug 2015 | B2 |
9108598 | Headley | Aug 2015 | B2 |
9114832 | Wang et al. | Aug 2015 | B2 |
9120358 | Motts et al. | Sep 2015 | B2 |
9120359 | Chiu et al. | Sep 2015 | B2 |
9132856 | Shephard | Sep 2015 | B2 |
9156496 | Greenwood et al. | Oct 2015 | B2 |
9164955 | Lavoie et al. | Oct 2015 | B2 |
9180890 | Lu et al. | Nov 2015 | B2 |
9187124 | Trombley et al. | Nov 2015 | B2 |
9227474 | Liu | Jan 2016 | B2 |
9229453 | Lee | Jan 2016 | B1 |
9238483 | Hafner et al. | Jan 2016 | B2 |
9248858 | Lavoie et al. | Feb 2016 | B2 |
9296422 | Lavoie | Mar 2016 | B2 |
9315151 | Taylor et al. | Apr 2016 | B2 |
9315212 | Kyrtsos et al. | Apr 2016 | B1 |
9321483 | Headley | Apr 2016 | B2 |
9335162 | Kyrtsos et al. | May 2016 | B2 |
9340228 | Xu et al. | May 2016 | B2 |
9352777 | Lavoie et al. | May 2016 | B2 |
9393996 | Goswami et al. | Jul 2016 | B2 |
9428188 | Schwindt et al. | Aug 2016 | B2 |
9434414 | Lavoie | Sep 2016 | B2 |
9499018 | Gehrke et al. | Nov 2016 | B2 |
9500497 | Lavoie et al. | Nov 2016 | B2 |
9610974 | Herzog et al. | Apr 2017 | B2 |
9616923 | Lavoie et al. | Apr 2017 | B2 |
9623904 | Lavoie et al. | Apr 2017 | B2 |
9676377 | Hafner et al. | Jun 2017 | B2 |
9714051 | Lavoie | Jul 2017 | B2 |
9798953 | Hu | Oct 2017 | B2 |
9827818 | Hu et al. | Nov 2017 | B2 |
9836060 | Ghneim et al. | Dec 2017 | B2 |
9840278 | Lavoie et al. | Dec 2017 | B2 |
9983404 | Asada | May 2018 | B2 |
10046800 | Hu et al. | Aug 2018 | B2 |
20010024333 | Rost | Sep 2001 | A1 |
20010037164 | Hecker | Nov 2001 | A1 |
20010052434 | Ehrlich et al. | Dec 2001 | A1 |
20020128764 | Hecker et al. | Sep 2002 | A1 |
20020149673 | Hirama et al. | Oct 2002 | A1 |
20030052969 | Satoh | Mar 2003 | A1 |
20030234512 | Holub | Dec 2003 | A1 |
20040017285 | Zielinski et al. | Jan 2004 | A1 |
20040021291 | Haug et al. | Feb 2004 | A1 |
20040093139 | Wildey et al. | May 2004 | A1 |
20040130441 | Lee et al. | Jul 2004 | A1 |
20040189595 | Yuasa et al. | Sep 2004 | A1 |
20040207525 | Wholey et al. | Oct 2004 | A1 |
20040222881 | Deng et al. | Nov 2004 | A1 |
20050000738 | Gehring et al. | Jan 2005 | A1 |
20050071373 | Long | Mar 2005 | A1 |
20050074143 | Kawai | Apr 2005 | A1 |
20050128059 | Vause | Jun 2005 | A1 |
20050206224 | Lu | Sep 2005 | A1 |
20050206225 | Offerle et al. | Sep 2005 | A1 |
20050206229 | Lu et al. | Sep 2005 | A1 |
20050206231 | Lu et al. | Sep 2005 | A1 |
20050236201 | Spannheimer et al. | Oct 2005 | A1 |
20050236896 | Offerle et al. | Oct 2005 | A1 |
20060041358 | Hara | Feb 2006 | A1 |
20060071447 | Gehring et al. | Apr 2006 | A1 |
20060076828 | Lu et al. | Apr 2006 | A1 |
20060092129 | Choquet et al. | May 2006 | A1 |
20060103511 | Lee et al. | May 2006 | A1 |
20060111820 | Goetting et al. | May 2006 | A1 |
20060142936 | Dix | Jun 2006 | A1 |
20060155455 | Lucas et al. | Jul 2006 | A1 |
20060171704 | Bingle et al. | Aug 2006 | A1 |
20060244579 | Raab | Nov 2006 | A1 |
20060250501 | Widmann et al. | Nov 2006 | A1 |
20070027581 | Bauer et al. | Feb 2007 | A1 |
20070058273 | Ito et al. | Mar 2007 | A1 |
20070090688 | Haemmerling et al. | Apr 2007 | A1 |
20070132560 | Nystrom et al. | Jun 2007 | A1 |
20070152424 | Deng et al. | Jul 2007 | A1 |
20070198190 | Bauer et al. | Aug 2007 | A1 |
20070263902 | Higuchi | Nov 2007 | A1 |
20070271267 | Lim et al. | Nov 2007 | A1 |
20070285808 | Beale | Dec 2007 | A1 |
