1. Field of the Invention
The present invention relates generally to methods, systems and apparatus for controlling trains traveling in a track network made up of multiple tracks with signals associated with portions of the track and, in particular, to a system and method of controlling a train by predictively enforcing signal aspects as the train is moving through the track network.
2. Description of Related Art
As is known in the art, train control systems are used for monitoring, tracking and operating trains traversing tracks throughout a track network. In order to make appropriate train control decisions regarding how the train should be operated, whether manually, automatically or semi-automatically, important information and data must be obtained. In addition, and in order to provide for safe traffic control and avoid accidents or collisions, signals are provided throughout the track network, and each signal is typically associated with a block or section of track. The aspects of these signals are normally generated by the wayside signals and communicated to the train, where some signal or other indication is provided to the train operator regarding upcoming track signal aspects and track status.
In one example of the prior art, certain wayside signals, e.g., permissive signals, are positioned along the track, and the portion of track may be in a territory where cab signals can be obtained or generated. These cab signals (or on-board signals) provide the current wayside signal indication, and often provided in a territory equipped for such operation where wayside signals are positioned along the track. Various mechanisms and communication systems may be provided or used to transmit the signal indication or aspect from the upcoming wayside signal to the train.
Normally, automatic cab signal systems are implemented in a territory equipped with track circuits for train detection, including logic controllers that can determine the proper signal indication to display and provide for communication between adjacent logic controllers via the track rails. In addition, the locomotives or trains are equipped to receive indications from the track rails, and indicator units displaying the signal indications to the train engineer or operator, such as via a visual display or the like. A permissive signal is a signal where the “stop” indication means “stop and proceed at restricted speed.” Usually identified by a number plate, some permissive signals also have a plate with a letter “G,” indicating that the train may pass a signal having this “stop” aspect without stopping, but at restricted speed. Further, this “stop” aspect or indication may also be an absolute signal that requires the operator stop the train and proceed only with authority from dispatch.
It should be noted that many, but not all, cab signal-equipped territories include wayside signal heads of the color-light variety. In such systems: (1) a “clear” signal displays green and indicates that it is safe to proceed; (2) an “advance approach” signal is flashing yellow and indicates that the train may proceed but should be prepared to stop at the second upcoming wayside signal; (3) an “approach” signal is solid yellow, and indicates that the train can proceed but should be prepared to stop before any part of the train or engine passes the next signal; and (4) a “stop and proceed” signal is red, and indicates that the train should stop before any part of the train or engine passes the signal, and should then proceed at restricted speed to the next signal.
These wayside signal indications or aspects have corresponding signal indications or aspects in the cab or in an on-board location. In particular, known cab signals include: (1) a “restricting” signal that is half red and half yellow and indicates that the train should proceed at restricted speed; (2) an “approach” signal that is solid yellow and indicates that the train can proceed, but should be prepared to stop before any part of the train or engine passes the next signal; (3) an “advance approach” signal that is half yellow and half green and indicates that the train can proceed, but should be prepared to stop at the second signal; and (4) a “clear” signal that is solid green and indicates that the train may proceed as normal.
In operation and under some conditions, a train may be following another train, and can encounter a sequence of signals indicating “approach,” “advance approach,” “approach,” etc., which tends to lulls the train operator into a lower state of vigilance. After encountering a number of these “approach”/“advance approach” cyclical indications, the train may next encounter a signal indicating “stop and proceed.” One typical reason for this “stop and proceed” signal is that another train is occupying the next, upcoming track circuit or block. This problem is further exacerbated in cab signal territory, where in certain scenarios the “approach” indications will upgrade to the less restrictive “advance approach” signal indication. When the operator is lulled into a lower state of vigilance, he or she may not be operating the train in an appropriate manner to comply with the next, upcoming wayside signal aspect, e.g., “stop and proceed.” Therefore, due to this diminished state of vigilance, accidents or collisions may occur between trains (or other similar noncompliance issues may arise with respect to the next, upcoming signal).
