This disclosure relates to transferring storage devices within storage device testing systems.
Disk drive manufacturers typically test manufactured disk drives for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of disk drives serially or in parallel. Manufacturers tend to test large numbers of disk drives simultaneously in batches. Disk drive testing systems typically include one or more racks having multiple test slots that receive disk drives for testing.
The testing environment immediately around the disk drive is closely regulated. Minimum temperature fluctuations in the testing environment are critical for accurate test conditions and for safety of the disk drives. The latest generations of disk drives, which have higher capacities, faster rotational speeds and smaller head clearance, are more sensitive to vibration. Excess vibration can affect the reliability of test results and the integrity of electrical connections. Under test conditions, the drives themselves can propagate vibrations through supporting structures or fixtures to adjacent units. This vibration “cross-talking,” together with external sources of vibration, contributes to bump errors, head slap and non-repetitive run-out (NRRO), which may result in lower test yields and increased manufacturing costs.
Current disk drive testing systems use an operator, a robotic arm, or a conveyer belt to individually feed disk drives to a transfer location for loading into the testing system for testing. A robotic arm of the testing system individually retrieves the disk drives from the transfer location and loads them in test slots for testing.
One aspect of the disclosure provides a method of transferring storage devices within a storage device testing system that includes actuating an automated transporter (e.g. robotic arm, gantry system, or multi-axis linear actuator) to substantially simultaneously retrieve multiple storage devices presented for testing, and actuating the automated transporter to substantially simultaneously deliver the retrieved storage devices to respective test slots of the storage device testing system and to substantially simultaneously insert each storage device in their respective test slot.
Another aspect of the disclosure provides a method of transferring storage devices within a storage device testing that includes actuating an automated transporter to substantially simultaneously retrieve storage devices from respective test slots of the storage device testing system and actuating the automated transporter to deliver the retrieved storage devices to a station and substantially simultaneously release each storage device at the station.
Implementations the disclosure may include one or more of the following features. In some implementations, the method includes actuating the automated transporter to substantially simultaneously retrieve multiple storage device transporters and actuating the automated transporter to substantially simultaneously retrieve the storage devices using the storage device transporters to carry the storage devices. In some examples, actuating the automated transporter to substantially simultaneously retrieve multiple storage device transporters, actuating the automated transporter to substantially simultaneously retrieve the storage devices presented for testing by carrying each of the storage devices with respective storage device transporters, and actuating the automated transporter to substantially simultaneously deliver the storage device transporters, each carrying one of the storage devices, to the respective test slots. In some examples, the method also includes inserting each storage device transporter substantially simultaneously into its respective test slot, engaging the carried storage device with a respective connector of the storage device testing system. The inserted storage device transporters provides closure of their respective test slots.
In some implementations, the automated transporter uses transporter couplers to engage and couple to the storage device transporters. The transporter couplers arranged in at least a one-dimensional array. The method may include carrying the retrieved storage devices substantially parallel to one another. In such cases, the transporter couplers may be arranged substantially parallel to one another and spaced horizontally and/or vertically from each other (e.g., in a one or multi-dimensional array). In other examples, the couplers are arranged at non-parallel angles with one another.
In some implementations, the storage devices are present in a storage device tote presented to the storage device testing system. The automated transporter retrieves multiple storage devices substantially simultaneously from the storage device tote with corresponding storage device transporters by positioning the storage device transporters below their respective storage devices, lifting the storage devices each off a storage device support of the storage device tote, and carrying the storage devices in the storage device transporters away from the storage device tote.
The automated transporter may include a manipulator configured to transport multiple storage devices. For example, in the case of a robotic arm as the automated transporter, the manipulator is secured to a distal end of the robot arm. The manipulator includes a manipulator body and multiple couplers disposed on the manipulator body and arranged substantially parallel to one another and/or in at least a one-dimensional array. Each coupler is configured to releasably attach to a storage device transporter. In some examples, the manipulator includes first and second connectors or couplers disposed on a manipulator body and arranged in a substantially V-shaped configuration with respect to each other. The couplers are configured to releasably attach to a storage device transporter.
In some implementations, the automated transporter may be actuated to release the storage devices in a storage device tote presented to the storage device testing system. The automated transporter releases multiple storage devices substantially simultaneously in the storage device tote by positioning storage device transporters carrying the respective storage devices above respective storage device supports of the storage device tote, lowering the storage devices onto the storage device supports, and moving the storage device transporters away from the storage device tote.
Another aspect of the disclosure provides a method of transferring storage devices within a storage device testing system includes actuating an automated transporter having a manipulator to retrieve an untested storage device presented for testing. The manipulator is configured to transport multiple storage devices. The method includes actuating the automated transporter to deliver the retrieved untested storage device to a respective test slot of the storage device testing system and insert the untested storage device in its respective test slot for testing.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the manipulator includes first and second couplers disposed on a manipulator body and arranged in a substantially V-shaped configuration with respect to each other. In other implementations, the couplers are arranged substantially parallel to each other and spaced from one another along one or two directional axis. In additional examples, the first and second couplers are disposed 180 degrees from one another. The couplers are configured to releasably attach to a storage device transporter.
In some examples, the method includes actuating the automated transporter to retrieve a storage device transporter, actuating the automated transporter to retrieve the untested storage device presented for testing by carrying the untested storage device with the storage device transporter, and actuating the automated transporter to deliver the storage device transporter to the respective test slot. The storage device transporter is inserted into the test slots, engaging the carried untested storage device with a respective coupler of the storage device testing system. The inserted storage device transporter provides closure of its respective test slot.
In some implementations, the untested storage device is present in a storage device tote presented to the storage device testing system. The automated transporter retrieves the untested storage device from the storage device tote with the corresponding storage device transporter by positioning the storage device transporter below the untested storage device, lifting the untested storage device off a storage device support of the storage device tote, and carrying the untested storage device in the storage device transporter away from the storage device tote.
In some implementations, the method includes actuating the automated transporter and the manipulator to retrieve a tested storage device from its respective test slot and carrying the tested storage device to a destination location, such as a destination storage device tote. The method may include actuating the automated transporter to retrieve the tested storage device from its respective test slot by actuating the manipulator to engage a respective storage device transporter of the tested storage device and carrying the tested storage device with its respective storage device transporter to the destination location. The method may include actuating the automated transporter to deliver the storage device carried by its respective storage device transporter to a receptacle of a destination storage device tote.