20080030361 | Peissner et al. | Feb 2008 | A1 |
20080143593 | Graziano et al. | Jun 2008 | A1 |
20080147277 | Lu et al. | Jun 2008 | A1 |
20080177443 | Lee et al. | Jul 2008 | A1 |
20080180526 | Trevino | Jul 2008 | A1 |
20080231701 | Greenwood et al. | Sep 2008 | A1 |
20080231707 | Fontana | Sep 2008 | A1 |
20080312792 | Dechamp | Dec 2008 | A1 |
20090005932 | Lee et al. | Jan 2009 | A1 |
20090045924 | Roberts, Sr. et al. | Feb 2009 | A1 |
20090079828 | Lee et al. | Mar 2009 | A1 |
20090082935 | Leschuk et al. | Mar 2009 | A1 |
20090085775 | Otsuka et al. | Apr 2009 | A1 |
20090093928 | Getman et al. | Apr 2009 | A1 |
20090101429 | Williams | Apr 2009 | A1 |
20090102922 | Ito | Apr 2009 | A1 |
20090157260 | Lee | Jun 2009 | A1 |
20090198425 | Englert | Aug 2009 | A1 |
20090219147 | Bradley et al. | Sep 2009 | A1 |
20090228182 | Waldbauer et al. | Sep 2009 | A1 |
20090231441 | Walker et al. | Sep 2009 | A1 |
20090248346 | Fennel et al. | Oct 2009 | A1 |
20090271078 | Dickinson | Oct 2009 | A1 |
20090300701 | Karaoguz et al. | Dec 2009 | A1 |
20090306854 | Dechamp | Dec 2009 | A1 |
20090306861 | Schumann et al. | Dec 2009 | A1 |
20090326775 | Nishida | Dec 2009 | A1 |
20100063670 | Brzezinski et al. | Mar 2010 | A1 |
20100063702 | Sabelstrom et al. | Mar 2010 | A1 |
20100152989 | Smith et al. | Jun 2010 | A1 |
20100156667 | Bennie et al. | Jun 2010 | A1 |
20100171828 | Ishii | Jul 2010 | A1 |
20100222964 | Dechamp | Sep 2010 | A1 |
20100324770 | Ramsey et al. | Dec 2010 | A1 |
20100332049 | Sy et al. | Dec 2010 | A1 |
20110001825 | Hahn | Jan 2011 | A1 |
20110018231 | Collenberg | Jan 2011 | A1 |
20110022282 | Wu et al. | Jan 2011 | A1 |
20110025482 | Algueera et al. | Feb 2011 | A1 |
20110050903 | Vorobiev | Mar 2011 | A1 |
20110087398 | Lu et al. | Apr 2011 | A1 |
20110112721 | Wang et al. | May 2011 | A1 |
20110125457 | Lee et al. | May 2011 | A1 |
20110149077 | Robert | Jun 2011 | A1 |
20110160956 | Chung et al. | Jun 2011 | A1 |
20110216199 | Trevino et al. | Sep 2011 | A1 |
20110257860 | Getman et al. | Oct 2011 | A1 |
20110267366 | Ichinose | Nov 2011 | A1 |
20110281522 | Suda | Nov 2011 | A1 |
20110290882 | Gu et al. | Dec 2011 | A1 |
20120030626 | Hopkins et al. | Feb 2012 | A1 |
20120041658 | Turner | Feb 2012 | A1 |
20120086808 | Lynam et al. | Apr 2012 | A1 |
20120087480 | Yang et al. | Apr 2012 | A1 |
20120095649 | Klier et al. | Apr 2012 | A1 |
20120109471 | Wu | May 2012 | A1 |
20120112434 | Albers et al. | May 2012 | A1 |
20120185131 | Headley | Jul 2012 | A1 |
20120191285 | Woolf et al. | Jul 2012 | A1 |
20120200706 | Greenwood et al. | Aug 2012 | A1 |
20120265416 | Lu et al. | Oct 2012 | A1 |
20120271512 | Rupp et al. | Oct 2012 | A1 |
20120271514 | Lavoie et al. | Oct 2012 | A1 |
20120271515 | Rhode et al. | Oct 2012 | A1 |
20120271522 | Rupp et al. | Oct 2012 | A1 |
20120283909 | Dix | Nov 2012 | A1 |
20120283910 | Lee et al. | Nov 2012 | A1 |
20120288156 | Kido | Nov 2012 | A1 |
20120310594 | Watanabe | Dec 2012 | A1 |
20120316732 | Auer | Dec 2012 | A1 |
20130006472 | McClain et al. | Jan 2013 | A1 |
20130024064 | Shepard | Jan 2013 | A1 |
20130027195 | Van Wiemeersch et al. | Jan 2013 | A1 |
20130041524 | Brey | Feb 2013 | A1 |
20130082453 | Padula | Apr 2013 | A1 |
20130141578 | Chundrlik, Jr. et al. | Jun 2013 | A1 |
20130148748 | Suda | Jun 2013 | A1 |
20130158803 | Headley | Jun 2013 | A1 |
