Transistor array structure

Information

  • Patent Grant
  • 9449967
  • Patent Number
    9,449,967
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, September 20, 2016
    8 years ago
Abstract
A semiconductor circuit can include a plurality of arrays of transistors having differing characteristics and operating at low voltages and currents. A drain line drive signal may provide a potential to a drain line to which a selected transistor is connected. A row of drain mux circuits can provide reduced leakage current on the drain line drive signal so that more accurate current measurements may be made. A gate line drive signal may provide a potential to a gate line to which the selected transistor is connected. A column of gate line mux circuits can provide a gate line low drive signal to unselected transistors to reduce leakage current in unselected transistors so that more accurate drain current measurements may be made to the selected transistor.
Description
TECHNICAL FIELD

The present invention relates generally to array structures, and more particularly to an array structure that may improve transistor characteristic measurement accuracy.


BACKGROUND OF THE INVENTION

Process variations can cause component characteristics on a semiconductor device to greatly vary. Test structures may be constructed to test operating characteristics of devices such as insulated gate field effect transistors (IGFETs). However, as devices operate at lower voltages and currents, measurements may be distorted by leakage currents in current paths other than the desired path of the device under test (DUT).


In view of the above, it would be desirable to provide a way of reducing or eliminating leakage currents in a device, such as an IGFET being tested.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a semiconductor circuit according to a first embodiment.



FIG. 2 is a circuit schematic diagram of an array of transistors according to an embodiment.



FIG. 3 is a circuit schematic diagram of drain mux circuit according to an embodiment.



FIG. 4 is a circuit schematic diagram of gate mux circuit according to an embodiment.



FIG. 5 is a circuit schematic diagram of an array drain drive circuit according to an embodiment.



FIG. 6 is a circuit schematic diagram of an array of transistors according to an embodiment.



FIG. 7 is a table showing potentials in which various signals and power supplies may be set when testing current characteristics of transistors according to an embodiment.



FIG. 8 is a table illustrating simulation results.



FIG. 9 is a flow diagram of a method of testing transistor characteristics according to an embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Various embodiments of the present invention will now be described in detail with reference to a number of drawings. The embodiments show transistor array circuits and methods constructed with insulated gate field effect transistors (IGFETs), for example IGFETs of complementary conductivity types (n-channel and p-channel types). In particular, the embodiments may include implementations using IGFETs having substantially lower absolute value of threshold voltage VT, e.g. about 0.4 volts for n-channel IGFETs and about −0.4 volts for p-channel IGFETs as compared to about 0.6 volts and −0.6 volts, respectively. Such low threshold voltage IGFETs may comprise DDC technology, as but one example. DDC transistors are particularly advantageous for the embodiments herein based on the ability to reliably set threshold voltage with substantially reduced variation compared with conventional planar CMOS transistors. DDC transistors are also amenable to be designed with reduced threshold voltage, based upon, among other device design attributes, there being a heavily doped region and structure below a substantially undoped channel. Further discussion regarding transistor structure and methods of implementation is provided in U.S. Pat. No. 8,273,617 entitled ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME, which disclosure is incorporated by reference herein in its entirety. Such low threshold voltage IGFETs may be based upon a different transistor design, such as a design that is not planar but three-dimensional. Such low threshold voltage IFGETs may be produced on bulk silicon or on a substrate that has an insulating layer embedded therein.


Referring now to FIG. 1, a semiconductor circuit according to a first embodiment is set forth in a block schematic diagram, and designated by the general reference character 100. Semiconductor circuit 100 can include arrays (110-0 to 110-7). Each array (110-0 to 110-7) has a corresponding column of gate mux (multiplexer) circuits (130-0 to 130-7), row of drain mux circuits (120-0 to 120-7), and array drain drive circuits (140-0 to 140-7).


Each row of drain mux circuits (120-0 to 120-7) may receive column factor signals (CF1(7:0) and CF2(3:0)) and corresponding bank select signal (BS0 to BS7). Each column of drain mux circuits (120-0 to 120-7) may also receive a respective drain drive signal (DDRV0 to DDRV7) and a drain current reduction signal DTRACK.


Each column of gate mux circuits (130-0 to 130-7) may receive row factor signals (RF1(7:0) and RF2(3:0)) and corresponding bank select signal (BS0 to BS7). Each row of gate mux circuits (130-0 to 130-7) may also receive a gate drive signal GDRV and a gate line low drive signal GTRACK.


Array drain drive circuit (140-0 to 140-7) may receive a global drain drive signal GDDRV and may provide a local drain drive signal (DDRV0 to DDRV7), respectively to respective row of drain mux circuits (120-0 to 120-7).


Semiconductor circuit 100 may include an address generator 190. Address generator 190 may receive a clock signal CLK and a reset signal RST and may provide column factor signals (CF1(7:0) and CF2(3:0)), row factors (RF1(7:0) and RF2(3:0)), and bank select signal (BS7:0). Address generator 190 may be a clocked counter.


Referring now to FIG. 2, a circuit schematic diagram of an array according to an embodiment is set forth and given the general reference character 200. Array 200 can include transistors (N(1,1) to N(32,27)) arranged in a 32×27 matrix. Each transistor (N(1,1) to N(32,27)) may include a source terminal connected to ground a potential VSS, a gate connected to a respective gate line (GL-1 to GL-32), and a drain connected to a respective drain line (DL-1 to DL-27). For instance, transistor N(3,25) may have a gate connected to gate line GL3 in common with transistors (N(3,1) to N(3,24) (not shown), N(3,26) and N(3,27)) and a drain connected to drain line DL25 in common with transistors (N(1,25), N(2,25), and N(4,25) (not shown) to N(32,25)). Likewise, each transistor (N(1,1) to N(32,27)) can have a drain commonly connected with the drains of 31 other transistors along the same column and gates connected with the gates of 26 other transistors along the same row.


