1. Field of the Invention
The present invention relates to a trailing device in trailing art, more especially, to a trailer system for inspecting a vehicle and an inspection system having the same which are widely used in radiation imaging inspection.
2. Description of the Related Art
Trailers are always used in radiation imaging inspection. The radiation imaging inspection is indispensable for customs, civil airport and railway station. A system used in radiation imaging inspection is normally operated as follows: a radiation source and detector arrays capable of receiving detecting rays penetrating through a vehicle to be inspected are provided in a detecting passage that can shield rays; the vehicle to be inspected is trailed through radiating beams for inspection by a special trailing device. And the system generally comprises subsystems such as an accelerator, a detector, a image acquiring and scanning device, and a running and inspecting device. During inspection, the vehicle to be inspected rapidly passes through the scanning passage, which is essential to the radiation imaging inspection. In prior art, the special trailing device includes a flat car and various trailing bogies etc.
Chinese Patent No.CN00107480.6 discloses an automatic flatcar for a fixed container inspection system. During inspection, the vehicle to be inspected is driven onto the automatic flatcar. Longitudinal and horizontal travel mechanisms are installed at the bottom of the automatic flatcar, and the travel mechanisms circulate or reciprocate on rectangular rails so that the vehicle to be inspected is smoothly transmitted through the scanning passage. However, the automatic flatcar has following disadvantages: it has to bear total weight of the vehicle to be inspected including the cargo. In addition, the automatic flatcar has a large vehicle body with complex structure, which leads to high cost and maintenance fees.
On the other hand, Chinese Patent No.CN200310100184.0 discloses a trailer for a radiation imaging trailer system. The trailer comprises a vehicle frame, vehicle wheels and turning plate mechanism etc. During working, the trailer only drags front wheels of the vehicle to be inspected, and the rear wheels follow accordingly. There is climbing slope and a declining slope at both ends of the vehicle frame, and a turning plate mechanism on the vehicle frame. During inspection, the turning plate abuts against the front wheels of the vehicle to be inspected, and the vehicle to be inspected is dragged through the scanning passage by the trailer. According to the solution disclosed therein, when the vehicle to be inspected runs away from the trailer, since, on one hand, the turning plate is opened, it may scrap the chassis, oil tank etc. at the bottom of the vehicle to be inspected. On the other hand, since the climbing and declining slopes are provided on the trailer, the length of the trailer is not enough for structural restraints, for the vehicle to be inspected having longer wheelbase, the front wheels has left the trailers whereas the rear wheels thereof has not left the trailers yet during unloading of the vehicle to be inspected, which may arouse phenomena as vehicle riding over the trailer. In addition, this may also leads to the chassis to be inspected and the bottom attachments being scrapped by the trailer easily, thus the vehicle to be inspected is damaged, which may further influence the normal working of the radiation imaging system. Therefore, the invention thereof reduces the reliability of the system when used for the radiation imaging system. Especially, the invention is not adapted for trailing heavily loaded vehicle with low chassis and long wheelbase.
In view of the above disadvantages in the conventional art, it is an object of the present invention to provide a trailer system for inspection system trailing vehicle to be inspected with various loads safely through a scanning passage etc. The trailer system can bear heavy load while maintaining strength and rigidity thereof.
Another object of the invention is to provide a radiation imaging inspection system using the trailer system for inspecting a vehicle, the inspection system thereof can harmlessly undertake radiation imaging inspection for the vehicle to be inspected using said trailer system.
Additional aspects and/or advantages of the invention will be thoroughly understood with reference to the description hereafter in combination with accompanying figures, or learned by practice of the invention.
The object of the invention is achieved by providing a trailer system for inspecting a vehicle, comprising:
a trailer having a vehicle body, the trailer bearing a vehicle to be inspected;
a turning plate mechanism rotatably provided on an upper surface of the trailer for abutting against wheels of the vehicle to be inspected halting on the trailer; and
a turning plate rotation driving mechanism provided on the trailer for driving the turning plate to turn toward the upper surface of the trailer.
According to an aspect of the invention, the vehicle body has a vehicle frame.
According to an aspect of the invention, the trailer system further comprises a floor auxiliary device provided opposing to the trailer in a running direction of the vehicle to be inspected.