In
In
Finally, in
In another example, and as illustrated in
In
This sequence of events may repeat a number of times, with train TR1 cab signal system alternatively indicating “advance approach,” “approach,” “advance approach,” “approach,” etc. Further, it is this sequence of events that may cause the operator of the train TR1 to become complacent. In particular, the crew expects train TR2 to continue moving, and therefore expects the signal indication in train TR1 cab signal system to continue cycling between “approach” to “advance approach.”
However, and as illustrated in
There are available different systems and methods for communicating with wayside equipment implementing safety features and controlling trains as they travel through the track network. For example, one or more of the following patents/publications describe train monitoring, control and/or safety systems or functions for use in operating a train in a train network: U.S. Pat. Nos. 7,236,860; 7,036,774; 6,996,461; 6,957,131; 6,903,658; 6,865,454; 6,863,246; 6,853,888; 6,845,953; 6,824,110; 6,609,049, all to Kane et al.; U.S. Pat. No. 6,688,561 to Mollet et al.; U.S. Pat. No. 5,452,870 to Heggestad; U.S. Pat. No. 6,112,142 to Shockley et al.; U.S. Pat. No. 4,196,412 to Sluis et al.; and Publication Nos.: 2006/0080009 to Kane et al.; 2006/0015224 to Hilleary; 2005/0110628 to Kemwein et al.; 2004/0182970 to Mollet et al.; and WO 2005/066731 to Kane et al.
These prior art systems and methods exhibit various drawbacks and deficiencies. Further, many of these prior art systems are amenable to further augmentation or beneficial, functional enhancements in order to provide increased vigilance and maintenance of safe conditions at various portions along the track in the track network. In addition, there remains a need in the art for increasing operator vigilance, thus enhancing the safety of trains traveling within the track network and for providing protection of the operators, crew, pedestrians, motorists, etc.
It is, therefore, an object of the present invention to provide a method and system for controlling a train that overcomes the drawbacks and deficiencies in the art of train control systems and the like. It is another object of the present invention to provide a method and system for controlling trains for predictively enforcing a stop for a train traveling in a track network and based upon signal aspect information. It is a further object of the present invention to provide a method and system for controlling trains that enhances the safety of trains traveling in a track network by enforcing or braking trains in certain situations. It is yet another object of the present invention to provide a method and system for controlling trains that protects against the train operator incorrectly assuming or guessing the signal aspect of an upcoming signal.
Therefore, according to the present invention, provided is a train control system for controlling at least one train traveling in a track network, where the track network includes at least one track having at least one signal associated with a portion of the track. The system includes an on-board track database that includes train data, track network data, track data and/or signal data. A positioning system determines position data directed to a position of the at least one train within the track network. An on-board control system is provided and programmed to: (i) receive position data from the positioning system and signal data from the track database; and (ii) based upon at least one of the train data, track network data, track data, position data, signal data, train control data, authorization data and/or signal aspect data, automatically brake the train prior to encountering a next, upcoming signal, unless: (a) signal aspect data indicates that it is safe to proceed; (b) specified authorization data is received; or (c) specified train control data is received.
According to the present invention, also provided is a method for controlling at least one train traveling in a track network, where the track network includes at least one track having at least one signal associated with a portion of the track. The method includes: determining train data, track network data, track data and/or signal data; determining position data directed to a position of the at least one train within a track network; and based upon train data, track network data, track data, position data, signal data, train control data, authorization data and/or signal aspect data, automatically brake the train prior to encountering a next, upcoming signal, unless: (a) signal aspect data indicates that it is safe to proceed; (b) specified authorization data is received; or (c) specified train control data is received.
In another aspect of the present invention, provided is a train control system for predictively enforcing a stop for at least one train traveling a track network having at least one track with at least one signal associated with a portion of the track. The system includes an on-board control system programmed to: (i) receive train position data and signal data; and (ii) based upon train data, track network data, track data, position data, signal data, train control data, authorization data and/or signal aspect data, automatically stop the train prior to encountering a next, upcoming signal, unless: (a) signal aspect data indicates that it is safe to proceed; (b) specified authorization data is received; or (c) specified train control data is received.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
It is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention.
