Transceiver and radio frequency identification tag reader

Information

  • Patent Grant
  • 9460320
  • Patent Number
    9,460,320
  • Date Filed
    Tuesday, April 3, 2012
    12 years ago
  • Date Issued
    Tuesday, October 4, 2016
    7 years ago
Abstract
In a transceiver, on a top surface of a rectangular plate-shaped substrate, transmission radiating elements and receiving radiating elements are provided. The transmission radiating elements extend in the horizontal or lateral direction from the center of the substrate. The receiving radiating elements extend in the vertical or longitudinal direction from the center of the substrate. Inductors included in a matching feeding element are individually electromagnetically coupled to transmission-side feeding points that are inner end portions of the transmission radiating elements and receiving-side feeding points that are inner end portions of the receiving radiating elements. A transmission signal is transmitted with a wave polarized in the horizontal or lateral direction, and a signal having a vertical or longitudinal polarization direction is received.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to transceivers, and, more particularly, to a radio frequency identification tag reader used in an RFID (Radio Frequency Identification) system.


2. Description of the Related Art


Japanese Unexamined Patent Application Publication No. 2007-228254 and Japanese Unexamined Patent Application Publication No. 2006-238282 disclose radio frequency identification tag readers.


Japanese Unexamined Patent Application Publication No. 2007-228254 discloses a radio frequency identification tag reader including a circulator with which an antenna is shared for transmission and reception.



FIG. 1 is an overall schematic view of a radio frequency identification tag communication system disclosed in Japanese Unexamined Patent Application Publication No. 2007-228254. Referring to FIG. 1, a radio frequency identification tag communication system S includes an interrogator 100 and radio frequency identification tags T that are transponders for the interrogator 100. The radio frequency identification tag T includes a radio frequency identification tag circuit element To including an antenna 51 and an IC circuit 52. The interrogator 100 includes an antenna 1 for transmitting/receiving a signal to/from the antenna 51 included in the radio frequency identification tag circuit element To by radio communication, a high-frequency circuit 2 for accessing the IC circuit 52 included in the radio frequency identification tag circuit element To via the antenna 1 (performing reading or writing on the IC circuit 52), a signal processing circuit 3 for processing a signal read from the radio frequency identification tag circuit element To, and a control circuit 4.


Japanese Unexamined Patent Application Publication No. 2006-238282 discloses a radio frequency identification tag reader that uses different antennas (a transmission antenna and a receiving antenna) for transmission and reception.


However, when a circulator is used as disclosed in Japanese Unexamined Patent Application Publication No. 2007-228254, a transceiver is increased in size. On the other hand, when a transmission antenna and a receiving antenna are separately provided as disclosed in Japanese Unexamined Patent Application Publication No. 2006-238282, a predetermined spacing between these antennas is required to achieve the isolation between them and a transceiver is increased in size.


SUMMARY OF THE INVENTION

Preferred embodiments of the present invention provide a small transceiver capable of achieving isolation between a transmission side and a receiving side without using a circulator and a radio frequency identification tag reader including the transceiver.


A transceiver according to a preferred embodiment of the present invention includes a transmission radiating element that includes a feeding point and transmits a transmission signal in a first polarization direction, a receiving radiating element that includes a feeding point and receives a receiving signal in a second polarization direction orthogonal to or substantially orthogonal to the first polarization direction, a transmission feeding circuit coupled to the feeding point of the transmission radiating element, and a receiving feeding circuit coupled to the feeding point of the receiving radiating element.


The transmission radiating element and the receiving radiating element overlap so that the transmission radiating element and the receiving radiating element are orthogonal or substantially orthogonal to each other.


For example, the feeding point of the transmission radiating element and the transmission feeding circuit are electromagnetically coupled to each other, and the feeding point of the receiving radiating element and the receiving feeding circuit are electromagnetically coupled to each other.


For example, the transceiver further includes a transmission matching circuit connected to the transmission feeding circuit. For example, the transmission radiating element, the transmission feeding circuit, and the transmission matching circuit define a transmission antenna apparatus, and a frequency band in which a gain of the transmission antenna apparatus is obtained is determined by the transmission matching circuit.


For example, the transceiver further includes a receiving matching circuit connected to the receiving feeding circuit. For example, the receiving radiating element, the receiving feeding circuit, and the receiving matching circuit define a receiving antenna apparatus, and a frequency band in which a gain of the receiving antenna apparatus is obtained is determined by the receiving matching circuit.


For example, the transmission radiating element and the transmission feeding circuit define a transmission antenna apparatus, and a frequency band in which a gain of the transmission antenna apparatus is obtained is determined by the transmission feeding circuit.


For example, the receiving radiating element and the receiving feeding circuit define a receiving antenna apparatus, and a frequency band in which a gain of the receiving antenna apparatus is obtained is determined by the receiving feeding circuit.


For example, the transmission radiating element and the receiving radiating element are electric field emission-type radiating elements.


For example, the transmission radiating elements define a dipole antenna having two feeding points, the receiving radiating elements define a dipole antenna having two feeding points, and the transmission radiating elements and the receiving radiating elements are disposed so that the transmission radiating elements and the receiving radiating elements radially extend from the feeding points.


For example, one of the transmission radiating element and the receiving radiating element is an electric field emission-type radiating element, and the other one of the transmission radiating element and the receiving radiating element is a magnetic field emission-type radiating element.


For example, the transmission radiating element and the receiving radiating element are magnetic field emission-type radiating elements.


For example, the transmission radiating element and the receiving radiating element are loop-shaped antennas located at a substrate, and one of the transmission radiating element and the receiving radiating element defines a loop along with a via electrode disposed in the substrate.


A radio frequency identification tag reader according to a preferred embodiment of the present invention includes the transceiver. A communication target of the transceiver is a radio frequency identification tag including an integrated circuit to store information and an antenna to transmit information stored in the integrated circuit or receive information to be stored in the integrated circuit. The radio frequency identification tag includes a transmission signal generator configured to generate the transmission signal and a receiving signal processor configured to acquire information about the radio frequency identification tag from the receiving signal.