According to an aspect of the invention, the turning plate rotation driving mechanism comprises a linkage device with an end thereof connected to the turning plate mechanism; an actuating device with an end thereof attached to the other end of the linkage device to drive the linkage device when the actuating device is applied with external force so that the turning plate mechanism is rotated.
According to an aspect of the invention, the linkage device comprises a chain connected to the turning plate mechanism.
According to an aspect of the invention, the actuating device comprises: a guiding rod, with an end thereof connected to the chain; a spring fitting over the guiding rod at a side near the floor auxiliary device, and elastic force from the spring straining the guiding rod before the guiding rod is pressed; and a bumping shaft coupled with the guiding rod so that the force applied on the guiding rod is counteracted when the bumping shaft is applied with external force, which leads to the turning plate mechanism rotating toward the upper surface of the trailer.
According to an aspect of the invention, the floor auxiliary device comprises a bumping block provided at a position on the floor auxiliary device which is opposed to the guiding rod.
According to an aspect of the invention, the turning plate rotation driving mechanism comprises a turning plate brake position adjusting device for adjusting height and angle of the turning plate abutting against the front wheels halting on the trailer.
According to an aspect of the invention, the turning plate brake position adjusting device is an adjusting bush fitted over the guiding rod, with an end thereof abutting against the spring to adjust the brake height and angle of the turning plate mechanism by the adjustment of the tension degree of the spring.
According to an aspect of the invention, the vehicle frame comprises a positioning recess provided in a running direction of the vehicle to be inspected facing away the turning plate mechanism, to be coupled with the turning plate mechanism for positioning the front wheels of the vehicle to be inspected.
According to an aspect of the invention, the turning plate mechanism comprises a turning plate pivotably attached to the vehicle body.
According to an aspect of the invention, the height at both ends of the vehicle frame are higher than that at the middle portion to form a concave structure, so that the vehicle to be inspected is not scrapped by the middle portion.
Thus, when the vehicle to be inspected is trailed by the trailer for inspection, the lower middle portion is the main bearing portion of the trailer.
According to an aspect of the invention, the floor auxiliary device comprises a declining slope device provided at a side toward exit direction of the trailer by a certain distance.
According to an aspect of the invention, the vehicle body further comprises wheel set units provided at both sides of the vehicle frame.
According to an aspect of the invention, the vehicle body has four wheel set units.
According to an aspect of the invention, each wheel set unit comprises: a structural member to be engaged to the vehicle frame; and the wheel is provided on the structural member. Thus, according to the above description, the wheel set unit can be separately assembled, then the wheel set unit is integrally formed with the vehicle frame, the other units can be positioned integrally by the mechanical machining surface of the vehicle frame. And a structure with separate units whereas integrally positioned is achieved, which further reduces the height of the vehicle body and easiness of disassembly and maintenance.
According to an aspect of the invention, there is wheel flange formed at the inner side of the wheel in the wheel set unit for guiding during the running of the trailer.
According to an aspect of the invention, the wheel set unit can be independently installed. Thus, the strength and rigidity of the trailer is ensured and the assembly is convenient.
According to an aspect of the invention, the floor auxiliary device further comprises an auxiliary supporting member provided at lower part of the vehicle frame corresponding to the abutting position of the trailer, when the rear axis of the vehicle to be inspected passes by the trailer, the height of the auxiliary supporting member can provide support when the vehicle frame deforms.
According to an aspect of the invention, the supporting height of the auxiliary supporting member is adjustable.
According to another aspect of the invention, a radiation imaging inspection system is provided, comprising an accelerator, a detector, an image acquisition device, a scanning device, an operation and inspection subsystem, and a trailer system for inspecting a vehicle according to an aspect of the invention, the trailer system comprising: a trailer having a vehicle body, the trailer bearing a vehicle to be inspected; a turning plate mechanism rotatably provided on an upper surface of the trailer, for abutting against wheels of the vehicle to be inspected halting on the trailer; and a turning plate rotate driving mechanism provided on the trailer for driving the turning plate to turn toward the upper surface of the trailer.
Meanwhile, according to above solution, additional features as follows can be provided: since the declining slope fixed at the exit position has a certain length, vehicle striding over the trailer can be avoided otherwise the bottom chassis may be damaged accordingly.
Compared with conventional art, it can be found that the present invention has simple design and configuration, which not only reduces the height of the trailer but also ensures the strength and rigidity of the trailer, and thus the vehicle to be inspected can pass special detecting facilities, such as a scanning passage, safely without being scrapped or damaging the chassis of the vehicle to be inspected and the attachments thereof.