20130158863 | Skvarce et al. | Jun 2013 | A1 |
20130179038 | Goswami et al. | Jul 2013 | A1 |
20130207834 | Mizutani et al. | Aug 2013 | A1 |
20130226390 | Luo et al. | Aug 2013 | A1 |
20130250114 | Lu | Sep 2013 | A1 |
20130253814 | Wirthlin | Sep 2013 | A1 |
20130261843 | Kossira et al. | Oct 2013 | A1 |
20130268160 | Trombley et al. | Oct 2013 | A1 |
20140005918 | Qiang | Jan 2014 | A1 |
20140025260 | McClure | Jan 2014 | A1 |
20140052337 | Lavoie et al. | Feb 2014 | A1 |
20140058614 | Trombley et al. | Feb 2014 | A1 |
20140058622 | Trombley et al. | Feb 2014 | A1 |
20140058655 | Trombley et al. | Feb 2014 | A1 |
20140058668 | Trombley et al. | Feb 2014 | A1 |
20140067154 | Yu et al. | Mar 2014 | A1 |
20140067155 | Yu et al. | Mar 2014 | A1 |
20140085472 | Lu et al. | Mar 2014 | A1 |
20140088797 | McClain et al. | Mar 2014 | A1 |
20140088824 | Ishimoto | Mar 2014 | A1 |
20140121930 | Allexi et al. | May 2014 | A1 |
20140125795 | Yerke | May 2014 | A1 |
20140156148 | Kikuchi | Jun 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140172232 | Rupp et al. | Jun 2014 | A1 |
20140183841 | Jones | Jul 2014 | A1 |
20140188344 | Lavoie | Jul 2014 | A1 |
20140188346 | Lavoie | Jul 2014 | A1 |
20140200759 | Lu et al. | Jul 2014 | A1 |
20140210456 | Crossman | Jul 2014 | A1 |
20140218506 | Trombley et al. | Aug 2014 | A1 |
20140218522 | Lavoie et al. | Aug 2014 | A1 |
20140222288 | Lavoie et al. | Aug 2014 | A1 |
20140236532 | Trombley et al. | Aug 2014 | A1 |
20140249691 | Hafner et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140267689 | Lavoie | Sep 2014 | A1 |
20140277941 | Chiu et al. | Sep 2014 | A1 |
20140277942 | Kyrtsos et al. | Sep 2014 | A1 |
20140297128 | Lavoie et al. | Oct 2014 | A1 |
20140297129 | Lavoie et al. | Oct 2014 | A1 |
20140303847 | Lavoie | Oct 2014 | A1 |
20140307095 | Wierich | Oct 2014 | A1 |
20140309888 | Smit et al. | Oct 2014 | A1 |
20140324295 | Lavoie | Oct 2014 | A1 |
20140343795 | Lavoie | Nov 2014 | A1 |
20140354811 | Weber | Dec 2014 | A1 |
20140358429 | Shutko et al. | Dec 2014 | A1 |
20140379217 | Rupp et al. | Dec 2014 | A1 |
20150002669 | Reed et al. | Jan 2015 | A1 |
20150002670 | Bajpai | Jan 2015 | A1 |
20150025732 | Min et al. | Jan 2015 | A1 |
20150035256 | Klank et al. | Feb 2015 | A1 |
20150057903 | Rhode et al. | Feb 2015 | A1 |
20150066296 | Trombley et al. | Mar 2015 | A1 |
20150066298 | Sharma et al. | Mar 2015 | A1 |
20150070161 | Mizuno et al. | Mar 2015 | A1 |
20150077557 | Han et al. | Mar 2015 | A1 |
20150105975 | Dunn | Apr 2015 | A1 |
20150115571 | Zhang et al. | Apr 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150120143 | Schlichting | Apr 2015 | A1 |
20150134183 | Lavoie et al. | May 2015 | A1 |
20150138340 | Lavoie | May 2015 | A1 |
20150149040 | Hueger et al. | May 2015 | A1 |
20150158527 | Hafner et al. | Jun 2015 | A1 |
20150165850 | Chiu et al. | Jun 2015 | A1 |
20150197278 | Boos et al. | Jul 2015 | A1 |
20150203156 | Hafner et al. | Jul 2015 | A1 |
20150210254 | Pieronek et al. | Jul 2015 | A1 |
20150210317 | Hafner et al. | Jul 2015 | A1 |
20150217693 | Pliefke et al. | Aug 2015 | A1 |
20150232092 | Fairgrieve et al. | Aug 2015 | A1 |
20150269444 | Lameyre et al. | Sep 2015 | A1 |
20160001705 | Greenwood et al. | Jan 2016 | A1 |
20160009288 | Yu | Jan 2016 | A1 |
20160023603 | Vico et al. | Jan 2016 | A1 |
20160039456 | Lavoie et al. | Feb 2016 | A1 |