Since the isolation between a transmission side and a receiving side can be achieved with no circulator, a transceiver can be reduced in size.


Since there is no loss caused by a circulator or a directional coupler, a communication range in which communication with a radio frequency identification tag is available can be increased. When there is no need to increase a communication range, power consumption can be reduced by reducing transmission power.


Since a frequency band in which the gain of an antenna apparatus is obtained is determined by a matching circuit connected to a feeding circuit or a frequency band in which the gain of an antenna apparatus is obtained is determined by a feeding circuit, a transmission signal and a receiving signal are not changed regardless of the size and shape of a radiation plate. Accordingly, a transceiver can be further reduced in size.


Since transmission radiating elements define a dipole antenna having two feeding points, receiving radiating elements define a dipole antenna having two feeding points, and the transmission radiating elements and the receiving radiating elements are disposed to radially extend from the feeding points, the feeding points can be located in the center. This provides a simple feeding structure.


Since one of a transmission radiating element and a receiving radiating element is an electric field emission-type radiating element and the other one of them is a magnetic field emission-type radiating element, optimum communication can be performed in accordance with a distance from a communication (transmission/receiving) target.


The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an overall schematic view of a radio frequency identification tag communication system disclosed in Japanese Unexamined Patent Application Publication No. 2007-228254.



FIG. 2 is a block diagram of a radio frequency identification tag reader 101 according to a first preferred embodiment of the present invention.



FIGS. 3A and 3B are a plan view and an elevational view, respectively, illustrating the shapes of transmission radiating elements 11Ta and 11Tb and receiving radiating elements 11Ra and 11Rb and the positions of feeding points.



FIGS. 4A and 4B are a plan view and an elevational view, respectively, of a transceiver according to a second preferred embodiment of the present invention.



FIG. 5 is a cross-sectional view of a main portion of a transceiver according to a third preferred embodiment of the present invention.



FIG. 6 is a plan view of a transceiver according to a fourth preferred embodiment of the present invention.



FIGS. 7A and 7B are a plan view and a cross-sectional view, respectively, of a transceiver according to a fifth preferred embodiment of the present invention.



FIGS. 8A and 8B are a plan view and a cross-sectional view, respectively, of a transceiver according to a sixth preferred embodiment of the present invention.



FIG. 9 is a cross-sectional view of a transceiver according to a seventh preferred embodiment of the present invention.



FIG. 10 is a diagram illustrating the configuration of a radio frequency identification tag system according to an eighth preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
First Preferred Embodiment


FIG. 2 is a block diagram of a radio frequency identification tag reader 101 according to the first preferred embodiment of the present invention.


The radio frequency identification tag reader 101 includes a baseband circuit 14, a transmission/receiving circuit 13, a matching feeding element 12, transmission radiating elements 11Ta and 11Tb, and receiving radiating elements 11Ra and 11Rb.


The transmission/receiving circuit 13 includes a transmission circuit 13T and a receiving circuit 13R. The transmission circuit 13T amplifies the power of a transmission signal output from the baseband circuit 14 and supplies the transmission signal to the matching feeding element 12. The receiving circuit 13R outputs a receiving signal received via the matching feeding element 12 to the baseband circuit 14. The transmission/receiving circuit 13 includes a radio frequency IC chip (RFIC).


In this example, the matching feeding element 12 functions both as a matching circuit to achieve matching between the transmission circuit 13T and each of the transmission radiating elements 11Ta and 11Tb and as a matching circuit to achieve matching between the receiving circuit 13R and each of the receiving radiating elements 11Ra and 11Rb. Furthermore, the matching feeding element 12 also has a filtering function of suppressing an out-of-band interfering wave. The matching feeding element 12 preferably includes inductors L11, L12, L21, and L22 and capacitors C11, C12, C21, and C22. The inductors L11 and L12 are used to achieve electromagnetic coupling to the transmission radiating elements 11Ta and 11Tb, respectively. The inductors L21 and L22 are used to achieve electromagnetic coupling to the receiving radiating elements 11Ra and 11Rb, respectively. In this example, a balanced feeding circuit including two capacitors C11 and C12 and two inductors L11 and L12 and a balanced feeding circuit including two capacitors C21 and C22 and two inductors L21 and L22 are provided.



FIGS. 3A and 3B are a plan view and an elevational view, respectively, illustrating the shapes of the transmission radiating elements 11Ta and 11Tb and the receiving radiating elements 11Ra and 11Rb and the positions of feeding points. Referring to FIG. 3A, a position at which the matching feeding element 12 is disposed is represented by a two-dot chain line.


In this example, on the top surface of a rectangular plate-shaped substrate 30, the transmission radiating elements 11Ta and 11Tb and the receiving radiating elements 11Ra and 11Rb are provided. The transmission radiating elements 11Ta and 11Tb extend in the horizontal, or lateral direction from the center of the substrate 30. The receiving radiating elements 11Ra and 11Rb extend in the vertical, or longitudinal direction from the center of the substrate 30.


The inner end portions of the transmission radiating elements 11Ta and 11Tb are used as transmission-side feeding points FPt. The inner end portions of the receiving radiating elements 11Ra and 11Rb are used as receiving-side feeding points FPr. The inductors L11 and L12 are electromagnetically coupled to the transmission-side feeding points FPt, and the inductors L21 and L22 are electromagnetically coupled to the receiving-side feeding points FPr.


Since the transmission radiating elements 11Ta and 11Tb are subjected to balanced feeding from the matching feeding element 12, the transmission radiating elements 11Ta and 11Tb operate as a linear polarization dipole antenna. The receiving radiating elements 11Ra and 11Rb operate as a dipole antenna to receive a second linearly polarized signal whose direction is orthogonal to the linear polarization direction of the dipole antenna defined by the transmission radiating elements 11Ta and 11Tb.


Terminals Txin and Rxout of the matching feeding element 12 are connected to a radio frequency IC chip (not illustrated). For example, the radio frequency IC chip is mounted on the top surface of the matching feeding element 12.