In yet another aspect of the disclosure, a method of transferring storage devices within a storage device testing system includes actuating an automated transporter having a manipulator to retrieve a first storage device housed in a first test slot of the storage device testing system. The manipulator is configured to transport multiple storage devices. The method includes actuating the automated transporter to deliver the retrieved first storage device to a second test slot, actuating the automated transporter to retrieve a second storage device from the second test slot while carrying the first storage device, and actuating the automated transporter to insert the first storage device into the second test slot while carrying the second storage device.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the method includes actuating the automated transporter to deliver the retrieved second storage device to the first test slot, and actuating the automated transporter to insert the second storage device into the first test slot. The manipulator includes a manipulator body and first and second couplers disposed on the manipulator body. The couplers are arranged substantially parallel to one another or in a substantially V-shaped configuration with respect to each other and are each configured to releasably attach to a storage device transporter. The manipulator transports the first and second storage devices in corresponding releasably attached storage device transporters. In examples where the storage devices are each carried in a corresponding storage device transporter, inserting each storage device into one of the test slots includes inserting the corresponding storage device transporter into the respective test slot, engaging the carried storage device with a respective coupler of the storage device testing system, the inserted storage device transporter providing closure of its respective test slot.
Another aspect of the disclosure provides a storage device testing system that includes an automated transporter, at least one rack about the automated transporter for access by the automated transporter, and multiple test slots housed by each rack. Each test slot is configured to receive a storage device for testing. A transfer station, arranged for access by the automated transporter, presents multiple storage devices for testing. A manipulator attached to the automated transporter includes multiple couplers arranged in at least a one-dimensional array and may be substantially parallel to one another. Each coupler is configured to transport a storage device.
Implementations of this aspect of the disclosure may include one or more of the following features. The manipulator is configured to releasably attach to multiple storage device transporters. In some implementations, the manipulator includes a manipulator body and multiple couplers disposed on the manipulator body. The couplers are spaced from one another in an arrangement that corresponds to a test slot layout, allowing the manipulator to substantially simultaneously service multiple test slots.
In some examples, the transfer station includes a transfer station housing configured to receive and support multiple storage device totes in a presentation position for servicing by the automated transporter. Each storage device tote includes a tote body defining multiple storage device receptacles configured to each house a storage device. The manipulator may include a manipulator body and multiple couplers disposed on the manipulator body. The couplers are spaced from one another in an arrangement that corresponds to a tote receptacle layout, allowing the manipulator to substantially simultaneously service multiple tote storage device receptacles. Each coupler may be arranged substantially parallel to one another for holding storage devices substantially parallel to one another. In some examples, the transfer station includes a conveyor for continuous transporting of storage devices to and from the storage device testing system.
Another aspect of the disclosure provides a manipulator for a storage device testing system that includes a manipulator body and multiple couplers disposed on the manipulator body. The couplers are spaced from one another in an arrangement that corresponds to a storage device servicing layout, allowing the manipulator to substantially simultaneously service multiple storage device at once.
In some implementations, the storage device servicing layout is a test slot layout of the storage device testing system, allowing the manipulator to substantially simultaneously service multiple test slots. The storage device servicing layout may also be a tote receptacle layout, allowing the manipulator to substantially simultaneously service multiple tote storage device receptacles of a tote that carries storage devices. In some implementations, the storage device servicing layout entails arranging the couplers substantially parallel to one another and/or in at least a one-dimensional array according to a coupler spacing, allowing the manipulator to transport storage devices substantially parallel to one another and/or in an array configuration. The storage device servicing layout may entail arranging the couplers in at least a two-dimensional array according to first and second coupler spacings (e.g., horizontal and vertical spacings).
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Bulk feeding of storage devices in a storage device testing system is advantageous over manual individual feeding of storage devices by providing increased through-put and efficiency of the storage device testing system, inter alia. As will be discussed in detail, presenting multiple storage device totes (also referred to as totes), which hold multiple storage devices, to a storage device testing system allows continual storage device testing, disk sorting amongst multiple storage device totes, minimal user intervention, and increased efficiency over current systems, inter alia. Bulk feeding of storage devices in storage device totes provides the advantage of shop floor flexibility (e.g. by providing the ability to easily redirect a storage device tote or a cart or trolley carrying storage device totes versus rerouting fixed conveyors). An operator can present a batch of drives (e.g. via the storage device tote) to the storage device testing system and then walk away to service another system. Bulk feeding of storage devices in storage device totes also allows automatic sorting of tested drives with the storage device totes, as will be discussed below.
A storage device, as used herein, includes disk drives, solid state drives, memory devices, and any device that requires asynchronous testing for validation. A disk drive is generally a non-volatile storage device which stores digitally encoded data on rapidly rotating platters with magnetic surfaces. A solid-state drive (SSD) is a data storage device that uses solid-state memory to store persistent data. An SSD using SRAM or DRAM (instead of flash memory) is often called a RAM-drive. The term solid-state generally distinguishes solid-state electronics from electromechanical devices.
Referring to
The automated transporter 200 (e.g. robotic arm) is configured to independently service each test slot 310 to provide a continuous flow of storage devices 500 through the testing system 100. A continuous flow of individual storage devices 500 through the testing system 100 allows random start and stop times for each storage device 500, whereas other systems that require batches of storage devices 500 to be run all at once as an entire testing loaded must all have the same start and end times. Therefore, with continuous flow, storage devices 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed.
Referring to
In implementations that employ storage device transporters 550 for manipulating storage devices 500, as shown in
The test slot 310, shown in
With the storage device 500 in place within the frame 560 of the storage device transporter 550, the storage device transporter 550 and the storage device 500 together can be moved by the robotic arm 200 for placement within one of the test slots 310, as shown in
Referring to
Referring to
Each manipulator coupler 725 is configured to engage and releasably hold a storage device transporter 550. The manipulator couplers 725 may be arranged to allow the manipulator 700 to deliver and retrieve disc drives 500 from multiple test slots 310 substantially simultaneously. The manipulator couplers 725 are arranged to accommodate the spacing (e.g., single or multi-directional) between one or more groups of test slots 310 (e.g., adjacent and/or non-adjacent test slots 310), such that the robotic arm 200 can maneuver the manipulator 700 to interact with multiple test slots 310 at once. For example, to interact with test slots 310 arranged in columns and rows in the racks 300, the manipulator couplers 725 are arranged with the appropriate spacing(s) H, V such that the manipulator couplers 725 substantially align with respective test slots 310 for delivering or retrieving disc drives 500 and/or transporters 550 to or from the test slots 310. The tote 600 may be configured to accommodate and hold disc drives 500 in an arrangement that spaces the disc drives 500 in same manner as the test slots 310 are arranged in the racks 300. Therefore, the manipulator 700 may interact with totes 600 having storage device receptacles 620 (
The manipulator 700 may retrieve or deliver the storage devices 500 or storage device transporters 550 carrying storage devices 500 sequentially, randomly, or substantially simultaneously. The manipulator couplers 725 may retrieve or deliver the storage devices 500 or storage device transporters 550 carrying storage devices 500 into horizontally or vertically adjacent, or horizontally or vertically non-adjacent storage device receptacles 620. Further, the manipulator couplers 725 may retrieve or deliver the storage devices 500 or storage device transporters 550 carrying storage devices 500 into horizontally or vertically adjacent, or horizontally or vertically non-adjacent test slots.