20160052548 | Singh et al. | Feb 2016 | A1 |
20160059780 | Lavoie | Mar 2016 | A1 |
20160059888 | Bradley et al. | Mar 2016 | A1 |
20160059889 | Herzog et al. | Mar 2016 | A1 |
20160096549 | Herzog et al. | Apr 2016 | A1 |
20160129939 | Singh et al. | May 2016 | A1 |
20160152263 | Singh et al. | Jun 2016 | A1 |
20160153778 | Singh et al. | Jun 2016 | A1 |
20160229452 | Lavoie et al. | Aug 2016 | A1 |
20160272024 | Bochenek et al. | Sep 2016 | A1 |
20160280267 | Lavoie et al. | Sep 2016 | A1 |
20160304122 | Herzog et al. | Oct 2016 | A1 |
20160364620 | Akiyama | Dec 2016 | A1 |
20160375831 | Wang et al. | Dec 2016 | A1 |
20170073005 | Ghneim et al. | Mar 2017 | A1 |
20170098131 | Shashua | Apr 2017 | A1 |
20170101130 | Lavoie | Apr 2017 | A1 |
20170106796 | Lavoie | Apr 2017 | A1 |
20170174130 | Hu et al. | Jun 2017 | A1 |
20170177949 | Hu et al. | Jun 2017 | A1 |
20170259850 | Yamashita et al. | Sep 2017 | A1 |
20170297491 | Tanaka | Oct 2017 | A1 |
20170297619 | Lavoie et al. | Oct 2017 | A1 |
20170297620 | Lavoie et al. | Oct 2017 | A1 |
20170313351 | Lavoie | Nov 2017 | A1 |
20180025499 | Strano et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
101610420 | Dec 2009 | CN |
202159367 | Mar 2012 | CN |
102582686 | Sep 2013 | CN |
3923676 | Jan 1991 | DE |
3931518 | Apr 1991 | DE |
9208595 | Aug 1992 | DE |
19526702 | Feb 1997 | DE |
10030738 | Aug 2001 | DE |
10031244 | Jan 2002 | DE |
10065230 | Jul 2002 | DE |
10122562 | Jul 2002 | DE |
10154612 | May 2003 | DE |
10312548 | May 2004 | DE |
10333998 | Feb 2005 | DE |
102004050149 | Apr 2006 | DE |
102005042957 | Mar 2007 | DE |
102005043466 | Mar 2007 | DE |
102005043467 | Mar 2007 | DE |
102005043468 | Mar 2007 | DE |
102006002294 | Jul 2007 | DE |
102006048947 | Apr 2008 | DE |
102006056408 | Jun 2008 | DE |
102008020838 | Nov 2008 | DE |
102007029413 | Jan 2009 | DE |
102008004160 | Aug 2009 | DE |
102008045436 | Mar 2010 | DE |
102006035021 | Apr 2010 | DE |
102008043675 | May 2010 | DE |
102009007990 | Aug 2010 | DE |
102009012253 | Sep 2010 | DE |
102009027041 | Dec 2010 | DE |
102009038552 | Feb 2011 | DE |
102010006323 | Aug 2011 | DE |
102008004158 | Oct 2011 | DE |
102008004159 | Oct 2011 | DE |
102008004160 | Oct 2011 | DE |
102010021052 | Nov 2011 | DE |
102010029184 | Nov 2011 | DE |
102010045519 | Mar 2012 | DE |
102011104256 | Jul 2012 | DE |
102011101990 | Oct 2012 | DE |
102012005707 | Oct 2012 | DE |
202012010517 | Dec 2012 | DE |
102011108440 | Jan 2013 | DE |
102011120814 | Jun 2013 | DE |
102012006206 | Oct 2013 | DE |
102012206133 | Oct 2013 | DE |
102012019234 | Apr 2014 | DE |
102013000198 | Jul 2014 | DE |
0418653 | Mar 1991 | EP |
0433858 | Jun 1991 | EP |
1312492 | May 2003 | EP |
1361543 | Nov 2003 | EP |
1653490 | May 2006 | EP |
1655191 | May 2006 | EP |
1593552 | Mar 2007 | EP |
1810913 | Jul 2007 | EP |
2388180 | Nov 2011 | EP |
2452549 | May 2012 | EP |
2487454 | Aug 2012 | EP |
2551132 | Jan 2013 | EP |
2644477 | Oct 2013 | EP |
2682329 | Jan 2014 | EP |
1569073 | Sep 2014 | EP |
2803944 | Nov 2014 | EP |
2515379 | Apr 1983 | FR |
2265587 | Oct 1993 | GB |
2342630 | Apr 2000 | GB |
2398048 | Aug 2004 | GB |
2398049 | Aug 2004 | GB |
2398050 | Aug 2004 | GB |
61006458 | Jan 1986 | JP |
6159491 | Mar 1986 | JP |
6385568 | Jun 1988 | JP |
01095980 | Apr 1989 | JP |
01095981 | Apr 1989 | JP |