A transmission signal is transmitted with a wave polarized in the horizontal, or lateral direction (a first polarization direction), and a receiving signal having a vertical, or longitudinal polarization direction a second polarization direction orthogonal to the first polarization direction) is received. That is, since the transmission signal and the receiving signal are orthogonal to each other, the isolation between them is achieved.


In the example illustrated in FIG. 3, different dimensions of radiation elements (e.g., different lengths of sides) are obtained in excitation directions of a transmission wave and a receiving wave. The reason for this is that a dimension in the excitation direction of a transmission wave and a dimension in the excitation direction of a receiving wave are determined in accordance with a transmission frequency and a receiving frequency that are different from each other. By setting the above-described dimension ratio, the gain of a transmission antenna and the gain of a receiving antenna can be made uniform.


Thus, since two antennas can be used in a limited footprint without a circulator, a small transceiver can be obtained.


The two inductors L11 and L12 in the matching feeding element 12 illustrated in FIG. 2 have opposite winding directions, and are therefore magnetically coupled to each other. Accordingly, magnetic fields generated at the two inductors L11 and L12 cancel each other, an electrode length required for the acquisition of a desired inductance value is increased, and the Q value is reduced. That is, the steepness of a resonance characteristic is reduced, and the frequency band can be therefore widened around the resonant frequency. The two inductors L21 and L22 also have opposite winding directions, and are therefore magnetically coupled to each other. Accordingly, like in the case of a transmission signal, in the case of a receiving signal, the frequency band can be widened around the resonant frequency.


Thus, even when the resonant frequencies of the radiating elements 11Ta, 11Tb, 11Ra, and 11Rb are higher than a usable frequency, that is, when the radiating elements do not have appropriate electrical lengths for a usable frequency, the matching between the transmission circuit 13T and each of the transmission radiating elements 11Ta and 11Tb and the matching between the receiving circuit 13R and each of the receiving radiating elements 11Ra and 11Rb are achieved. Accordingly, since the radiating elements have only to be large enough to obtain a predetermined gain, the entire size can be reduced.


Second Preferred Embodiment


FIGS. 4A and 4B are a plan view and an elevational view, respectively, of a transceiver according to the second preferred embodiment of the present invention. Referring to FIG. 4A, a position at which the matching feeding element 12 is disposed is represented by a two-dot chain line.


In this example, on the undersurface of the rectangular plate-shaped substrate 30, the transmission radiating elements 11Ta and 11Tb are provided. On the top surface of the substrate 30, the receiving radiating elements 11Ra and 11Rb are provided. The transmission radiating elements 11Ta and 11Tb extend in the horizontal, or lateral direction from the center of the substrate 30. The receiving radiating elements 11Ra and 11Rb extend in the vertical, or longitudinal direction from the center of the substrate 30.


The inner end portions of the transmission radiating elements 11Ta and 11Tb are used as the transmission-side feeding points FPt. The inner end portions of the receiving radiating elements 11Ra and 11Rb are used as receiving-side feeding points FPr. The inductors L21 and L22 in the matching feeding element 12 are electromagnetically coupled to the receiving-side feeding points FPr, and the inductors L11 and L12 in the matching feeding element 12 are electromagnetically coupled to the transmission-side feeding points FPt.


Thus, by disposing the transmission radiating elements 11Ta and 11Tb and the receiving radiating elements 11Ra and 11Rb on different surfaces of the substrate, it is possible to suppress and prevent unnecessary coupling around the feeding portions and improve the isolation between a transmission signal and a receiving signal.


Third Preferred Embodiment


FIG. 5 is a cross-sectional view of a main portion of a transceiver according to the third preferred embodiment of the present invention.


In this example, in the rectangular plate-shaped substrate 30, the transmission radiating elements 11Ta and 11Tb are provided. On the top surface of the substrate 30, the receiving radiating elements are provided. The transmission radiating elements 11Ta and 11Tb extend in the horizontal, or lateral direction from the center of the substrate 30. The receiving radiating elements 11Ra and 11Rb extend in the vertical, or longitudinal direction (the direction perpendicular to the plane of the drawing sheet) from the center of the substrate 30. In FIG. 5, one of these receiving radiating elements, the receiving radiating element 11Rb, is illustrated.


A reflective conductor 41 is disposed in substantially the entire area of the undersurface of the substrate 30. The interval between the reflective conductor 41 and each of the transmission radiating elements 11Ta and 11Tb and the interval between the reflective conductor 41 and each of the receiving radiating elements 11Ra and 11Rb are substantially equal to a quarter of the wavelength at a communication frequency in the substrate. Accordingly, the reflective conductor 41 operates as a reflective element, and the reflective element and the transmission radiating elements 11Ta and 11Tb provide directivity in a direction perpendicular to the substrate 30. Similarly, the reflective element and the receiving radiating elements 11Ra and 11Rb provide directivity in the direction perpendicular to the substrate 30. Therefore, an antenna gain in the direction perpendicular to the substrate 30 can be increased, and radiation in an unnecessary direction can be suppressed and prevented. That is, it is possible to adjust a communication range in accordance with the application of a radio frequency identification tag reader.


Fourth Preferred Embodiment


FIG. 6 is a plan view of a transceiver according to the fourth preferred embodiment of the present invention.


In this example, on the undersurface of the rectangular plate-shaped substrate 30, the transmission radiating elements 11Ta and 11Tb are provided. On the top surface of the substrate 30, a receiving radiating element 11R is provided. The receiving radiating element 11R has the shape of a rectangular loop. The transmission radiating elements 11Ta and 11Tb extend in the horizontal, or lateral direction from the center of the receiving radiating element 11R.


The inner end portions of the transmission radiating elements 11Ta and 11Tb are used as the transmission-side feeding points FPt. The start and end points of the receiving radiating element 11R are used as the receiving-side feeding points FPr.


The matching feeding element 12 represented by a two-dot chain line is mounted on the top surface of the substrate 30. The inductors in the matching feeding element 12 are electromagnetically coupled to the receiving-side feeding points FPr and the transmission-side feeding points FPt. Thus, the transmission radiating elements 11Ta and 11Tb operate as a dipole antenna, and the receiving radiating element 11R operates as a loop antenna.


