The disclosure is directed to transceivers for use in electronic devices. More specifically, the disclosure is directed to transceivers having a pluggable optical body.
As electronic devices move toward operation at faster data rates the electrical interfaces on these devices along with the electrical transmission cables will reach their bandwidth capacity limitations. Additionally, the electronic devices are trending to smaller and thinner footprints. Optical fibers have displaced copper-based connectivity in much of the traditional long-haul and metro telecommunication networks for numerous reasons such as large bandwidth capacity, dielectric characteristics and the like. As consumers require more bandwidth for consumer electronic devices such as smart phones, laptops, tablets and the like optical fibers and optical ports for optical signal transmission are being considered for replacing the conventional copper-based connectivity for these applications. However, there are significant challenges for providing optical connectivity in electronic devices compared with copper-based connectivity. By way of example, devices such as smart phones, laptops and tablets are exposed to rough handling and harsh environments and the consumer will expect optical connectivity to handle these demanding conditions. Further, these types of devices will require a large number of mating/unmating cycles during their lifetime. Consequently, optical connections for consumer application will need to be easy to clean and maintain by the user.
There is an unresolved need for optical connections that may be used for relatively small devices like typical consumer applications such personnel devices such as smart phones, tablets and other consumer devices that have a relatively small footprint. The concepts disclosed herein solve this unresolved need for optical connections.
The disclosure is directed to a transceiver using a pluggable optical body. In one embodiment a transceiver comprises a transceiver receptacle body and a substrate assembly. The transceiver receptacle body comprises a front side, a rear side and at least one optical channel at the optical interface with the front side having at least one alignment pin and the rear side having at least one cavity. The substrate assembly comprises a substrate supporting at least one active electronic component and the substrate comprising at least one alignment feature for cooperating with the at least one alignment pin of the transceiver receptacle body.
In another aspect, the transceiver comprises a transceiver receptacle body and a substrate assembly. The transceiver receptacle body comprises a front side, a rear side and at least one optical channel at the optical interface with the front side having a first alignment pin and a second alignment pin, and the rear side has a cavity. The first alignment pin extends from the front side into the cavity and the second alignment pin extends from the front side into the cavity. The substrate assembly comprises a glass substrate supporting at least one active electronic component and the substrate comprising a first alignment feature and a second alignment feature for cooperating with the first alignment pin and the second alignment pin of the transceiver receptacle body.
In yet another aspect, the transceiver comprises a transceiver receptacle body, a substrate assembly and an optical plug body. The transceiver receptacle body comprises a front side, a rear side and at least one optical channel at the optical interface with the front side having a first alignment pin and a second alignment pin, and the rear side has a cavity. The first alignment pin extends from the front side into the cavity and the second alignment pin extends from the front side into the cavity. The substrate assembly comprising a glass substrate supporting at least one active electronic component and the substrate comprising a first alignment feature and a second alignment feature for cooperating with the first alignment pin and the second alignment pin of the transceiver receptacle body. The optical plug body comprising a front side and a rear side, and being sized for fitting into the cavity of the transceiver receptacle body.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.
Reference will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.
The transceivers disclosed herein may receive a pluggable optical plug connector and enable high-speed data applications for transmitting optical signals to electronic devices such as active optical cable (AOC) assemblies, server blades, switches, routers and other types equipment that require high-speed data transmission. Consequently, the transceiver may be mounted to a circuit board or other like device while the optical plug connector can be manufactured in another independent manufacturing operation for improving manufacturing efficiency by having separate manufacturing work streams. Further, the transceivers provide the ability to reconfigure or disconnect the device by removing the optical plug connector from the transceiver as desired. The transceivers also provide passive alignment between the transceiver and the optical plug connector. The transceivers disclosed provide a relatively small and compact footprint so that they are useful with a variety of electronic devices. High-speed data applications such as 5 Gigabits/sec or greater are possible and in certain embodiments that use a glass substrate the data rates can extend to 25 Gigabits/sec or greater.