09267762 | Oct 1997 | JP |
09328078 | Dec 1997 | JP |
10001063 | Jan 1998 | JP |
10119739 | May 1998 | JP |
11124051 | May 1999 | JP |
11278319 | Oct 1999 | JP |
2002012172 | Jan 2002 | JP |
2002068032 | Mar 2002 | JP |
2003034261 | Feb 2003 | JP |
2003045269 | Feb 2003 | JP |
2003148938 | May 2003 | JP |
2003175852 | Jun 2003 | JP |
3716722 | Nov 2005 | JP |
2007186118 | Jul 2007 | JP |
2008027138 | Feb 2008 | JP |
2009171122 | Jul 2009 | JP |
2012105158 | May 2012 | JP |
2012166580 | Sep 2012 | JP |
2012166647 | Sep 2012 | JP |
2014002056 | Jan 2014 | JP |
20140105199 | Sep 2014 | KR |
8503263 | Aug 1985 | WO |
0044605 | Aug 2000 | WO |
2005005200 | Jan 2005 | WO |
2005116688 | Dec 2005 | WO |
2006042665 | Apr 2006 | WO |
2012059207 | May 2012 | WO |
2012103193 | Aug 2012 | WO |
2013048994 | Apr 2013 | WO |
2013070539 | May 2013 | WO |
2013186208 | Dec 2013 | WO |
2014019730 | Feb 2014 | WO |
2014037500 | Mar 2014 | WO |
2014070047 | May 2014 | WO |
2014092611 | Jun 2014 | WO |
2014123575 | Aug 2014 | WO |
2014174027 | Oct 2014 | WO |
2015074027 | May 2015 | WO |
2015187467 | Dec 2015 | WO |
Entry |
---|
Jae Il Roh, Hyunsuk Lee, Woojin Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics, Dec. 7-11, 2011; Phuket, Thailand, pp. 2890-2895. |
M. Khatib, H. Jaouni, R. Chatila, and J.P. Laumond; “Dynamic Path Modification for Car-Like Nonholonomic Mobile Robots,” IEEE, International Conference on Robotics and Automation, Albuquerque, New Mexico, Apr. 1997, 6 pages. |
SH. Azadi, H.R. Rezaei Nedamani, and R. Kazemi, “Automatic Parking of an Articulated Vehicle Using ANFIS”, Global Journal of Science, Engineering and Technology (ISSN: 2322-2441), 2013, pp. 93-104, Issue No. 14. |
F. Cuesta and A. Ollero, “Intelligent System for Parallel Parking of Cars and Tractor-Trailers”, Intelligent Mobile Robot Navigation, STAR, 2005, pp. 159-188, Springer-Verlag Berlin Heidelberg. |
“Ford Super Duty: Truck Technologies”, Brochure, Sep. 2011, 2 pages. |
Kristopher Bunker, “2012 Guide to Towing”, Trailer Life, 2012, 38 pages. |
A. Gonzalez-Cantos, “Backing-Up Maneuvers of Autonomous Tractor-Trailer Vehicles using the Qualitative Theory of Nonlinear Dynamical Systems,” International Journal of Robotics Research, Jan. 2009, vol. 28, 1 page. |
L. Chu, Y. Fang, M. Shang, J. Guo, F. Zhou, “Estimation of Articulation Angle for Tractor Semi-Trailer Based on State Observer”, ACM Digital Library, ICMTMA '10 Proceedings of the 2010 International Conference on Measuring Technology and Automation, vol. 2, Mar. 2010, 1 page. |
M. Wagner, D. Zoebel, and A. Meroth, “Adaptive Software and Systems Architecture for Driver Assistance Systems” International Journal of Machine Learning and Computing, Oct. 2011, vol. 1, No. 4, 7 pages. |
F.W. Kienhöfer; D. Cebon, “An Investigation of ABS Strategies for Articulated Vehicles”, Cambridge University, Engineering Department, United Kingdom, date unknown, 13 pages. |
C. Lundquist; W. Reinelt; O. Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, ZF Lenksysteme GmbH, Schwäbisch Gmünd, Germany, 2006 (SAE Int'l) Jan. 2006, 8 pages. |
Zhe Leng; Minor, M., “A Simple Tractor-Trailer Backing Control Law for Path Following”, IEEE, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference, Oct. 2010, 2 pages. |