The transmission radiating elements 11Ta and 11Tb may be disposed in the substrate 30, for example, at an inner layer thereof.


A loop antenna may be provided with a transmission radiating element, and a dipole antenna may be provided with receiving radiating elements.


Thus, by arranging each of the transmission radiating elements 11Ta and 11Tb and the receiving radiating element 11R orthogonal to each other, isolation between a transmission signal and a receiving signal is achieved.


The directivity of a dipole antenna and the directivity of a loop antenna are different. Accordingly, when different directivity patterns are required without changing the orientations of antennas with respect to the substrate 30, a communication state suitable for application can be obtained using a dipole antenna and a loop antenna.


Fifth Preferred Embodiment


FIGS. 7A and 7B are a plan view and a cross-sectional view, respectively, of a transceiver according to the fifth preferred embodiment of the present invention. Referring to FIG. 7A, a position at which the matching feeding element 12 is disposed is represented by a two-dot chain line.


In this example, the receiving radiating element 11R having the shape of a rectangular loop is provided in the substrate 30, for example, at an inner layer thereof. The receiving radiating element 11R operates as a receiving loop antenna.


On the top surface of the substrate 30, transmission radiating element electrodes 11Tc and 11Te are provided. On the undersurface of the substrate 30, a transmission radiating element electrode 11Td is provided. Transmission radiating element via electrodes 11Tv to connect the transmission radiating element electrodes 11Tc and 11Te on the top surface and the transmission radiating element electrode 11Td on the undersurface are arranged so that the transmission radiating element via electrodes 11Tv pass through the substrate 30 from the top surface to the undersurface.


The transmission radiating element electrodes 11Tc, 11Te, and 11Td and the transmission radiating element via electrodes 11Tv define a transmission loop antenna.


The receiving loop antenna and the transmission loop antenna overlap in plan view, and the loop surfaces thereof are orthogonal or substantially orthogonal to each other. Therefore, the isolation between a transmission signal and a receiving signal can be achieved.


Sixth Preferred Embodiment


FIGS. 8A and 8B are a plan view and a cross-sectional view, respectively, of a transceiver according to the sixth preferred embodiment of the present invention. Referring to FIG. 8A, a position at which the matching feeding element 12 is disposed is represented by a two-dot chain line.


In the transceiver according to the fifth preferred embodiment illustrated in FIG. 7, the receiving loop antenna defined by the receiving radiating element 11R is inside the transmission loop antenna defined by the transmission radiating element electrodes 11Tc, 11Te, and 11Td and the transmission radiating element via electrodes 11Tv. On the other hand, in the transceiver illustrated in FIG. 8, the transmission loop antenna defined by the transmission radiating element electrodes 11Tc, 11Te, and 11Td and the transmission radiating element via electrodes 11Tv is inside the receiving loop antenna defined by the receiving radiating element 11R. The configuration of this transceiver is preferably the same as that of a transceiver according to the fifth preferred embodiment except for this point.


Seventh Preferred Embodiment


FIG. 9 is a cross-sectional view of a transceiver according to the seventh preferred embodiment of the present invention.


The difference between this transceiver and the transceiver according to the sixth preferred embodiment illustrated in FIG. 8 is that the transmission radiating element electrode 11Td is disposed in the substrate 30 and a magnetic sheet 42 made of ferrite or magnetic metal is provided on the undersurface of the substrate 30. The configuration of this transceiver is preferably the same as the configurations described in the fifth and sixth preferred embodiments except for this difference.


By disposing the magnetic sheet 42, even when a metal body is close to the magnetic sheet 42, no eddy current is generated at the metal body and the reduction in the gains of the loop antennas can be prevented.


Eighth Preferred Embodiment


FIG. 10 is a diagram illustrating the configuration of a radio frequency identification tag system according to the eighth preferred embodiment of the present invention. This radio frequency identification tag system includes the radio frequency identification tag reader 101 described in the first preferred embodiment and a radio frequency identification tag 201. The radio frequency identification tag 201 includes a baseband circuit 24, a transmission/receiving circuit 23, a transmission/receiving feeding circuit 22, and a radiating element 21.


The radio frequency identification tag reader 101 transmits a wave for a preamble, a wave obtained by modulating a command bit stream, and an unmodulated wave in this order. The radio frequency identification tag 201 stores energy required for an initial operation when receiving the wave for a preamble, demodulates the subsequent command bit stream, interprets the demodulated command bit stream, and returns a response with a reflected wave when receiving the unmodulated carrier. The radio frequency identification tag reader 101 reads the response from the radio frequency identification tag 201, demodulates the response, interprets the demodulated response, and performs necessary processing.


In the above-described preferred embodiments, a transmission-side feeding circuit performs both the matching between a radiating element and a transmission circuit and the feeding of power to the radiating element. However, a feeding circuit and a matching circuit may be separately disposed. That is, a feeding circuit electromagnetically coupled to the radiating element may be disposed for a transmission signal, and a matching circuit may be disposed between the feeding circuit and the transmission circuit. Similarly, a feeding circuit electromagnetically coupled to a radiating element may be disposed for a receiving signal, and a matching circuit may be disposed between the feeding circuit and a receiving circuit.


The matching circuit may have various configurations. For example, the matching circuit may include an inductor and a capacitor. Alternatively, the matching circuit may include a single or a plurality of inductors.