According to the present invention, provided is a method and system 10 for controlling at least one train TR traveling in a track network TN. The track network TN includes or is made up of multiple interconnected tracks T, and wayside signals S are associated with specific portions, e.g., blocks, of track T. For example, such portions of the track T are usually referred to as blocks, sections or circuits, and the associated signal S is positioned at the beginning of the block and provides information, aspects or indications related thereto.
It should be noted that the term “aspect” when used in connection with “signal aspect data” specifically includes any type, configuration and format of information representing the condition or state of the signal itself or an indication of an action to be taken by an operator based upon the state or condition of the upcoming section of track T. For example, the “aspect” may be a color or pattern of signal lamps positioned at or near the track T. Further, this “aspect” may be an indication of the action an operator should take in connection with the train TR, e.g., “stop and proceed,” etc, which is directly related to the upcoming section of track T. Accordingly, in one embodiment, this “aspect” is associated with the signal state or condition, which represents the state or condition of the upcoming section of track T. In another embodiment, this “aspect” is an indication of an action to be taken by the operator (or automatically by an onboard control system), and, again, this action is directly associated with the state or condition of the upcoming section of track T. All such information and data is included in connection with the “signal aspect data,” as used herein.
As is known in the art, and as discussed above in detail, the indication or aspect associated with the wayside signal S provides required information and data for making control decisions regarding the train TR as it approaches this next, upcoming block or portion of track T. The signal aspect or indication can be communicated to the train TR in a variety of known manners. For example, and as illustrated in
As is also known in the art, in certain territories, the signal indication or data is provided directly to the cab of the train TR. Regardless, the information and signal aspect with respect to the upcoming blocks or portions of track T are provided to the operator of the train TR to provide for the safe operation and handling of the train TR, and similar control decisions. However, even when the information and data regarding the signal aspect for the upcoming portion of track T is correct and appropriately communicated to the train TR, and based upon the nature of a system under human control and manual operation, situations arise that lead to complacency and other human error. Such a situation has been discussed above, and is illustrated in
The system 10 of the present invention can be implemented and utilized to avoid such situations, while still allowing the train TR to be operated by the human engineer or crew under specific conditions. Accordingly, the present method and system 10 is not focused upon the automatic control of the train TR during normal operation throughout the track network TN, and instead is directed to specific situations where operator vigilance may become reduced, which may result in non-compliance with an upcoming aspect or indication of the next, upcoming signal S.
An exemplary embodiment of the system 10 is illustrated in schematic form in
The information and data included in the on-board track database 12 may be generated internally by the train TR or otherwise provided to the train TR via other sources, e.g., from the central dispatch system CD, directly from the wayside signal S, in a hardwired form (via the rails), in a wireless form from the wayside signal S or central dispatch system CD, etc. Accordingly, the data fields and information in the track database 12 can be updated through a variety of means, and this data can be dynamically updated or updated in batch form from communications through the central dispatch system CD.
In order to obtain data from the wayside signal S or central dispatch system CD, and in one non-limiting embodiment, the system 10 includes a receiver 14. The type of receiver 14 depends upon how the information and the data for populating the track database 12 is obtained, e.g., wireless, through the rails, etc. However, it is envisioned that any such receiver 14 is appropriate of picking up or otherwise obtaining a signal (or the signal data) from the wayside signal S, as well as any other data or information regarding the train TR, the track T, the track network TN, etc. from the central dispatch system CD. Of course, and as discussed, some of this information, e.g., train data, track network data, track data, may be pre-populated in the track database 12 and may not necessarily be required to be dynamically updated through information received at the receiver 14.
The system 10 of the present invention also includes a positioning system 16 for determining position data directed to a location of the train TR within the track network TN. This positioning system 16 may be a Global Positioning System (GPS) or other similar system configured or adapted to determine and provide the estimated position of the train TR on the track T in the track network TN.