Further disclosure, objects, advantages and aspects of the present invention may be better understood by those skilled in the relevant art by reference to the following description of embodiments taken in conjunction with the accompanying drawings, which are given by way of illustration only, and thus are not limitative of the present invention, and in which:
Above and other aspects of features of the present invention will be become readily apparent with preferred embodiment and referenced to accompany drawing by a detail description hereinafter, wherein the same reference numerals refer to the same elements throughout the specification.
Meanwhile, in the following embodiment, although a case in which the trailer system for inspecting a vehicle is used in vehicle radiation imaging inspection is described in detail, it is appreciated for a person skilled in the art that the present invention can be applied to other related vehicle inspection without deviating from the scope and the spirit of the present invention.
With reference to
The vehicle body comprises a vehicle frame 1, a turning plate mechanism 2, a positioning recess 3 and a wheel set unit 7 (not shown in
The floor auxiliary device comprises a declining slope 5, an auxiliary supporting member 6 (as shown in
The declining slope 5 is fixed at an exit position, i.e., the declining slope 5 is provided at a side of the trailer toward the exit position by a certain distance. Of course, the distance can be appropriately adjusted as required by circumstances. Since the declining slope has a certain length, the vehicle riding over the trailer that may lead to bottom scrapping is avoided.
The height at both ends of the vehicle frame 1 are higher than that at the middle portion to form a concave structure, so that the vehicle to be inspected is not scrapped by the middle portion. Meanwhile, the vehicle frame 1 supports the vehicle to be inspected on its upper surface.
The wheel set unit 7, the auxiliary supporting member 6 in the trailer system for vehicle inspection according to an embodiment of the invention will be further described in detail with reference to
As shown in
As shown in
Further from
The turning plate mechanism 2 of the present invention will be described with reference to
The turning plate mechanism 2 comprises a turning plate 12, a chain 13, a guiding rod 14, an adjusting bush 15, a spring 16, a bumping shaft 17 and a hinge 18 etc. The turning plate mechanism 2 is configured to adjust the height and angle of the raised turning plate 12 for abutting against the front wheels of the vehicle to be inspected. The adjusting bush 15 is configured to adjust the height and angle of the turning plate 12 abutting against the front wheels of the vehicle to be inspected. It is obvious for those skilled in the art that the adjusting bush 15, used as a turning plate brake position adjusting device, can be substituted by other adjusting means for the adjustment of the angle and height of the turning plate 12. For example, the adjusting bush 15 can be an angle actuating mechanism provided neighboring the turning plate 12 or a pivot connecting member having a predetermined rotating angle. The above example of the adjusting bush 15 is only for illustration purpose rather than for limitation. The adjusting bush 15 is fitted over the guiding rod 14, with an end thereof abutting against the spring 16 so that the brake height and angle of the turning plate 12 can be adjusted by the tension degree of the spring 16.
The turning plate 12 can be connected with the vehicle body 1 with the hinge 18. However, the connection thereof is not limited to the hinge 18, and the rotatable connection thereof can be implemented in other connecting manner. The chain 13 is connected to the turning plate 12 in a manner such as pin connecting, sliding connection, rolling connection etc, but not limited thereto.
When there is no external force, the spring 16 is compressed, the guiding rod 14 tenses the chain 13 and the turning plate 12 raises. It should be noted that the guiding rod 14 is only an exemplary structure for linking with the turning plate 12. The present invention is not limited thereto. Any connecting member that may implement the falling down of the turning plate 12 when the vehicle to be inspected passes can substitute the guiding rod 14.
When the vehicle to be inspected is loaded, the front wheels of the vehicle to be inspected are driven onto the trailer. The wheels press the turning plates 12 to a horizontal level against the elastic force. After the wheels reaches the positioning recess 3 of the vehicle frame 1, the turning plate 12 raises under the function of the spring 16. When the trailer reaches the unloading position, the bumping shaft 17 is acted upon by the bumping block 4 on the floor for further compressing the spring 16, the chain 13 relaxes, and the turning plate 12 is substantially in a free state. When the front wheels of the vehicle to be inspected exit the positioning recess 3, the turning plate 12 falls naturally without bumping against the chassis of the vehicle to be inspected and the attachment thereof. When the vehicle to be inspected is driven away, no external force is applied on the guiding rod 14, and the spring 16 tries to recover the elastic deformation. When the guiding rod 14 strains the chain 13 by a pulling force, the turning plate 12 raises, that is, when the trailer left the exit position moving toward the inlet direction, the turning plate 12 automatically turns under the elastic force of the spring 16.