The polarization directions of a transmission signal and a receiving signal preferably are orthogonal to each other in the above-described preferred embodiments, but may not necessarily be orthogonal (90°) to each other under the condition that the isolation between a receiving side and a transmission side can be achieved. That is, the polarization directions of a transmission signal and a receiving signal may be substantially orthogonal to each other.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. A transceiver comprising: a transmission radiating element including a feeding point and arranged to transmit a transmission signal in a first polarization direction;a receiving radiating element including a feeding point and arranged to receive a receiving signal in a second polarization direction orthogonal or substantially orthogonal to the first polarization direction;a transmission feeding circuit coupled to the feeding point of the transmission radiating element;a receiving feeding circuit coupled to the feeding point of the receiving radiating element;a transmission circuit configured to supply a transmission signal to the transmission feeding circuit; anda receiving circuit configured to receive a receiving signal via the receiving feeding circuit; whereinthe transmission radiating element and the receiving radiating element are disposed on a surface of a substrate or in an inner layer of the substrate, and arranged in a common plane or in adjacent planes that are parallel or substantially parallel to one another and parallel or substantially parallel to an upper surface of the substrate;the transmission radiating element and the receiving radiating element overlap each other in a plan view; andthe transmission radiating element is fixed so as to transmit the transmission signal while the receiving radiating element is fixed so as to receive the receiving signal.
  • 2. The transceiver according to claim 1, wherein the feeding point of the transmission radiating element and the transmission feeding circuit are electromagnetically coupled to each other, and the feeding point of the receiving radiating element and the receiving feeding circuit are electromagnetically coupled to each other.
  • 3. The transceiver according to claim 1, further comprising a transmission matching circuit connected to the transmission feeding circuit; wherein the transmission radiating element, the transmission feeding circuit, and the transmission matching circuit define a transmission antenna apparatus; anda frequency band in which a gain of the transmission antenna apparatus is obtained is determined by the transmission matching circuit.
  • 4. The transceiver according to claim 1, further comprising a receiving matching circuit connected to the receiving feeding circuit; wherein the receiving radiating element, the receiving feeding circuit, and the receiving matching circuit define a receiving antenna apparatus; anda frequency band in which a gain of the receiving antenna apparatus is obtained is determined by the receiving matching circuit.
  • 5. The transceiver according to claim 1, wherein the transmission radiating element and the transmission feeding circuit define a transmission antenna apparatus, and a frequency band in which a gain of the transmission antenna apparatus is obtained is determined by the transmission feeding circuit.
  • 6. The transceiver according to claim 1, wherein the receiving radiating element and the receiving feeding circuit define a receiving antenna apparatus, and a frequency band in which a gain of the receiving antenna apparatus is obtained is determined by the receiving feeding circuit.
  • 7. The transceiver according to claim 1, wherein the transmission radiating element and the receiving radiating element are electric field emission-type radiating elements.
  • 8. The transceiver according to claim 7, wherein the transmission radiating elements define a dipole antenna including two feeding points, and the receiving radiating elements define a dipole antenna including two feeding points, and the transmission radiating elements and the receiving radiating elements are disposed so that the transmission radiating elements and the receiving radiating elements radially extend from the feeding points.
  • 9. The transceiver according to claim 1, wherein one of the transmission radiating element and the receiving radiating element is an electric field emission-type radiating element, and the other one of the transmission radiating element and the receiving radiating element is a magnetic field emission-type radiating element.
  • 10. The transceiver according to claim 1, wherein the transmission radiating element and the receiving radiating element are magnetic field emission-type radiating elements.
  • 11. The transceiver according to claim 10, wherein the transmission radiating element and the receiving radiating element are loop-shaped antennas located at a substrate, and one of the transmission radiating element and the receiving radiating element defines a loop along with a via electrode provided in the substrate.
  • 12. A radio frequency identification tag reader comprising: the transceiver according to claim 1;a transmission signal generator configured to generate the transmission signal; anda receiving signal processor configured to acquire from the receiving signal information about a radio frequency identification tag that is a communication target of the transceiver and includes an integrated circuit to store information and an antenna to transmit information stored in the integrated circuit or to receive information to be stored in the integrated circuit.
  • 13. The transceiver according to claim 1, wherein the transmission radiating element and the receiving radiating element are configured to operate as dipole antennas.
  • 14. The transceiver according to claim 1, wherein one of the transmission radiating element and the receiving radiating element is configured to operate as a dipole antenna, and another of the transmission radiating element and the receiving radiating element is configured to operate as a loop antenna.
  • 15. The transceiver according to claim 1, wherein the transmission radiating element and the receiving radiating element are configured to operate as loop antennas.
Priority Claims (1)
Number Date Country Kind
2009-246199 Oct 2009 JP national
US Referenced Citations (146)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5375256 Yokoyama Dec 1994 A
5399060 Richert Mar 1995 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104311 Lastinger Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6243045 Ishibashi Jun 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6452563 Porte Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6927738 Senba et al. Aug 2005 B2
6956481 Cole Oct 2005 B1
6963729 Uozumi Nov 2005 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7405664 Sakama et al. Jul 2008 B2
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040164864 Chung et al. Aug 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060055531 Cook et al. Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244568 Tong et al. Nov 2006 A1
20060244676 Uesaka Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229276 Yamagajo et al. Oct 2007 A1