For example, in implementations where the manipulator couplers 725 are spaced horizontally (
In the example illustrated in
In the example shown, each storage device receptacle 620 includes a storage device support 622 configured to support a central portion 502 (see
Referring to
In some implementations, the tote presentation support systems 420 are each disposed on the same side of the transfer station housing 410 and arranged vertically with respect to each other. Each tote presentation support systems 420 has a different elevation with respect to the others. In some examples, as shown in
Referring again to
A method of performing storage device testing includes presenting multiple storage devices 500 to a storage device testing system 100 for testing and actuating an automated transporter 200 (e.g. robotic arm) to retrieve one or more storage devices 500 from the storage device tote 600 and deliver the retrieved storage device(s) 500 to corresponding test slots 310 of a rack 300 of the storage device testing system 100. The method includes actuating the automated transporter 200 to insert each storage device 500 in the test slot 310, and performing a functionality test on the storage devices 500 received by the test slot 310. The method may also include actuating the automated transporter 200 to retrieve the tested storage devices 500 from the test slot 310 and deliver the tested storage device 500 back to a destination location. In some implementations, the method includes retrieving multiple presented storage devices 500 and delivering each of the storage devices to a respective test slot 310. In other implementations, the method includes shuffling storage devices 500 amongst test slots 310 by actuating the automated transporter 200 to remove a first storage device 500 from a first test slot 310 and carrying it with a first manipulator couplers 720, moving to a second test slot 310 and removing a second storage device 500 and carrying it with a second manipulator couplers 730, and then inserting the first storage device 500 into the second slot 310. The method may also include actuating the automated transporter 200 to move the second storage device to the first test slot 310 and inserting the second storage device 500 in the first test slot 310. For this mode of operation (storage device shuffling), the dual-armed manipulator 700 provides distinct advantages over a single-armed manipulator by allowing direct exchanges of storage devices 500 at each stop, rather than having to take a storage device 500 out of a first test slot 310, park the storage device 500 in an empty slot 310 or in a tote 600, retrieve another storage device 500 from a second slot 310 and insert that storage device 500 into the first test slot 310, and then retrieve the parked storage device 500 and insert it in the second slot 310. The dual-armed manipulator 700 removes the step of parking one of the storage devices 500 while swapping storage devices 500 amongst two test slots 310.
destination location.
In some implementations, the method includes retrieving multiple presented storage devices 500 substantially simultaneously and delivering each of the storage devices to a respective test slot 310 substantially simultaneously. The method may includes shuffling storage devices 500 amongst test slots 310 by actuating the automated transporter 200 to remove a set of storage devices 500 from a first set of test slots 310, via multiple manipulator couplers 725, carrying them to a second set of test slots 310 and deliver them substantially simultaneously to the second set of test slots 310. Alternatively, the automated transporter 200 can deliver the set of storage devices 500 to a set of storage device receptacles 620 of a tote 600. Similarly, the method may include retrieving a set of storage devices 500 from a set of storage device receptacles 620 of a tote 600 substantially at once and deliver the set (all of them substantially at once) to multiple test slots 310.
Presenting multiple storage devices 500 for testing may be achieved by loading multiple storage devices 500 into/onto a transfer station 400, as by loading the storage devices 500 into storage device receptacles 620 defined by a storage device tote 600, and loading the storage device tote 600 into/onto the transfer station 400. A tote mover 430 of the transfer station 400 is actuated to move the storage device tote 600 from a loading position to a presentation position for servicing by the storage device testing system 100. The storage device tote 600 is supported in the presentation position by one of multiple tote presentation support systems 420 disposed on the transfer station housing 410 and arranged vertically with respect to each other. Multiple storage device totes 600, each housing storage devices 500, can be sequentially placed in the loading position on the transfer station 400 and moved by the tote mover 430 to its respective presentation position at one of the multiple tote presentation support systems 420 for servicing by the storage device testing system 100.
In retrieving one or more of the presented storage devices 500 for testing, the method preferably includes actuating the automated transporter 200 to retrieve one or more storage device transporter 550 (e.g. from a test slot 310 housed in a rack 300), and actuating the automated transporter 200 to retrieve one or more storage devices 500 from the transfer station 400 and carry the storage devices 500 in respective storage device transporters 550. The method includes actuating the automated transporter 200 to deliver the storage device transporters 550 carrying the storage devices 500 to respective test slots 310 for performing a functionality test on the storage device 500 housed by the received storage device transporter 550 and the test slot 310. In some examples, delivering the storage device transporters 550 to the test slots 310 includes inserting the storage device transporters 550 carrying the storage devices 500 into the test slots 310 in the rack 300, establishing an electric connection between the storage devices 500 and the rack 300. After testing is completed on the storage devices 500, the method includes actuating the automated transporter 200 to retrieve the storage device transporters 550 carrying the tested storage device 500 from the test slots 310 and delivering the tested storage devices 500 back to a destination location, such as a destination storage device tote 600 on the transfer station 400. In some implementations, the rack 300 and two or more associated test slots 310 are configured to move storage devices 500 internally from one test slot 310 to another test slot 310, as in the case where the test slots 310 are provisioned for different kinds of tests.
In some examples, the method includes actuating the automated transporter 200 to deposit the storage device transporter 550 in the test slot 310 after depositing the tested storage device 500 at a destination location (e.g. in a storage device receptacle 620 of a destination storage device tote 600), or repeating the method by retrieving another storage device 500 for testing (e.g. from the storage device receptacle 620 of a source storage device tote 600).
In some implementations, the automated transporter 200 includes a manipulator 700 configured to handle multiple storage devices 500 and/or storage device transporters 550 at once. For example, the automated transporter 200 can retrieve and carry one untested storage device 500 in a storage device transporter 500 held by one arm 720, 730 or manipulator coupler 725 of the manipulator 700, and deliver the untested storage device 500 to a test slot 310. At the test slot 310, the automated transporter 200 removes a storage device transporter 550 carrying a test storage device 500 currently in the test slot 310, before inserting the storage device transporter 550 carrying the untested storage device 500 into the test slot 310 for testing. The automated transporter 200 then delivers the tested storage device 500 to a destination location, such as a receptacle 620 of a destination storage device tote 600. In another example, the automated transporter 200 can retrieve and carry two or more untested storage devices 500, one on each arm 720, 730 or on manipulators coupler 725 of the manipulator 700, and then deliver the two untested storage devices 500 to respective test slots 310 for testing. The automated transporter 700 can then be actuated to retrieve two tested storage devices 500 from their respective slots 310 (e.g. by engaging and removing their respective storage device transporters 550 with the manipulator 700), and deliver the tested storage devices 500 to a destination location, such as two receptacles 620 of one or more destination storage device totes 600. If one tested storage device 500 passed the storage device testing and the other failed, they may be placed in different destination storage device totes 600, such a “passed” storage device tote 600 and a “failed” storage device tote 600.