The system 10 also includes an on-board control system 18. This on-board control system 18 is programmed, configured or adapted to receive the position data from the positioning system 16, as well as signal data from the track database 12. Further, and based upon the train data, track network data, track data, position data, signal data, train control data, authorization data and/or signal aspect data, the on-board control system 18 is programmed, configured or adapted to automatically brake the train TR prior to encountering a next, upcoming signal S. In particular, and in order to brake the train TR, the on-board control system 18 is in communication with a brake interface 20, which is able to implement the “brake” or “stop” command from the on-board control system 18 and enforce a complete stop of the train TR.
However, it should be noted that the system 10 of the present invention does not automatically stop the train TR in every situation, since, as discussed above, the goal of the present invention is to permit the human operator to have as much control over the train TR as possible. Accordingly, the train TR is not automatically braked or stopped if any one of three conditions is met: (1) the signal aspect data for the next, upcoming signal indicates that it is safe for the train TR to proceed; (2) specified authorization data is received; or (3) specified train control data is received. Accordingly, if the appropriate data and information is received by the on-board control system 18 prior to the train TR reaching the threshold where the train TR would need to be stopped (such that no part of the train TR or engine enters the next portion of track T), and any one of the three above-described conditions are met, the train TR will not be automatically braked and will be allowed to proceed.
The signal data used in making the appropriate control decisions within the context of the present system 10 can be a variety of signal types, such as a cab signal S, a wayside signal S, a permissive signal S, an absolute signal S, a monitored signal S, an unmonitored signal S, a signal S associated with a control point, etc. Based upon the signal data obtained through any of these signals S, the train control system 10 of the present invention enforces or brakes the train TR to a complete stop in an automatic manner, unless certain other appropriate data points are obtained or other actions are undertaken by the operator.
In one preferred and non-limiting embodiment, the on-board control system 18 is further programmed, configured or adapted to receive or generate cab signal aspect data, and set the signal aspect data for an upcoming wayside signal S to “stop and proceed” (where the operator must fully stop the train TR and then may proceed) or “stop” (wherein the train operator must fully stop the train TR and may only proceed with authority from dispatch). For example, if the current cab signal indication is “approach” or “restricting,” and the train TR is approaching an unmonitored wayside permissive signal S (which is set or assumed to be indicating “stop and proceed”), the system 10 will predictively enforce a “stop and proceed” at the location of the wayside signal S. Further, it is also envisioned that the system 10 will predictively enforce a “stop,” where only a direct communication from dispatch will permit the operator to safely proceed. In particular, the system understands the location of train TR via the position data from the positioning system 16, as well as the location of the upcoming wayside signal S via the signal data and the track database 12 (which includes the location of these wayside signals S). Accordingly, and since the wayside signal S is unmonitored, regardless of the cab signal S, the system 10 assumes the next, upcoming wayside signal S to be “stop and proceed,” unless the various conditions are met (as briefly discussed above and as described in greater detail hereinafter).
In this embodiment, the train TR will not be automatically braked if specified authorization data is received by or communicated to the on-board control system 18. Specifically, and as illustrated in
In the embodiment where the on-board control system 18 predictively enforces the signal aspect data of the upcoming wayside signal S to “stop,” the on-board control system 18 may require that the operator press a selectable portion 24 that indicates that appropriate authority has been received by the operator from central dispatch to proceed. Similarly, the on-board control system 18 may be configured to receive or intercept this communication or authorization directly from central dispatch or the central dispatch system CD, and act accordingly, i.e., permitting or preventing the train TR from proceeding.