20070247387 Kubo et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080068132 Kayanakis et al. Mar 2008 A1
20080070003 Nakatani et al. Mar 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080143630 Kato et al. Jun 2008 A1
20080146144 Rofougaran Jun 2008 A1
20080169905 Slatter Jul 2008 A1
20080184281 Ashizaki et al. Jul 2008 A1
20080272885 Atherton Nov 2008 A1
20080280574 Rofougaran Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090021352 Kataya et al. Jan 2009 A1
20090021446 Kataya et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090088114 Yoshida et al. Apr 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090201116 Orihara Aug 2009 A1
20090224061 Kato et al. Sep 2009 A1
20090231106 Okamura Sep 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
20090266900 Ikemoto et al. Oct 2009 A1
20090278687 Kato Nov 2009 A1
20090321527 Kato et al. Dec 2009 A1
20100103058 Kato et al. Apr 2010 A1
20100103061 Yung Apr 2010 A1
20100123640 Hui et al. May 2010 A1
20100130264 Yong May 2010 A1
20100182210 Ryou et al. Jul 2010 A1
20100308118 Kataya et al. Dec 2010 A1
20110031320 Kato et al. Feb 2011 A1
20110063184 Furumura et al. Mar 2011 A1
Foreign Referenced Citations (463)
Number Date Country
2 279 176 Jul 1998 CA
100 25 992 Jan 2002 DE
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 848 448 Jun 1998 EP
0 948 083 Oct 1999 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 085 480 Mar 2001 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 193 793 Apr 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 547 753 Jun 2005 EP
1 548 872 Jun 2005 EP
1 626 364 Feb 2006 EP
1 701 296 Sep 2006 EP
1 703 589 Sep 2006 EP
1 742 296 Jan 2007 EP
1 744 398 Jan 2007 EP
1 840 802 Oct 2007 EP
1 841 005 Oct 2007 EP
1 865 574 Dec 2007 EP
1 887 652 Feb 2008 EP
1 976 056 Oct 2008 EP
1 988 491 Nov 2008 EP
1 988 601 Nov 2008 EP
1 993 170 Nov 2008 EP
2 009 738 Dec 2008 EP
2 012 258 Jan 2009 EP
2 096 709 Sep 2009 EP
2 148 449 Jan 2010 EP
2 166 617 Mar 2010 EP
2 251 934 Nov 2010 EP
2 256 861 Dec 2010 EP
2 330 684 Jun 2011 EP
2 305 075 Mar 1997 GB
2461443 Jan 2010 GB
50-143451 Nov 1975 JP
61-284102 Dec 1986 JP
62-127140 Aug 1987 JP
01-212035 Aug 1989 JP
02-164105 Jun 1990 JP
02-256208 Oct 1990 JP
3-171385 Jul 1991 JP
03-503467 Aug 1991 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
04-096814 Aug 1992 JP
04-101168 Sep 1992 JP
04-134807 Dec 1992 JP
05-226926 Sep 1993 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
07-231217 Aug 1995 JP
08-055725 Feb 1996 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-88586 Apr 1996 JP
08-088586 Apr 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
09-093029 Apr 1997 JP
9-93029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
09-284038 Oct 1997 JP
9-512367 Dec 1997 JP
10-69533 Mar 1998 JP
10-069533 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-173427 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-293828 Nov 1998 JP
10-334203 Dec 1998 JP
11-025244 Jan 1999 JP
11-039441 Feb 1999 JP
11-055032 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-88241 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149537 Jun 1999 JP
11-149538 Jun 1999 JP
11-175678 Jul 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-282993 Oct 1999 JP
11-328352 Nov 1999 JP
11-331014 Nov 1999 JP
11-346114 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-242754 Sep 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2001-043340 Feb 2001 JP
3075400 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-76111 Mar 2001 JP
2001-084463 Mar 2001 JP
2001-101369 Apr 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-240046 Sep 2001 JP
2001-240217 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-291181 Oct 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351083 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2001-358527 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-32731 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-076750 Mar 2002 JP
2002-76750 Mar 2002 JP
2002-111363 Apr 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-521757 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-246828 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-362613 Dec 2002 JP
2002-366917 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-022912 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-037861 Feb 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099184 Apr 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2003-536302 Dec 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-096618 Mar 2004 JP
2004-126750 Apr 2004 JP
2004-127230 Apr 2004 JP
2004-140513 May 2004 JP
2004-163134 Jun 2004 JP
2004-213582 Jul 2004 JP
2004-519916 Jul 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-282403 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-295297 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-304370 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-033461 Feb 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-135132 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-192124 Jul 2005 JP
2005-210223 Aug 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-229474 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-252853 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-284455 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-335755 Dec 2005 JP
2005-340759 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-13976 Jan 2006 JP
2006-013976 Jan 2006 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033312 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-039947 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-050200 Feb 2006 JP
2006-053833 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-074348 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148462 Jun 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-238282 Sep 2006 JP
2006-246372 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270681 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-287659 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2006-339964 Dec 2006 JP
2007-007888 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-18067 Jan 2007 JP
2007-019905 Jan 2007 JP
2007-28002 Feb 2007 JP
2007-040702 Feb 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-116347 May 2007 JP
2007-122542 May 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-166133 Jun 2007 JP
2007-172369 Jul 2007 JP
2007-172527 Jul 2007 JP
2007-228254 Sep 2007 JP
2007-228325 Sep 2007 JP
2007-233597 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-272264 Oct 2007 JP
2007-287128 Nov 2007 JP
2007-295557 Nov 2007 JP
2007-312350 Nov 2007 JP
2007-324865 Dec 2007 JP
2008-033716 Feb 2008 JP
2008-042910 Feb 2008 JP
2008-72243 Mar 2008 JP
2008-083867 Apr 2008 JP
2008-097426 Apr 2008 JP
2008-098993 Apr 2008 JP
4069958 Apr 2008 JP
2008-103691 May 2008 JP
2008-107947 May 2008 JP
2008-513888 May 2008 JP
2008-148345 Jun 2008 JP
2008-519347 Jun 2008 JP
2008-160874 Jul 2008 JP
2008-167190 Jul 2008 JP
2008-197714 Aug 2008 JP
2008-535372 Aug 2008 JP
2008-207875 Sep 2008 JP
2008-217406 Sep 2008 JP
2008-288915 Nov 2008 JP
2009-017284 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-27291 Feb 2009 JP
2009-044647 Feb 2009 JP
2009-044715 Feb 2009 JP
3148168 Feb 2009 JP
2009-110144 May 2009 JP
2009-153166 Jul 2009 JP