The manipulator 700 allows the automated transporter 200 to move multiple storage devices 500 and/or storage device transporters 550 within the storage device testing system 100 to accomplish more tasks than previously achievable by a manipulator capable of only handling one storage device 500 and/or storage device transporter 550 at a time. The increased flexibility allows for path planning of the automated transporter 200 to optimize its movements.
Referring to
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.
This U.S. patent application is a continuation-in-part of, and claims priority under 35 U.S.C. §120 from, U.S. patent application Ser. No. 12/104,536, filed on Apr. 17, 2008. The disclosures of this prior application is considered part of the disclosure of this application and is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
577186 | Cahill | Mar 1896 | A |
2224407 | Passur | Dec 1940 | A |
2380026 | Clarke | Jul 1945 | A |
2631775 | Gordon | Mar 1953 | A |
2635524 | Jenkins | Apr 1953 | A |
3120166 | Lyman | Feb 1964 | A |
3360032 | Sherwood | Dec 1967 | A |
3364838 | Bradley | Jan 1968 | A |
3517601 | Courchesne | Jun 1970 | A |
3845286 | Aronstein et al. | Oct 1974 | A |
4147299 | Freeman | Apr 1979 | A |
4233644 | Hwang et al. | Nov 1980 | A |
4336748 | Martin et al. | Jun 1982 | A |
4379259 | Varadi et al. | Apr 1983 | A |
4477127 | Kume | Oct 1984 | A |
4495545 | Dufresne et al. | Jan 1985 | A |
4526318 | Fleming et al. | Jul 1985 | A |
4620248 | Gitzendanner | Oct 1986 | A |
4648007 | Garner | Mar 1987 | A |
4654732 | Mesher | Mar 1987 | A |
4665455 | Mesher | May 1987 | A |
4683424 | Cutright et al. | Jul 1987 | A |
4685303 | Branc et al. | Aug 1987 | A |
4688124 | Scribner et al. | Aug 1987 | A |
4713714 | Gatti et al. | Dec 1987 | A |
4739444 | Zushi et al. | Apr 1988 | A |
4754397 | Varaiya et al. | Jun 1988 | A |
4768285 | Woodman, Jr. | Sep 1988 | A |
4778063 | Ueberreiter | Oct 1988 | A |
4801234 | Cedrone | Jan 1989 | A |
4809881 | Becker | Mar 1989 | A |
4817273 | Lape et al. | Apr 1989 | A |
4817934 | McCormick et al. | Apr 1989 | A |
4851965 | Gabuzda et al. | Jul 1989 | A |
4881591 | Rignall | Nov 1989 | A |
4888549 | Wilson et al. | Dec 1989 | A |
4911281 | Jenkner | Mar 1990 | A |
4967155 | Magnuson | Oct 1990 | A |
5012187 | Littlebury | Apr 1991 | A |
5045960 | Eding | Sep 1991 | A |
5061630 | Knopf et al. | Oct 1991 | A |
5119270 | Bolton et al. | Jun 1992 | A |
5122914 | Hanson | Jun 1992 | A |
5127684 | Klotz et al. | Jul 1992 | A |
5128813 | Lee | Jul 1992 | A |
5136395 | Ishii et al. | Aug 1992 | A |
5158132 | Guillemot | Oct 1992 | A |
5168424 | Bolton et al. | Dec 1992 | A |
5171183 | Pollard et al. | Dec 1992 | A |
5173819 | Takahashi et al. | Dec 1992 | A |
5176202 | Richard | Jan 1993 | A |
5205132 | Fu | Apr 1993 | A |
5206772 | Hirano et al. | Apr 1993 | A |
5207613 | Ferchau et al. | May 1993 | A |
5210680 | Scheibler | May 1993 | A |
5220548 | Nakatsukasa et al. | Jun 1993 | A |
5237484 | Ferchau et al. | Aug 1993 | A |
5263537 | Plucinski et al. | Nov 1993 | A |
5269698 | Singer | Dec 1993 | A |
5295392 | Hensel et al. | Mar 1994 | A |
5309323 | Gray et al. | May 1994 | A |
5325263 | Singer et al. | Jun 1994 | A |
5349486 | Sugimoto et al. | Sep 1994 | A |
5368072 | Cote | Nov 1994 | A |
5374395 | Robinson et al. | Dec 1994 | A |
5379229 | Parsons et al. | Jan 1995 | A |
5398058 | Hattori | Mar 1995 | A |
5412534 | Cutts et al. | May 1995 | A |
5414591 | Kimura et al. | May 1995 | A |
5426581 | Kishi et al. | Jun 1995 | A |
5469037 | McMurtrey, Sr. et al. | Nov 1995 | A |
5477416 | Schkrohowsky et al. | Dec 1995 | A |
5484012 | Hiratsuka | Jan 1996 | A |
5486681 | Dagnac et al. | Jan 1996 | A |
5491610 | Mok et al. | Feb 1996 | A |
5543727 | Bushard et al. | Aug 1996 | A |
5546250 | Diel | Aug 1996 | A |
5557186 | McMurtrey, Sr. et al. | Sep 1996 | A |
5563768 | Perdue | Oct 1996 | A |
5570740 | Flores et al. | Nov 1996 | A |
5593380 | Bittikofer | Jan 1997 | A |
5601141 | Gordon et al. | Feb 1997 | A |
5604662 | Anderson et al. | Feb 1997 | A |
5610893 | Soga et al. | Mar 1997 | A |
5617430 | Angelotti et al. | Apr 1997 | A |
5644705 | Stanley | Jul 1997 | A |
5646918 | Dimitri et al. | Jul 1997 | A |
5654846 | Wicks et al. | Aug 1997 | A |
5673029 | Behl et al. | Sep 1997 | A |
5694290 | Chang | Dec 1997 | A |
5718627 | Wicks | Feb 1998 | A |
5718628 | Nakazato et al. | Feb 1998 | A |