Kinjo, H.; Maeshiro, M.; Uezato, E.; Yamamoto, T., “Adaptive Genetic Algorithm Observer and its Application to Trailer Truck Control System”, IEEE, SICE-ICASE International Joint Conference, Oct. 2006, 2 pgs. |
J. Roh; H. Lee; W. Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics; Phuket, Thailand, Dec. 2011, 6 pages. |
A. Gonzalez-Cantos; J.I. Maza; A. Ollero, “Design of a Stable Backing Up Fuzzy Control of Autonomous Articulated Vehicles for Factory Automation”, Dept. of Systems Engineering and Automatic Control, University of Seville, Spain, 2001, 5 pages. |
Altafini, C.; Speranzon, A.; Wahlberg, B., “A Feedback Control Scheme for Reversing a Truck and Trailer Vehicle”, IEEE, Robotics and Automation, IEEE Transactions, Dec. 2001, vol. 17, No. 6, 2 pages. |
Zare, A. Sharafi; M. Kamyad, A.V., “A New Approach in Intelligent Trailer Parking”, IEEE, 2010 2nd International Mechanical and Electrical Technology (ICMET), Sep. 2010, 1 page. |
Tanaka, K.; Sano, M., “A Robust Stabilization Problem of Fuzzy Control Systems and its Application to Backing up Control of a Truck-trailer”, IEEE Transactions on Fuzzy Systems, May 1994, vol. 2, No. 2, 1 page. |
Sharafi, M. Zare; A. Kamyad; A.V. Nikpoor, S., “Intelligent Parking Method for Truck in Presence of Fixed and Moving Obstacles and Trailer in Presence of Fixed Obstacles: Advanced Fuzzy Logic Technologies in Industrial Applications”, IEEE, 2010 International Electronics and Information Engineering (ICEIE), Aug. 2010, vol. 2, 1 page. |
Hodo, D. W.; Hung, J.Y.; Bevly, D. M.; Millhouse, S., “Effects of Sensor Placement and Errors on Path Following Control of a Mobile Robot-Trailer System”, IEEE, American Control Conference, Jul. 2007, 1 page. |
Sharafi, M. Zare; A. Kamyad; A.V. Nikpoor, S., “Intelligent Parking Method for Trailers in Presence of Fixed and Moving Obstacles”, IEEE, 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Aug. 2010, vol. 6, 1 page. |
Chieh Chen; Tomizuka, M., “Steering and Independent Braking Control for Tractor-Semitrailer Vehicles in Automated Highway Systems”, IEEE, Proceedings of the 34th IEEE Conference on Decision and Control, Dec. 1995, vol. 2, 1 page. |
P. Bolzern, R.M. Desantis, A. Locatelli, “An Input-Output Linearization Approach to the Control of an n-Body Articulated Vehicle”, J. Dyn. Sys., Meas., Control, Sep. 2001, vol. 123, No. 3, 3 pages. |
Dieter Zöbel, David Polock, Philipp Wojke, “Steering Assistance for Backing Up Articulated Vehicles”, Systemics, Cybernetics and Informatics; vol. 1, No. 5, date unknown, 6 pages. |
J.R. Billing; J.D. Patten; R.B. Madill, “Development of Configurations for Infrastructure-Friendly Five- and Six-Axle SemiTrailers”, National Research Council of Canada and Ontario Ministry of Transportation, date unknown, 11 pages. |
Jesus Morales, Anthony Mandow, Jorge L. Martinez, and Alfonso Garcia-Cerezo, “Driver Assistance System for Backward Maneuvers in Passive Multi-Trailer Vehicles”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2012, 7 pages. |
Cedric Pradalier and Kane Usher, “Experiments in Autonomous Reversing of a Tractor-Trailer System”, 6th International Conference on Field and Service Robotics, inria-00195700, Version 1, Dec. 2007, 10 pages. |
Andri Riid, Alar Leibak, Ennu Rüstern, “Fuzzy Backing Control of Truck and Two Trailers”, Tallinn University of Technology; Tallinn, Estonia, date unknown, 6 pages. |
Jane McGrath, “How to Avoid Jackknifing”, A Discovery Company, date unknown, 3 pages. |