2009-182630 Aug 2009 JP
2010-009196 Jan 2010 JP
2010-081571 Apr 2010 JP
4609604 Jan 2011 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
9833142 Jul 1998 WO
9967754 Dec 1999 WO
0010122 Feb 2000 WO
0195242 Dec 2001 WO
0248980 Jun 2002 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005091434 Sep 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2006048663 May 2006 WO
2006114821 Nov 2006 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007086130 Aug 2007 WO
2007094494 Aug 2007 WO
2007097385 Aug 2007 WO
2007102360 Sep 2007 WO
2007105348 Sep 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007132094 Nov 2007 WO
2007138857 Dec 2007 WO
2008007606 Jan 2008 WO
2008081699 Jul 2008 WO
2008126458 Oct 2008 WO
2008133018 Nov 2008 WO
2008140037 Nov 2008 WO
2008142957 Nov 2008 WO
2009008296 Jan 2009 WO
2009011144 Jan 2009 WO
2009011376 Jan 2009 WO
2009011400 Jan 2009 WO
2009011423 Jan 2009 WO
2009022404 Feb 2009 WO
2009081719 Jul 2009 WO
2009110381 Sep 2009 WO
2009119548 Oct 2009 WO
2009128437 Oct 2009 WO
2010026939 Mar 2010 WO
Non-Patent Literature Citations (149)
Entry
Official communication issued in Japanese Application No. 2007-531524, mailed on Sep. 11, 2007.
Official communication issued in Japanese Application No. 2007-531525, mailed on Sep. 25, 2007.
Official communication issued in Japanese Application No. 2007-531524, mailed on Dec. 12, 2007.
Official communication issued in European Application No. 07706650.4, mailed on Nov. 24, 2008.
Mukku-Sha, “Musen IC Tagu Katsuyo-no Subete” “(All About Wireless IC Tags”), RFID, pp. 112-126.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 11/624,382, filed Jan. 18, 2007.
Dokai et al.: “Wireless IC Device, and Component for Wireless IC Device”; U.S. Appl. No. 11/930,818, filed Oct. 31, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/042,399, filed Mar. 5, 2008.
Official communication issued in related U.S. Appl. No. 12/042,399; mailed on Aug. 25, 2008.
English translation of NL9100176, published on Mar. 2, 1992.
English translation of NL9100347, published on Mar. 2, 1992.
Kato et al.: “Antenna”; U.S. Appl. No. 11/928,502, filed Oct. 30, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/211,117, filed Sep. 16, 2008.
Kato et al.: “Antenna”; U.S. Appl. No. 11/688,290; filed Mar. 20, 2007.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 11/740,509, filed Apr. 26, 2007.
Kato et al.: “Product Including Power Supply Circuit Board”; U.S. Appl. No. 12/234,949, filed Sep. 22, 2008.
Kato et al.: “Data Coupler”; U.S. Appl. No. 12/252,475, filed Oct. 16, 2008.
Kato et al.; “Information Terminal Device”; U.S. Appl. No. 12/267,666, filed Nov. 10, 2008.
Kato et al.: “Wireless IC Device and Wireless IC Device Composite Component”; U.S. Appl. No. 12/276,444, filed Nov. 24, 2008.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 12/326,916, filed Dec. 3, 2008.
Dokai et al.: “System for Inspecting Electromagnetic Coupling Modules and Radio IC Devices and Method for Manufacturing Electromagnetic Coupling Modules and Radio IC Devices Using the System”; U.S. Appl. No. 12/274,400, filed Nov. 20, 2008.
Kato: “Wireless IC Device”; U.S. Appl. No. 11/964,185, filed Dec. 26, 2007.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 12/336,629, filed Dec. 17, 2008.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/339,198, filed Dec. 19, 2008.
Ikemoto et al.: “Wireless IC Device”; U.S. Appl. No. 11/851,651, filed Sep. 7, 2007.
Kataya et al.: “Wireless IC Device and Electronic Device”; U.S. Appl. No. 11/851,661, filed Sep. 7, 2007.
Dokai et al.: “Antenna and Radio IC Device”; U.S. Appl. No. 12/350,307, filed Jan. 8, 2009.
Official Communication issued in International Application No. PCT/JP2007/066007, mailed on Nov. 27, 2007.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/359,690, filed Jan. 26, 2009.
Dokai et al.: “Test System for Radio Frequency IC Devices and Method of Manufacturing Radio Frequency IC Devices Using the Same”; U.S. Appl. No. 12/388,826, filed Feb. 19, 2009.
Official Communication issued in International Application No. PCT/JP2008/061955, mailed on Sep. 30, 2008.
Official Communication issued in International Application No. PCT/JP2007/066721, mailed on Nov. 27, 2007.
Official Communication issued in International Application No. PCT/JP2007/070460, mailed on Dec. 11, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/390,556, filed Feb. 23, 2009.
Kato et al.: “Inductively Coupled Module and Item With Inductively Coupled Module”; U.S. Appl. No. 12/398,497, filed Mar. 5, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/050945, mailed on May 1, 2008.
Kato et al.: “Article Having Electromagnetic Coupling Module Attached Thereto”; U.S. Appl. No. 12/401,767, filed Mar. 11, 2009.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 12/326,117, filed Dec. 2, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/061442, mailed on Jul. 22, 2008.
Kato et al.: “Container With Electromagnetic Coupling Module”; U.S. Appl. No. 12/426,369, filed Apr. 20, 2009.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/429,346, filed Apr. 24, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/071502, mailed Feb. 24, 2009.
Kato et al.: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/432,854, filed Apr. 30, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/058168, mailed Aug. 12, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/062886, mailed Oct. 21, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/469,896, filed May 21, 2009.
Ikemoto et al.: “Wireless IC Device,” U.S. Appl. No. 12/496,709, filed Jul. 2, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/062947, mailed Aug. 19, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/056026, mailed Jul. 1, 2008.
Ikemoto et al.: “Wireless IC Device and Electonic Apparatus,” U.S. Appl. No. 12/503,188, filed Jul. 15, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/055567, mailed May 20, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/051853, mailed Apr. 22, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/057239, mailed Jul. 22, 2008.
Kimura et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,338, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,340, filed Jul. 28, 2009.
Kato: “Wireless IC Device,” U.S. Appl. No. 12/510,344, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,347, filed Jul. 28, 2009.
Official communication issued in counterpart European Application No. 08 77 7758, dated on Jun. 30, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103741, mailed on May 26, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103742, mailed on May 26, 2009.
Official communication issued in International Application No. PCT/JP2008/050358, mailed on Mar. 25, 2008.
Official communication issued in International Application No. PCT/JP2008/050356, mailed Mar. 25, 2008.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,663, filed Aug. 6, 2009.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,669, filed Aug. 6, 2009.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device,” U.S. Appl. No. 12/543,553, filed Aug. 19, 2009.
Shioya et al.: “Wireless IC Device,” U.S. Appl. No. 12/551,037, filed Aug. 31, 2009.
Ikemoto: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/579,672 filed Oct. 15, 2009.