5731928 | Jabbari et al. | Mar 1998 | A |
5751549 | Eberhardt et al. | May 1998 | A |
5754365 | Beck et al. | May 1998 | A |
5761032 | Jones | Jun 1998 | A |
5793610 | Schmitt et al. | Aug 1998 | A |
5811678 | Hirano | Sep 1998 | A |
5812761 | Seki et al. | Sep 1998 | A |
5819842 | Potter et al. | Oct 1998 | A |
5831525 | Harvey | Nov 1998 | A |
5851143 | Hamid | Dec 1998 | A |
5859409 | Kim et al. | Jan 1999 | A |
5859540 | Fukumoto | Jan 1999 | A |
5862037 | Behl | Jan 1999 | A |
5870630 | Reasoner et al. | Feb 1999 | A |
5886639 | Behl et al. | Mar 1999 | A |
5890959 | Pettit et al. | Apr 1999 | A |
5912799 | Grouell et al. | Jun 1999 | A |
5913926 | Anderson et al. | Jun 1999 | A |
5914856 | Morton et al. | Jun 1999 | A |
5927386 | Lin | Jul 1999 | A |
5956301 | Dimitri et al. | Sep 1999 | A |
5959834 | Chang | Sep 1999 | A |
5999356 | Dimitri et al. | Dec 1999 | A |
5999365 | Hasegawa et al. | Dec 1999 | A |
6000623 | Blatti et al. | Dec 1999 | A |
6005404 | Cochran et al. | Dec 1999 | A |
6005770 | Schmitt | Dec 1999 | A |
6008636 | Miller et al. | Dec 1999 | A |
6008984 | Cunningham et al. | Dec 1999 | A |
6011689 | Wrycraft | Jan 2000 | A |
6031717 | Baddour et al. | Feb 2000 | A |
6034870 | Osborn et al. | Mar 2000 | A |
6042348 | Aakalu et al. | Mar 2000 | A |
6045113 | Itakura | Apr 2000 | A |
6055814 | Song | May 2000 | A |
6066822 | Nemoto et al. | May 2000 | A |
6067225 | Reznikov et al. | May 2000 | A |
6069792 | Nelik | May 2000 | A |
6084768 | Bolognia | Jul 2000 | A |
6094342 | Dague et al. | Jul 2000 | A |
6104607 | Behl | Aug 2000 | A |
6115250 | Schmitt | Sep 2000 | A |
6122131 | Jeppson | Sep 2000 | A |
6122232 | Schell et al. | Sep 2000 | A |
6124707 | Kim et al. | Sep 2000 | A |
6130817 | Flotho et al. | Oct 2000 | A |
6144553 | Hileman et al. | Nov 2000 | A |
6166901 | Gamble et al. | Dec 2000 | A |
6169413 | Paek et al. | Jan 2001 | B1 |
6169930 | Blachek et al. | Jan 2001 | B1 |
6177805 | Pih | Jan 2001 | B1 |
6178835 | Orriss et al. | Jan 2001 | B1 |
6181557 | Gatti | Jan 2001 | B1 |
6185065 | Hasegawa et al. | Feb 2001 | B1 |
6185097 | Behl | Feb 2001 | B1 |
6188191 | Frees et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6193339 | Behl et al. | Feb 2001 | B1 |
6209842 | Anderson et al. | Apr 2001 | B1 |
6227516 | Webster, Jr. et al. | May 2001 | B1 |
6229275 | Yamamoto | May 2001 | B1 |
6231145 | Liu | May 2001 | B1 |
6233148 | Shen | May 2001 | B1 |
6236563 | Buican et al. | May 2001 | B1 |
6247944 | Bolognia et al. | Jun 2001 | B1 |
6249824 | Henrichs | Jun 2001 | B1 |
6252769 | Tullstedt et al. | Jun 2001 | B1 |
6262863 | Ostwald et al. | Jul 2001 | B1 |
6272007 | Kitlas et al. | Aug 2001 | B1 |
6272767 | Botruff et al. | Aug 2001 | B1 |
6281677 | Cosci et al. | Aug 2001 | B1 |
6282501 | Assouad | Aug 2001 | B1 |
6285524 | Boigenzahn et al. | Sep 2001 | B1 |
6289678 | Pandolfi | Sep 2001 | B1 |
6297950 | Erwin | Oct 2001 | B1 |
6298672 | Valicoff, Jr. | Oct 2001 | B1 |
6302714 | Bolognia et al. | Oct 2001 | B1 |
6304839 | Ho et al. | Oct 2001 | B1 |
6307386 | Fowler et al. | Oct 2001 | B1 |
6327150 | Levy et al. | Dec 2001 | B1 |
6330154 | Fryers et al. | Dec 2001 | B1 |
6351379 | Cheng | Feb 2002 | B1 |
6354792 | Kobayashi et al. | Mar 2002 | B1 |
6356409 | Price et al. | Mar 2002 | B1 |
6356415 | Kabasawa | Mar 2002 | B1 |
6384995 | Smith | May 2002 | B1 |
6388437 | Wolski et al. | May 2002 | B1 |
6388875 | Chen | May 2002 | B1 |
6388878 | Chang | May 2002 | B1 |
6389225 | Malinoski et al. | May 2002 | B1 |
6411584 | Davis et al. | Jun 2002 | B2 |
6421236 | Montoya et al. | Jul 2002 | B1 |
6434000 | Pandolfi | Aug 2002 | B1 |
6434498 | Ulrich et al. | Aug 2002 | B1 |
6434499 | Ulrich et al. | Aug 2002 | B1 |
6464080 | Morris et al. | Oct 2002 | B1 |
6467153 | Butts et al. | Oct 2002 | B2 |
6473297 | Behl et al. | Oct 2002 | B1 |
6473301 | Levy et al. | Oct 2002 | B1 |
6476627 | Pelissier et al. | Nov 2002 | B1 |
6477044 | Foley et al. | Nov 2002 | B2 |
6477442 | Valerino, Sr. | Nov 2002 | B1 |
6480380 | French et al. | Nov 2002 | B1 |
6480382 | Cheng | Nov 2002 | B2 |
6487071 | Tata et al. | Nov 2002 | B1 |
6489793 | Jones et al. | Dec 2002 | B2 |
6494663 | Ostwald et al. | Dec 2002 | B2 |
6525933 | Eland | Feb 2003 | B2 |
6526841 | Wanek et al. | Mar 2003 | B1 |
6535384 | Huang | Mar 2003 | B2 |
6537013 | Emberty et al. | Mar 2003 | B2 |
6544309 | Hoefer et al. | Apr 2003 | B1 |
6546445 | Hayes | Apr 2003 | B1 |