Transceivers convert transmit/receive optical signals from the optical plug connector to electrical signals and vice versa using one or more lenses of the transceiver to transmit/receive the optical signals to a substrate having active at least one active electronic component aligned with the respective lenses. By way of example, the one or more lenses of the transceiver receptacle body are used for collimating or focusing the light from the transmission channel(s) of the optical plug connector and are optically coupled to an active electronic component such as a photodiode or the like that is supported by the substrate. The receive channels of the optical plug connector obtains its signals from an active electronic component supported by the substrate such as a laser like a vertical-cavity surface-emitting laser (VCSEL) that is aligned and in communication with the lens of the transceiver for transmission of the optical signals of the optical plug connector when assembled. The transceiver along with the optical plug connector according to the concepts disclosed provide quick and easy connectivity with a footprint that is advantageous for use with electronic devices along with simplified manufacturing. Additionally, the transceiver provides a robust and reliable design for applications that may desire mating, unmating or reconfiguring the electronic device.
Transceiver 10 comprises a transceiver receptacle body 12 having a front side 14, a rear side 16 and at least one optical channel 18 at an optical interface 19. In this embodiment, optical interface 19 has four optical channels 18 with two receive optical channels and two transmit optical channels, but other embodiments may include any suitable number of optical channels. Further, the number of transmit and receive channels need not be equal in number. The at least one optical channel 18 may comprise a transmit optical channel 18T having a lens 24 at the front side and a receive optical channel 18R having a lens 24 at the front side 14. Front side 14 may optionally include a stepped profile 15 for the optical interface 19. Using a stepped profile 15 allows the transmit and receive lens 24 to be positioned at a different focal distance from the active electronic components 60 of the substrate assembly 80, thereby allowing tailored (e.g., improved) optical coupling for the transmit and receive channels. Consequently, the stepped profile 15 comprises a first surface 15a and a second surface 15b with a first lens 24 disposed on the first surface 15a and a second lens 24 disposed on the second surface 15b.
Front side 14 of transceiver receptacle body 12 also has at least one alignment pin 22. As depicted, front side 14 includes two alignment pins disposed on opposite sides of the optical interface 19 and are disposed on ledges portions (not numbered) that extend in the Z-direction beyond the optical interface 19 by a predetermined distance. Ledges are used as a stop and spacing the active electronic components 60 of substrate assembly 80 the desired distance from lenses 24. As shown in
Transceiver 10 also includes a substrate assembly 80 comprising a substrate 50 supporting at least one active electronic component 60. Substrate 50 comprises at least one alignment feature 52 for cooperating with the at least one alignment pin 22 of the transceiver receptacle body 12. By way of example, alignment feature 52 may be one or more bores (e.g., holes) in the substrate for precision alignment with the alignment pins 22 of the transceiver receptacle body. Ideally, the alignment features 52 are precise enough with the alignment pins for allowing passive alignment; however, active alignment may also be used with the concepts disclosed. Further, optical alignment with the active electronic components 60 may also depend of the precise placement of active electronic components 60 onto the substrate 50. Substrate 50 may be formed from any suitable material such as a conventional circuit board material having electrical traces and using wire bonding for electrical connection, but may also be made of other materials as desired. For instance, substrate 50 may be formed from a glass material for enabling high-speed applications such as up to 25 gigabits/second or faster, whereas a convention circuit board may have difficulties supporting speeds beyond 10 gigabits/second.
The substrate assembly 80 is attached and spaced at a suitable distance from the lenses 24 using ledges or other suitable structure, which provides the desired z-direction distance between the active electronic components 60 and the lenses 24. As discussed, the substrate assembly 80 may use a passive and/or active alignment for positioning the substrate assembly 80 in the X-direction and Y-direction. Active electronic component(s) are an electro-optical component used for transmitting or receiving optical signals to/from the optical channels of the transceiver 10. By way of example, the active component is a photodiode or other similar device for receiving optical signals or a vertical-cavity surface-emitting laser (VCSEL) for transmitting optical signals, thereby providing one or more transmit and receive channels. Additionally, the receptacle circuit board assembly may include further electronic components such as transimpedance amplifiers (TIAs) or laser drivers arranged as a first circuit portion and/or a second circuit portion for processing signals and other electronics such as integrated circuits (ICs) like clock and data recovery (CDR), laser drivers serializer/deserializer (SerDes), and the like on the circuit board.
In this embodiment, the optical plug connector 100 optionally further comprises a cavity 130 at the rear side 106. Cavity 130 is sized and shaped for receiving a fiber organizer 150 as best shown in
Although the disclosure has been illustrated and described herein with reference to embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of International Patent Application Serial No. PCT/US15/60506, filed on Nov. 13, 2015, which claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 62/084,944, filed on Nov. 26, 2014, the contents of which are relied upon and incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62084944 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US15/60506 | Nov 2015 | US |
Child | 15595125 | US |