In another embodiment, the on-board control system 18 may refrain from automatically braking the train TR based upon train control data (or, as discussed above, the receipt or processing of a communication of authority from central dispatch or the central dispatch system CD). In one preferred and non-limiting embodiment, train control data that indicates that the train TR has been appropriately stopped within a predetermined distance from the upcoming signal S may indicate to the on-board control system 18 that the train TR is being operated in a compliant manner, and the operator has not lost vigilance. Still further, the train control data indicating the operational speed of the train TR may also be used as a basis of deciding whether or not to automatically brake the train TR. For example, in some instances, a train TR is permitted to move through a “stop and proceed” signal S if the train TR has been fully stopped, and is proceeding at restricted speed thereafter through the signal S. Therefore, the on-board control system 18 may also refrain from automatically braking the train TR if the train control data indicates that the operator is operating the train TR at the appropriate specified or restricted speed within a predetermined distance from the upcoming signal S. It is also envisioned that the speed of the train TR can be monitored in a variety of situations and used as a basis for making train control decisions within the system 10 of the present invention.
In another embodiment, the system 10 is useful when operating in a track network TN where the tracks T are equipped with monitored, absolute signals, typically, accomplished through a code line interface. In this situation, when the train TR is approaching an absolute signal S known to be indicating “stop,” or if the signal aspect data is unknown or unavailable, the system 10 will predictively enforce a stop and automatically brake the train TR. However, and again, the on-board control system 18 may refrain from automatically braking the train TR if specified authorization data is received from the operator of the train TR, if signal aspect data indicates that it is safe to proceed, or if specified train control data is received. For example, the on-board control system 18 would enforce compliance with an absolute signal S indicating “stop,” but would not automatically brake the train if this indication changed and the information and signal data subsequently received by the receiver 14 and processed by the on-board control system 18 indicates that is now safe to proceed. Further, and as discussed above, if the operator appropriately stops the train TR within a predetermined distance of the upcoming, wayside signal S (and, normally, proceeds at restricted speed), no enforcement function will occur and the train TR would be allowed to proceed along its course. Also, and as discussed above, if an appropriate and specified authorization is received from the operator of the train TR, such as through the input data, the on-board control system 18 also refrains from automatically braking the train.
In another preferred and non-limiting embodiment, the system 10 may be used in signaled territory, where permissive signals S are equipped with signal monitors. If the train TR is approaching a permissive signal that is reporting or indicating “stop and proceed,” or is not reporting a valid indication, the system will predictively enforce a “stop and proceed” at the location of the wayside signal S. However, in one instance, if the train control data indicates that the train TR has stopped within a specified distance in advance of the wayside signal S (and, preferably, is proceeding at restricted speed), the system 10 will not automatically brake the train TR. Further, even if the train TR is approaching the signal S at restricted speed, and within a distance in advance of the wayside signal S, a query or other indication may be provided to the operator on a visual display device 22 asking whether the train TR has authorization to proceed without stopping. It should be noted that there are some cases where the train TR is permitted to pass a permissive wayside signal S indicating “stop and proceed” without stopping. If the operator provides appropriate authorization information data to the on-board control system 18, enforcement will not occur.
The authorization data generated by the operator can be obtained in a variety of manners. For example, the operator may obtain specific authorization from the central dispatch system CD permitting the train TR to proceed without stopping prior to encountering the next, upcoming wayside signal S and entering the next portion of track T. Alternatively, the operator may obtain specific authorization to proceed after stopping at an absolute signal indicating “stop.” In addition, and based upon the relative distances and speed of operation, in some case, the authorization data or indication generated by the operator may be based upon the operator's visual acuity, i.e., looking ahead and monitoring the situation using his or her eyes. In either case, the system 10 will provide a prompt or query (when appropriate) requesting whether the operator has obtained or can provide authorization to proceed through the signal S without first stopping.
The prompt or query provided to the operator on the visual display device 22 may only be provided or displayed after the on-board control system 18 processes appropriate information and data to ascertain whether the prompt or display is necessary. For example, if data indicating that the train TR has been stopped within a predetermined distance of the upcoming signal S and/or data indicating that the train TR is operating at a specified speed within a predetermined distance from the upcoming signal S is received, a prompt or query requesting authorization is unnecessary. However, based upon the configurable aspects of the system 10 of the present invention, any of these different situations can be addressed through the appropriate programming on the on-board control system 18, which assists in ensuring effective operation of the train TR and maximizing safety and precautions. Accordingly, the system 10 may enforce a “stop and proceed” indication with minimum crew interaction, and may permit the train TR to continue without stopping when the crew or operator appropriately interacts in the system 10.