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, 14 pages. |
Jujnovich, B.; Roebuck, R.; Odhams, A.; David, C., “Implementation of Active Rear Steering of a Tractor Semitrailer”, Cambridge University, Engineering Department; Cambridge, United Kingdom, date unknown, 10 pages. |
A.M.C. Odhams; R.L. Roebuck; C. Cebon, “Implementation of Active Steering on a Multiple Trailer Long Combination Vehicle”, Cambridge University, Engineering Department; Cambridge, United Kingdom, date unknown, 13 pages. |
Cedric Pradalier and Kane Usher, “Robust Trajectory Tracking for a Reversing Tractor-Trailer System”, (Draft), Field and Service Robotics Conference, CSIRO ICT Centre, Jul. 2007, 16 pages. |
Stahn, R.; Heiserich, G.; Stopp, A., “Laser Scanner-Based Navigation for Commercial Vehicles”, IEEE, 2007 IEEE Intelligent Vehicles Symposium, Jun. 2007, 1 page. |
Lee Yong H.; Weiwen Deng; Chin Yuen-Kwok Steve; Mckay Neil, “Feasibility Study for a Vehicle-Trailer Backing Up Control”, Refdoc.fr, SAE Transactions, vol. 113, No. 6, 2004, 1 page. |
A.M.C. Odhams; R.L. Roebuck; B.A. Jujnovich; D. Cebon, “Active Steering of a Tractor-Semi-Trailer” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Sage Journals, vol. 225, No. 7, Jul. 2011, 1 page. |
Haviland, G S, “Automatic Brake Control for Trucks—What Good Is It?”, TRID, Society of Automotive Engineers, Sep. 1968, 1 page. |
William E. Travis; David W. Hodo; David M. Bevly; John Y. Hung, “UGV Trailer Position Estimation Using a Dynamic Base RTK System”, American Institute of Aeronautics and Astronautics, date unknown, 12 pages. |
“VSE Electronic Trailer Steering”, ETS for Trailers, version 2009, VSE Trailer Systems B.V., 2009, 28 pages. |
“Telematics Past, Present, and Future,” Automotive Service Association, www.ASAshop.org, May 2008, 20 pages. |
“Fully Automatic Trailer Tow Hitch With LIN Bus,” https://webista.bmw.com/webista/show?id=1860575499&lang=engb&print=1, date unknown, 5 pages. |
“VBOX Yaw Rate Sensor With Integral Accelerometers,” Racelogic, www.racelogic.co.uk, date unknown, 2 pages. |
P.D.C.R Jayarathna; J.V Wijayakulasooriya; S.R. Kodituwakku, “Fuzzy Logic and Neural Network Control Systems for Backing up a Truck and a Trailer”, International Journal of Latest Trends in Computing, vol. 2, No. 3, Sep. 2011, 8 pages. |
Olof Enqvist, “AFS-Assisted Trailer Reversing,” Institutionen för systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, 57 pages. |
Gouet-Brunet, V.; Lameyre, B., “Object recognition and segmentation in videos by connecting heterogeneous visual features”, Computer Vision and Image Understanding, Jul. 2008, 2 pgs., vol. 111, Issue 1. |
Alpine Electronics of America, Inc., “Alpine Electronics Introduces Two New Driver Assist Solutions”, press release, Jan. 7, 2010, 2 pgs., Torrance, California. |
Wagner, M.; Zobel, D.; Meroth, A., “An Adaptive Software and Systems Architecture for Drivers Assistance Systems based on Service Orientation”, International Journal of Machine Learning and Computing, Oct. 2011, pp. 359-366, vol. 1, No. 4, Germany. |
“Rearview Parking Assist Systems”, Donmar Sunroofs & Accessories, Brochure, Aug. 2013, 13 pgs. |
“Trailer Vision”, Trailer Vision Ltd., Brochure, www.trailervision.co.uk, Date Unknown, 4 pgs. |