In an embodiment of the invention, the auxiliary supporting member 6 is provided at the exit side of the inspection passage, i.e., the position where the trailer halts, for better description of the structure, function and effect of the present invention. Preferably, the gap between the upper working surface of the auxiliary supporting member 6 and the lower surface of the vehicle frame 1 can be further calculated in a precise manner. After the inspection of the vehicle to be inspected, such as scanning, the trailer drags the vehicle to be inspected halt just above the auxiliary supporting member 6. When the rear shaft of the vehicle to be inspected passes through the trailer, since the rear shaft is relatively heavier, the vehicle frame 1 is deflected to an extent that the bottom of the vehicle frame 1 contacts with the auxiliary supporting member 6, and the weight of the rear shaft is transmitted to the floor by the auxiliary supporting member 6. Thus, the deformation of the vehicle frame 1 is reduced and the bearing capability of the trailer is enhanced.
The concrete operation of the invention will be described with reference to the above concrete structure of the trailer system for inspecting the vehicle according to an embodiment of the invention, and the appended figures.
Normally, the trailer is anchored at the loading side, and the turning plate 12 is opened at this time. Then, the vehicle to be inspected runs onto the trailer and is positioned in the positioning recess 3, and the whole system is prepared to be ready. Then the driving system of the trailer starts to work, the turning plate 12 abuts against the front wheels of the vehicle to be inspected preventing the vehicle to be inspected from moving. Under this state, the trailer passes through inspection device or apparatus such as the scanning passage. After the predetermined inspection such as scanning, the trailer runs to unloading position. At this time, the auxiliary supporting member 6 is placed under the trailer, the bumping block 4 on the declining slope 5 abuts against the bumping shaft 17 of the turning plate mechanism 2 on the trailer, so that the spring 16 is further compressed, and the tension force of the turning plate 12 is released to be in a free state. At this time, the vehicle to be inspected can be driven away from the inspection device or apparatus. When the rear shaft of the vehicle to be inspected passes the trailer, the auxiliary supporting member 6 can prevent the vehicle from generating larger deflection to ensure the passing of the heavily loaded vehicle whilst the turning plate 12 falls naturally when the front wheels left. When the trailer exits from the exit anchoring position, the turning plate 12 opens again under the function of the spring 16, then the trailer returns to the original loading position for next inspection.
It can be found from the description of the embodiment of the invention that the turning plate rotate driving mechanism is implemented by the chain 13, the guiding rod 14, the spring 16, the bumping shaft 17 and the bumping block 4. However, the present invention is not limited thereto since it is only an illustrative embodiment of the invention. And it can be substituted by other linkage device and actuating device implementing the turning plate mechanism. For example, the linkage mechanism can be a hydraulic actuating circuit, a gas actuating circuit or a rotating motor. The actuating device can be the combination of the bumping shaft and the bumping block, or a proximity switch or any other device that can sense signal indicating that the trailer reaches the unloading position, and the device thereof transmit the signals to the linkage device which further change the state of the turning plate.
In all, the trailer system for inspecting the vehicle according to the invention can be applied to every system for inspection and measurement etc. especially to radiation imaging inspection system widely used customers, civil airport, and the railway station system. The radiation imaging inspection system comprises an accelerator, a detector, an image acquisition device, a scanning device and an operation and inspection subsystem. Since the components in the radiation imaging inspection system are widely used in the conventional art, the detailed description thereof is omitted for clarity purpose.
In addition, the present invention can also be applied to conditions such as cargo transporting, cargo vehicle weighting etc rather than only limited to inspection, which is also fallen into the protection scope of the invention.
While the embodiments of the present invention have been described by way of examples taken in conjunction with the accompanying drawings, it should be appreciated that modifications, additions and variations to and from the above described embodiments may be made without deviating from the scope of the present invention which is defined by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
200610113649.X | Oct 2006 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2007/002924 | 10/11/2007 | WO | 00 | 3/28/2008 |