6553532 | Aoki | Apr 2003 | B1 |
6560107 | Beck et al. | May 2003 | B1 |
6565163 | Behl et al. | May 2003 | B2 |
6566859 | Wolski et al. | May 2003 | B2 |
6567266 | Ives et al. | May 2003 | B2 |
6570734 | Ostwald et al. | May 2003 | B2 |
6577586 | Yang et al. | Jun 2003 | B1 |
6577687 | Hall et al. | Jun 2003 | B2 |
6618254 | Ives | Sep 2003 | B2 |
6626846 | Spencer | Sep 2003 | B2 |
6628518 | Behl et al. | Sep 2003 | B2 |
6635115 | Fairbairn et al. | Oct 2003 | B1 |
6640235 | Anderson | Oct 2003 | B1 |
6644982 | Ondricek et al. | Nov 2003 | B1 |
6651192 | Viglione et al. | Nov 2003 | B1 |
6654240 | Tseng et al. | Nov 2003 | B1 |
6679128 | Wanek et al. | Jan 2004 | B2 |
6693757 | Hayakawa et al. | Feb 2004 | B2 |
6741529 | Getreuer | May 2004 | B1 |
6746648 | Mattila et al. | Jun 2004 | B1 |
6751093 | Hsu et al. | Jun 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6791799 | Fletcher | Sep 2004 | B2 |
6798651 | Syring et al. | Sep 2004 | B2 |
6798972 | Ito et al. | Sep 2004 | B1 |
6801834 | Konshak et al. | Oct 2004 | B1 |
6806700 | Wanek et al. | Oct 2004 | B2 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826046 | Muncaster et al. | Nov 2004 | B1 |
6830372 | Liu et al. | Dec 2004 | B2 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6861861 | Song et al. | Mar 2005 | B2 |
6862173 | Konshak et al. | Mar 2005 | B1 |
6867939 | Katahara et al. | Mar 2005 | B2 |
6892328 | Klein et al. | May 2005 | B2 |
6904479 | Hall et al. | Jun 2005 | B2 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6928336 | Peshkin et al. | Aug 2005 | B2 |
6937432 | Sri-Jayantha et al. | Aug 2005 | B2 |
6957291 | Moon et al. | Oct 2005 | B2 |
6965811 | Dickey et al. | Nov 2005 | B2 |
6974017 | Oseguera | Dec 2005 | B2 |
6976190 | Goldstone | Dec 2005 | B1 |
6980381 | Gray et al. | Dec 2005 | B2 |
6982872 | Behl et al. | Jan 2006 | B2 |
7006325 | Emberty et al. | Feb 2006 | B2 |
7039924 | Goodman et al. | May 2006 | B2 |
7054150 | Orriss et al. | May 2006 | B2 |
7070323 | Wanek et al. | Jul 2006 | B2 |
7076391 | Pakzad et al. | Jul 2006 | B1 |
7077614 | Hasper et al. | Jul 2006 | B1 |
7088541 | Orriss et al. | Aug 2006 | B2 |
7092251 | Henry | Aug 2006 | B1 |
7106582 | Albrecht et al. | Sep 2006 | B2 |
7123477 | Coglitore et al. | Oct 2006 | B2 |
7126777 | Flechsig et al. | Oct 2006 | B2 |
7130138 | Lum et al. | Oct 2006 | B2 |
7134553 | Stephens | Nov 2006 | B2 |
7139145 | Archibald et al. | Nov 2006 | B1 |
7164579 | Muncaster et al. | Jan 2007 | B2 |
7167360 | Inoue et al. | Jan 2007 | B2 |
7181458 | Higashi | Feb 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7203060 | Kay et al. | Apr 2007 | B2 |
7206201 | Behl et al. | Apr 2007 | B2 |
7216968 | Smith et al. | May 2007 | B2 |
7219028 | Bae et al. | May 2007 | B2 |
7219273 | Fisher et al. | May 2007 | B2 |
7227746 | Tanaka et al. | Jun 2007 | B2 |
7232101 | Wanek et al. | Jun 2007 | B2 |
7243043 | Shin | Jul 2007 | B2 |
7248467 | Sri-Jayantha et al. | Jul 2007 | B2 |
7259966 | Connelly, Jr. et al. | Aug 2007 | B2 |
7273344 | Ostwald et al. | Sep 2007 | B2 |
7280353 | Wendel et al. | Oct 2007 | B2 |
7289885 | Basham et al. | Oct 2007 | B2 |
7304855 | Milligan et al. | Dec 2007 | B1 |
7315447 | Inoue et al. | Jan 2008 | B2 |
7349205 | Hall et al. | Mar 2008 | B2 |
7353524 | Lin et al. | Apr 2008 | B1 |
7385385 | Magliocco et al. | Jun 2008 | B2 |
7395133 | Lowe | Jul 2008 | B2 |
7403451 | Goodman et al. | Jul 2008 | B2 |
7437212 | Farchmin et al. | Oct 2008 | B2 |
7447011 | Wade et al. | Nov 2008 | B2 |
7457112 | Fukuda et al. | Nov 2008 | B2 |
7467024 | Flitsch | Dec 2008 | B2 |
7476362 | Angros | Jan 2009 | B2 |
7483269 | Marvin, Jr. et al. | Jan 2009 | B1 |
7505264 | Hall et al. | Mar 2009 | B2 |
7554811 | Scicluna et al. | Jun 2009 | B2 |
7568122 | Mechalke et al. | Jul 2009 | B2 |
7570455 | Deguchi et al. | Aug 2009 | B2 |
7573715 | Mojaver et al. | Aug 2009 | B2 |
7584851 | Hong et al. | Sep 2009 | B2 |
7612996 | Atkins et al. | Nov 2009 | B2 |
7625027 | Kiaie et al. | Dec 2009 | B2 |
7630196 | Hall et al. | Dec 2009 | B2 |
7643289 | Ye et al. | Jan 2010 | B2 |
7646596 | Ng | Jan 2010 | B2 |
7729107 | Atkins et al. | Jun 2010 | B2 |
20010006453 | Glorioso et al. | Jul 2001 | A1 |
20010044023 | Johnson et al. | Nov 2001 | A1 |
20010046118 | Yamanashi et al. | Nov 2001 | A1 |
20010048590 | Behl et al. | Dec 2001 | A1 |
20020030981 | Sullivan et al. | Mar 2002 | A1 |
20020044416 | Harmon, III et al. | Apr 2002 | A1 |