Novak, Domen; Dovzan, Dejan; Grebensek, Rok; Oblak, Simon, “Automated Parking System for a Truck and Trailer”, International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research, Florence, 2007, WorldCat.org, 13 pgs. |
Haviland, G S, “Automatic Brake Control for Trucks—What Good Is It?”, TRID, Society of Automotive Engineers, Sep. 1968, 1 pg. |
Altafini, C.; Speranzon, A.; Wahlberg, B., “A Feedback Control Scheme for Reversing a Truck and Trailer Vehicle”, IEEE, Robotics and Automation, IEEE Transactions, Dec. 2001, vol. 17, No. 6, 2 pgs. |
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, pp. 21-34. |
Divelbiss, A.W.; Wen, J.T.; “Trajectory Tracking Control of a Car-Trailer System”, IEEE, Control Systems Technology, Aug. 6, 2002, vol. 5, No. 3, 1 pg. |
Guanrong, Chen; Delin, Zhang; “Backing up a Truck-Trailer with Suboptimal Distance Trajectories”, IEEE, Proceedings of the Fifth IEEE International Conference, vol. 2, Aug. 6, 2002, New Orleans, LA, ISBN:0-7803-3645-3, 1 pg. |
“Understanding Tractor-Trailer Performance”, Caterpillar, 2006, pp. 1-28. |
C. Lundquist; W. Reinelt; O. Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, ZF Lenksysteme GmbH, Schwäbisch Gmünd, Germany, 2006 (SAE Int'l) Jan. 2006, pp. 1-8. |
Olof Enqvist, “AFS—Assisted Trailer Reversing,” Institutionen för systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, 57 pgs. |
Cedric Pradalier, Kane Usher, “Robust Trajectory Tracking for a Reversing Tractor-Trailer System”, (Draft), Field and Service Robotics Conference, CSIRO ICT Centre, Jul. 2007, 16 pages. |
Hodo, D. W.; Hung, J.Y.; Bevly, D. M.; Millhouse, S., “Effects of Sensor Placement and Errors on Path Following Control of a Mobile Robot-Trailer System”, IEEE, American Control Conference, Jul. 30, 2007, 1 pg. |
Cedric Pradalier, Kane Usher, “Experiments in Autonomous Reversing of a Tractor-Trailer System”, 6th International Conference on Field and Service Robotics, inria-00195700, Version 1, Dec. 2007, 10 pgs. |
Zhe Leng; Minor, M., “A Simple Tractor-Trailer Backing Control Law for Path Following”, IEEE, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference, Oct. 2010, 2 pgs. |
“2012 Edge—Trailer Towing Selector”, Brochure, Preliminary 2012 RV & Trailer Towing Guide Information, 2011, 3 pgs. |
“Ford Super Duty: Truck Technologies”, Brochure, Sep. 2011, 2 pgs. |
J. Roh; H. Lee; W. Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics; Phuket, Thailand, Dec. 2011, 1 pg. |
Payne, M.L.;Hung, J.Y, and Bevy, D.M; “Control of a Robot-Trailer System Using a Single Non-Collacted Sensor”, IEEE, 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 25-28, 2012, 2 pgs. |
“Optionally Unmanned Ground Systems for any Steering-Wheel Based Vehicle” Universal. Unmanned., Kairos Autonomi, website: http://www.kairosautonomi.com/pronto4_system.html, retrieved Sep. 26, 2014, 2 pgs. |
Micah Steele, R. Brent Gillespie, “Shared Control Between Human and Machine: Using a Haptic Steering Wheel to Aid in Land Vehicle Guidance”, University of Michigan, Date Unknown, 5 pgs. |
Skybitz, website, 2012, pp. 1-3, http://www.skybitz.com/products-services/hardware/bat-xtndr/. |
Verma, V.S.; Guntur, R.R.; Womg, J.Y.; “Directional Behavior During Braking of a Tractor/Semitrailer”, TRID, International Journal of Vehicle Design, May 1980, pp. 195-220, vol. 1, No. 3, Inderscience Enterprises Limited, ISSN: 1477-5360. |
Number | Date | Country | |
---|---|---|---|
20190071088 A1 | Mar 2019 | US |