The timing of providing the prompt or query to the operator may be adjusted for effective implementation. In addition, whether or not to display such a prompt or query is adjustable, and may include such a display regardless of whether or not the train TR has been stopped and/or is proceeding at restricted speed. Further, and in a situation where the train is proceeding at normal speed, the prompt or query would be displayed or presented to the operator according to a calculated braking curve or other algorithm that provides both time for the operator to respond to the prompt or query, as well as time to effectively and completely halt train TR movement prior to any part of the train TR or engine passing the next, upcoming signal S. In addition, this prompt or query may be combined with audible or visual alarms or other forms or formats for gaining the attention and vigilance of the operator.
It is further envisioned that multiple or a series of prompts or queries can be provided in association with or in addition to a cab signal aspect displayed on the visual display device 22. For example, the visual display device 22 may present data to the operator indicating the status or aspect of the upcoming signal S, as well as when automatic braking will be implemented. For example, the visual display device 22 may display a message that the signal status is unknown, the signal requires a stop, the signal requires a speed reduction, etc. Further, the query or prompt may request that the operator press a key only after receiving authorization to proceed, and if a key is not pressed, i.e., specified authorization data is not received, the train TR will be automatically braked. Such an implementation may also be used when the train TR has been automatically braked to a complete stop, but the operator wishes to proceed. In other words, the operator may still need to interact with or otherwise provide some data input to the on-board control system 18 or else, after the train TR begins to move, and based upon the calculations, it will again be stopped prior to encountering the next, upcoming signal S.
With reference to
In this manner, the present invention provides a method and system 10 for controlling multiple trains TR traversing tracks T within a track network TN. The present invention predictively enforces a stop, and automatically brakes the train TR to a complete resting position, unless certain conditions are satisfied. In particular, the train TR is not automatically braked or stopped if the received signal aspect data indicates that it is safe to proceed, specified authorization data is obtained or specified train control data is obtained. Therefore, the train will only be automatically braked if the operator has, indeed, lost vigilance or other problems have arisen. However, the train TR is not automatically braked if appropriately controlled, based upon a change in signal aspect or appropriate authorization is received. Accordingly, and by using the system 10 of the present invention, safety is enhanced throughout the track network TN, and collisions and other hazardous situations are reduced or eliminated.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Number | Name | Date | Kind |
---|---|---|---|
4196412 | Sluis et al. | Apr 1980 | A |
5437422 | Newman | Aug 1995 | A |
5452870 | Heggestad | Sep 1995 | A |
6112142 | Shockley et al. | Aug 2000 | A |
6609049 | Kane et al. | Aug 2003 | B1 |
6688561 | Mollet et al. | Feb 2004 | B2 |
6824110 | Kane et al. | Nov 2004 | B2 |
6845953 | Kane et al. | Jan 2005 | B2 |
6853888 | Kane et al. | Feb 2005 | B2 |
6863246 | Kane et al. | Mar 2005 | B2 |
6865454 | Kane et al. | Mar 2005 | B2 |
6903658 | Kane et al. | Jun 2005 | B2 |
6957131 | Kane et al. | Oct 2005 | B2 |
6996461 | Kane et al. | Feb 2006 | B2 |
7036774 | Kane et al. | May 2006 | B2 |
7089093 | Lacote et al. | Aug 2006 | B2 |
7236860 | Kane et al. | Jun 2007 | B2 |
20040006413 | Kane et al. | Jan 2004 | A1 |
20040182970 | Mollet et al. | Sep 2004 | A1 |
20050110628 | Kernwein et al. | May 2005 | A1 |
20060015224 | Hilleary | Jan 2006 | A1 |
20060080009 | Kane et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
100316621 | Feb 2002 | KR |
1020040023786 | Mar 2004 | KR |
1020050001325 | Jan 2005 | KR |
100697303 | Mar 2007 | KR |
2005066731 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100063656 A1 | Mar 2010 | US |