20020051338 | Jiang et al. | May 2002 | A1 |
20020071248 | Huang et al. | Jun 2002 | A1 |
20020079422 | Jiang | Jun 2002 | A1 |
20020090320 | Burow et al. | Jul 2002 | A1 |
20020116087 | Brown | Aug 2002 | A1 |
20020161971 | Dimitri et al. | Oct 2002 | A1 |
20020172004 | Ives et al. | Nov 2002 | A1 |
20030035271 | Lelong et al. | Feb 2003 | A1 |
20030043550 | Ives | Mar 2003 | A1 |
20030206397 | Allgeyer et al. | Nov 2003 | A1 |
20040165489 | Goodman et al. | Aug 2004 | A1 |
20040230399 | Shin | Nov 2004 | A1 |
20040236465 | Butka et al. | Nov 2004 | A1 |
20040264121 | Orriss et al. | Dec 2004 | A1 |
20050004703 | Christie | Jan 2005 | A1 |
20050010836 | Bae et al. | Jan 2005 | A1 |
20050018397 | Kay et al. | Jan 2005 | A1 |
20050055601 | Wilson et al. | Mar 2005 | A1 |
20050057849 | Twogood et al. | Mar 2005 | A1 |
20050069400 | Dickey et al. | Mar 2005 | A1 |
20050109131 | Wanek et al. | May 2005 | A1 |
20050116702 | Wanek et al. | Jun 2005 | A1 |
20050131578 | Weaver | Jun 2005 | A1 |
20050179457 | Min et al. | Aug 2005 | A1 |
20050207059 | Cochrane | Sep 2005 | A1 |
20050219809 | Muncaster et al. | Oct 2005 | A1 |
20050225338 | Sands et al. | Oct 2005 | A1 |
20050270737 | Wilson et al. | Dec 2005 | A1 |
20060023331 | Flechsig et al. | Feb 2006 | A1 |
20060028802 | Shaw et al. | Feb 2006 | A1 |
20060058912 | Karlen | Mar 2006 | A1 |
20060066974 | Akamatsu et al. | Mar 2006 | A1 |
20060130316 | Takase et al. | Jun 2006 | A1 |
20060190205 | Klein et al. | Aug 2006 | A1 |
20060227517 | Zayas et al. | Oct 2006 | A1 |
20060250766 | Blaalid et al. | Nov 2006 | A1 |
20060269384 | Kiaie et al. | Nov 2006 | A1 |
20070034368 | Atkins et al. | Feb 2007 | A1 |
20070035874 | Wendel et al. | Feb 2007 | A1 |
20070035875 | Hall et al. | Feb 2007 | A1 |
20070053154 | Fukuda et al. | Mar 2007 | A1 |
20070082907 | Canada et al. | Apr 2007 | A1 |
20070127202 | Scicluna et al. | Jun 2007 | A1 |
20070127206 | Wade et al. | Jun 2007 | A1 |
20070195497 | Atkins | Aug 2007 | A1 |
20070248142 | Rountree et al. | Oct 2007 | A1 |
20070253157 | Atkins et al. | Nov 2007 | A1 |
20070286045 | Onagi et al. | Dec 2007 | A1 |
20080007865 | Orriss et al. | Jan 2008 | A1 |
20080030945 | Mojaver et al. | Feb 2008 | A1 |
20080112075 | Farquhar et al. | May 2008 | A1 |
20080239564 | Farquhar et al. | Oct 2008 | A1 |
20080282275 | Zaczek et al. | Nov 2008 | A1 |
20080282278 | Barkley | Nov 2008 | A1 |
20090028669 | Rebstock | Jan 2009 | A1 |
20090082907 | Stuvel et al. | Mar 2009 | A1 |
20090122443 | Farquhar et al. | May 2009 | A1 |
20090142169 | Garcia et al. | Jun 2009 | A1 |
20090153992 | Garcia et al. | Jun 2009 | A1 |
20090153993 | Garcia et al. | Jun 2009 | A1 |
20090153994 | Merrow | Jun 2009 | A1 |
20090175705 | Nakao et al. | Jul 2009 | A1 |
20090261047 | Merrow | Oct 2009 | A1 |
20090261228 | Merrow | Oct 2009 | A1 |
20090261229 | Merrow | Oct 2009 | A1 |
20090262444 | Polyakov et al. | Oct 2009 | A1 |
20090262445 | Noble et al. | Oct 2009 | A1 |
20090262454 | Merrow | Oct 2009 | A1 |
20090262455 | Merrow | Oct 2009 | A1 |
20090265032 | Toscano et al. | Oct 2009 | A1 |
20090265043 | Merrow | Oct 2009 | A1 |
20090265136 | Garcia et al. | Oct 2009 | A1 |
20090297328 | Slocum, III | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
583716 | May 1989 | AU |
1177187 | Mar 1998 | CN |
2341188 | Sep 1999 | CN |
1114109 | Jul 2003 | CN |
1192544 | Mar 2005 | CN |
3786944 | Nov 1993 | DE |
69111634 | May 1996 | DE |
69400145 | Oct 1996 | DE |
19701548 | Aug 1997 | DE |
19804813 | Sep 1998 | DE |
69614460 | Jun 2002 | DE |
69626584 | Dec 2003 | DE |
19861388 | Aug 2007 | DE |
0210497 | Jul 1986 | EP |
0242970 | Oct 1987 | EP |
0 277 634 | Aug 1988 | EP |
0356977 | Aug 1989 | EP |
0442642 | Feb 1991 | EP |
0466073 | Jul 1991 | EP |
0776009 | Nov 1991 | EP |
0582017 | Feb 1994 | EP |
0617570 | Sep 1994 | EP |
0635836 | Jan 1995 | EP |
741508 | Nov 1996 | EP |
0757320 | Feb 1997 | EP |
0757351 | Feb 1997 | EP |
0840476 | May 1998 | EP |
1 045 301 | Oct 2000 | EP |
1209557 | May 2002 | EP |
1422713 | May 2004 | EP |
1234308 | May 2006 | EP |
1760722 | Mar 2007 | EP |
1612798 | Nov 2007 | EP |
2241118 | Aug 1991 | GB |
2276275 | Sep 1994 | GB |
2299436 | Oct 1996 | GB |
2312984 | Nov 1997 | GB |
2328782 | Mar 1999 | GB |
2439844 | Jul 2008 | GB |
61-115279 | Jun 1986 | JP |
62-177621 | Aug 1987 | JP |
62-239394 | Oct 1987 | JP |
62-251915 | Nov 1987 | JP |
63-002160 | Jan 1988 | JP |