Official communication issued in International Application No. PCT/JP2008/058614, mailed on Jun. 10, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/063025, mailed on Aug. 12, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/603,608, filed Oct. 22, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/688,072, filed Jan. 15, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053693, mailed on Jun. 9, 2009.
Kato: “Composite Antenna,” U.S. Appl. No. 12/845,846, filed Jul. 29, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053690, mailed on Jun. 2, 2009.
Kato et al.: “Radio Frequency IC Device and Radio Communication System,” U.S. Appl. No. 12/859,340, filed Aug. 19, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed on Jun. 23, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/859,880, filed Aug. 20, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/057482, mailed on Jul. 21, 2009.
Kataya et al.: “Wireless IC Device, Electronic Apparatus, and Method for Adjusting Resonant Frequency of Wireless IC Device,” U.S. Appl. No. 12/861,945, filed Aug. 24, 2010.
Kato: “Wireless IC Device and Electromagnetic Coupling Module,” U.S. Appl. No. 12/890,895, filed Sep. 27, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059410, mailed on Aug. 4, 2009.
Kato et al.: “Wireless IC Device” U.S. Appl. No. 12/902,174, filed Oct. 12, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059259, mailed on Aug. 11, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-506742, mailed on Apr. 6, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/056698, mailed on Jul. 7, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/056934, mailed on Jun. 30, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/903,242, filed Oct. 13, 2010.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/940,103, filed Nov. 5, 2010.
Kato et al.: “Wireless IC Device System and Method of Determining Authenticity of Wireless IC Device”; U.S. Appl. No. 12/940,105, filed Nov. 5, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059669, mailed on Aug. 25, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/062181, mailed on Oct. 13, 2009.
Official Communication issued in corresponding Japanese Application No. 2010-501323, mailed on Apr. 6, 2010.
Kato et al.: “Component of Wireless IC Device and Wireless IC Device”; U.S. Appl. No. 12/944,099, filed Nov. 11, 2010.
Kato et al.: Wireless IC Device and Manufacturing Method Thereof; U.S. Appl. No. 12/961,599, filed Dec. 7, 2010.
Kataya et al.: “Radio Frequency IC Device and Electronic Apparatus”; U.S. Appl. No. 12/959,454, filed Dec. 3, 2010.
Ikemoto et al.:“Radio IC Device”; U.S. Appl. No. 12/981,582, filed Dec. 30, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/062801, mailed on Oct. 27, 2009.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/022,695, filed Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/067778, mailed on Jan. 26, 2010.
Kato: “Wireless IC Device and Method for Manufacturing Same”; U.S. Appl. No. 13/022,693, filed Feb. 8, 2011.
Kato: “Wireless IC Device”; U.S. Appl. No. 13/080,781, filed Apr. 6, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/069486, mailed on Mar. 2, 2010.
Kato: “Radio IC Device”; U.S. Appl. No. 13/080,775, filed Apr. 6, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/083,626, filed Apr. 11, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/070617, mailed on Mar. 16, 2010.
Nagai, “Mounting Technique of RFID by Roll-To-Roll Process”, Material Stage, Technical Information Institute Co., Ltd, vol. 7, No. 9, 2007, pp. 4-12.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/088,480, filed Apr. 18, 2011.
Kato et al.: “High-Frequency Device and Wireless IC Device”; U.S. Appl. No. 13/094,928, filed Apr. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/099,392, filed May 3, 2011.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 13/163,803, filed Jun. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/050170, mailed on Apr. 13, 2010.
Official Communication issued in International Patent Application No. PCT/JP2010/051205, mailed on May 11, 2010.
Kato: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/169,067, filed Jun. 27, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/190,670, filed Jul. 26, 2011.
Shiroki et al.: “RFIC Chip Mounting Structure”; U.S. Appl. No. 13/223,429, filed Sep. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056559, mailed on Jul. 27, 2010.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 13/232,102, filed Sep. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/066336, mailed on Dec. 22, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-509439, mailed on Jul. 6, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Mar. 29, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2009-525327, drafted on Sep. 22, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032312, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 23 2011.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/241,823, filed Sep. 23, 2011.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/272,365, filed Oct. 13, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056812, mailed on Jul. 13, 2010.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 13/295,153, filed Nov. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/057668, mailed Aug. 17, 2010.
Osamura et al.: “Radio Frequency IC Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/308,575, filed Dec. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069417, mailed on Dec. 7, 2010.
Kato: “Wireless IC Device and Coupling Method for Power Feeding Circuit and Radiation Plate”; U.S. Appl. No. 13/325,273, filed Dec. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/053496, mailed on Jun. 1, 2010.
Ikemoto: “Wireless IC Tag, Reader-Writer, and Information Processing System”; U.S. Appl. No. 13/329,354, filed Dec. 19, 2011.
Kato et al.: “Antenna and Antenna Module”; U.S. Appl. No. 13/334,462, filed Dec. 22, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069418, mailed on Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/063082, mailed on Nov. 16, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/412,772, filed Mar. 6, 2012.
“Antenna Engineering Handbook”, The Institute of Electronics and Communication Engineers, Mar. 5, 1999, pp. 20-21.
Official Communication issued in International Patent Application No. PCT/JP2010/066714, mailed on Dec. 14, 2010.
Nomura et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/419,454, filed Mar. 14, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070607, mailed on Feb. 15, 2011.
Ito: “Wireless IC Device and Method of Detecting Environmental State Using the Device”; U.S. Appl. No. 13/421,889, filed Mar. 16, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053654, mailed on Mar. 29, 2011.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/425,505, filed Mar. 21, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/069416, mailed Feb. 8, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/429,465, filed Mar. 26, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/066291, mailed on Dec. 28, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/432,002, filed Mar. 28, 2012.
Related Publications (1)
Number Date Country
20120190310 A1 Jul 2012 US
Continuations (1)
Number Date Country
Parent PCT/JP2010/066291 Sep 2010 US
Child 13437978 US