63-004483 | Jan 1988 | JP |
63-016482 | Jan 1988 | JP |
63-062057 | Mar 1988 | JP |
63-201946 | Aug 1988 | JP |
63-214972 | Sep 1988 | JP |
63-269376 | Nov 1988 | JP |
63-195697 | Dec 1988 | JP |
64-089034 | Apr 1989 | JP |
2-091565 | Mar 1990 | JP |
2-098197 | Apr 1990 | JP |
2-185784 | Jul 1990 | JP |
2-199690 | Aug 1990 | JP |
2-278375 | Nov 1990 | JP |
2-297770 | Dec 1990 | JP |
3-008086 | Jan 1991 | JP |
3-078160 | Apr 1991 | JP |
3-105704 | May 1991 | JP |
3-207947 | Sep 1991 | JP |
3-210662 | Sep 1991 | JP |
3-212859 | Sep 1991 | JP |
3-214490 | Sep 1991 | JP |
3-240821 | Oct 1991 | JP |
3-295071 | Dec 1991 | JP |
4-017134 | Jan 1992 | JP |
4-143989 | May 1992 | JP |
4-172658 | Jun 1992 | JP |
4-214288 | Aug 1992 | JP |
4-247385 | Sep 1992 | JP |
4-259956 | Sep 1992 | JP |
4-307440 | Oct 1992 | JP |
4-325923 | Nov 1992 | JP |
5-035053 | Feb 1993 | JP |
5-035415 | Feb 1993 | JP |
5-066896 | Mar 1993 | JP |
5-068257 | Mar 1993 | JP |
5-073803 | Mar 1993 | JP |
5-0753566 | Mar 1993 | JP |
5-101603 | Apr 1993 | JP |
5-173718 | Jul 1993 | JP |
5-189163 | Jul 1993 | JP |
5-204725 | Aug 1993 | JP |
5-223551 | Aug 1993 | JP |
6-004220 | Jan 1994 | JP |
6-004981 | Jan 1994 | JP |
6-162645 | Jun 1994 | JP |
6-181561 | Jun 1994 | JP |
6-215515 | Aug 1994 | JP |
6-274943 | Sep 1994 | JP |
6-314173 | Nov 1994 | JP |
7-007321 | Jan 1995 | JP |
7-029364 | Jan 1995 | JP |
7-037376 | Feb 1995 | JP |
7-056654 | Mar 1995 | JP |
7-111078 | Apr 1995 | JP |
7-115497 | May 1995 | JP |
7-201082 | Aug 1995 | JP |
7-226023 | Aug 1995 | JP |
7-230669 | Aug 1995 | JP |
7-257525 | Oct 1995 | JP |
1982246 | Oct 1995 | JP |
7-307059 | Nov 1995 | JP |
8007994 | Jan 1996 | JP |
8-030398 | Feb 1996 | JP |
8-030407 | Feb 1996 | JP |
8-079672 | Mar 1996 | JP |
8-106776 | Apr 1996 | JP |
8-110821 | Apr 1996 | JP |
8-167231 | Jun 1996 | JP |
8-212015 | Aug 1996 | JP |
8-244313 | Sep 1996 | JP |
8-263525 | Oct 1996 | JP |
8-263909 | Oct 1996 | JP |
8-297957 | Nov 1996 | JP |
2553315 | Nov 1996 | JP |
9-044445 | Feb 1997 | JP |
9-064571 | Mar 1997 | JP |
9-082081 | Mar 1997 | JP |
2635127 | Jul 1997 | JP |
9-306094 | Nov 1997 | JP |
9-319466 | Dec 1997 | JP |
10-040021 | Feb 1998 | JP |
10-049365 | Feb 1998 | JP |
10-064173 | Mar 1998 | JP |
10-098521 | Apr 1998 | JP |
2771297 | Jul 1998 | JP |
10-275137 | Oct 1998 | JP |
10-281799 | Oct 1998 | JP |
10-320128 | Dec 1998 | JP |
10-340139 | Dec 1998 | JP |
2862679 | Mar 1999 | JP |
11-134852 | May 1999 | JP |
11-139839 | May 1999 | JP |
2906930 | Jun 1999 | JP |
11-203201 | Jul 1999 | JP |
11-213182 | Aug 1999 | JP |
11-327800 | Nov 1999 | JP |
11-353128 | Dec 1999 | JP |
11-353129 | Dec 1999 | JP |
2000-056935 | Feb 2000 | JP |
2000-066845 | Mar 2000 | JP |
2000-112831 | Apr 2000 | JP |
2000-113563 | Apr 2000 | JP |
2000-114759 | Apr 2000 | JP |
2000-125290 | Apr 2000 | JP |
3052183 | Apr 2000 | JP |
2000-132704 | May 2000 | JP |
2000-149431 | May 2000 | JP |
2000-228686 | Aug 2000 | JP |
2000-235762 | Aug 2000 | JP |
2000-236188 | Aug 2000 | JP |
2000-242598 | Sep 2000 | JP |
2000-278647 | Oct 2000 | JP |
3097994 | Oct 2000 | JP |
2000-305860 | Nov 2000 | JP |
2001-005501 | Jan 2001 | JP |
2001-023270 | Jan 2001 | JP |
2001-100925 | Apr 2001 | JP |
2002-42446 | Feb 2002 | JP |
2007-87498 | Apr 2007 | JP |
2007-188615 | Jul 2007 | JP |
2007-220184 | Aug 2007 | JP |
2007- 293936 | Nov 2007 | JP |
2007- 305206 | Nov 2007 | JP |
2007-305290 | Nov 2007 | JP |
2007-328761 | Dec 2007 | JP |
2008-503824 | Feb 2008 | JP |
10-1998-0035445 | Aug 1998 | KR |
10-0176527 | Nov 1998 | KR |
10-0214308 | Aug 1999 | KR |
10-0403039 | Oct 2003 | KR |
45223 | Jan 1998 | SG |
387574 | Apr 2000 | TW |
WO 8901682 | Feb 1989 | WO |
WO 9706532 | Feb 1997 | WO |
WO 0049487 | Feb 2000 | WO |
WO 0067253 | Nov 2000 | WO |
WO 0109627 | Feb 2001 | WO |
WO 0141148 | Jun 2001 | WO |
WO 03013783 | Feb 2003 | WO |
WO 03021597 | Mar 2003 | WO |
WO 03021598 | Mar 2003 | WO |
WO 03067385 | Aug 2003 | WO |
WO 2004006260 | Jan 2004 | WO |
WO 2004114286 | Dec 2004 | WO |
WO 2005024830 | Mar 2005 | WO |
WO 2005024831 | Mar 2005 | WO |
WO 2005109131 | Nov 2005 | WO |
WO 2006030185 | Mar 2006 | WO |
WO 2006048611 | May 2006 | WO |
WO 2006100441 | Sep 2006 | WO |
WO 2006100445 | Sep 2006 | WO |
WO 2007031729 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090265032 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12104536 | Apr 2008 | US |
Child | 12424980 | US |