Each drain line (DL-1 to DL-27) may be connected to a row of drain mux circuits 220-k and each gate line (GL-1 to GL-32) may be connected to a column of gate mux circuits 230-k, where k=0-7 and denotes the array (110-0 to 110-7) that a bank select signal (BS0-7) selects (FIG. 1).


Array 200 may have 27 different types of transistors (i.e. different sizes, implant dopings, geometries, etc.) in the gate line (GL-1 to GL-32) direction. In this way, characteristics for different transistor types can be tested in each array. By having 32 transistors in each column connected to each drain line (DL-1 to DL-27), characteristic variations for same transistor types may be tested. Such variations may be caused by process variations or close proximity affects, for instance.


Referring now to FIG. 3, a circuit schematic diagram of a drain mux circuit according to an embodiment is set forth and designated by the general reference character 300. In each drain mux circuit 220-k of FIG. 2, there can be one drain mux circuit 300 for each drain line (DL-1 to DL-27). For instance, in array 200 of FIG. 2, there may be 27 drain mux circuits 300 in row of drain mux circuits 220-k.


Drain mux circuit 300 may receive column factor signals (CF1(7:0) and CF2(3:0)) and bank select signal BSk, drain drive signal DDRVk, and drain current reduction signal DTRACK. It is understood that only one of the column factor signals (CF1(7:0) and one of the column factor signals (CF2(3:0)) may be used per drain mux circuit 300 in accordance with the proper address decoding.


Drain mux circuit 300 may include logic gates (G302 and G304) and pass gates (PG302 and PG304). Logic gate G302 can receive column factors signals (CF1(7:0) and CF2(3:0)), and bank select signal BSk as inputs and may provide a data line select complement signal DSELECTN-n as an output. Logic gate G302 may be a NAND logic gate. Logic gate G304 may receive data line select complement signal DSELECTN-n and may provide a data line select signal DSELECT-n. Logic gate G304 may be an inverter logic gate. Logic gates (G302 and G304) may include complementary conductive type IGFETs with the p-channel IGFETs receiving a body bias potential Vbp1 at a body terminal and n-channel IGFETs receiving a body bias potential Vbn1 at a body terminal. Logic gates (G302 and G304) may receive a power supply potential VDD1 and a ground potential VSS1.


Pass gate PG302 may receive drain current reduction signal DTRACK, data line select signal DSELECT-n, and data line select complement signal DSELECTN-n as inputs and may have an output coupled to a drain line DL-n. Pass gate PG302 can include transistors (P302 and N302). Transistor P302 may be p-channel IGFET and transistor N302 may be an n-channel IGFET N302. Transistor P302 may provide a controllable impedance path between source and drain terminals connected between drain current reduction signal DTRACK and data line DL-n. Transistor P302 may receive data line select signal DSELECT-n at a gate terminal and a body bias voltage Vbp1 at a body bias terminal. Transistor N302 may be connected in parallel with transistor P302 to provide a controllable impedance path between source and drain terminals connected between drain current reduction signal DTRACK and data line DL-n. Transistor N302 may receive data line select complement signal DSELECTN-n at a gate terminal and a body bias voltage Vbn1 at a body bias terminal.


Pass gate PG304 may receive local drain drive signal DDRVk, data line select signal DSELECT-n, and data line select complement signal DSELECTN-n as inputs and may have an output coupled to a drain line DL-n. Pass gate PG304 can include transistors (P304 and N304). Transistor P304 may be p-channel IGFET and transistor N304 may be an n-channel IGFET N304. Transistor P304 may provide a controllable impedance path between source and drain terminals connected between local drain drive signal DDRVk and data line DL-n. Transistor P304 may receive data line select complement signal DSELECTN-n at a gate terminal and a body bias voltage Vbp1 at a body bias terminal. Transistor N304 may be connected in parallel with transistor P304 to provide a controllable impedance path between source and drain terminals connected between local drain drive signal DDRVk and data line DL-n. Transistor N304 may receive data line select signal DSELECT-n at a gate terminal and a body bias voltage Vbn1 at a body bias terminal.


Referring now to FIG. 4, a gate mux circuit according to an embodiment is set forth and designated by the general reference character 400. In each gate mux circuit 230-k of FIG. 2, there can be one gate mux circuit 400 for each gate line (GL-1 to GL-32). For instance, in array 200 of FIG. 2, there may be 32 gate mux circuits 400.


Gate mux circuit 400 may receive row factor signals (RF1(7:0) and RF2(3:0)) and bank select signal BSk, gate drive signal GDRV, and gate line low drive signal GTRACK. It is understood that only one of the row factor signals (RF1(7:0) and one of the row factor signals (RF2(3:0)) may be used per gate mux circuit 400 in accordance with the proper address decoding.


Gate mux circuit 400 may include logic gates (G402 and G404) and pass gates (PG402 and PG404). Logic gate G402 can receive row factors signals (RF1(7:0) and RF2(3:0)), and bank select signal BSk as inputs and may provide a gate line select signal GSELECT-m as an output. Logic gate G402 may be a NAND logic gate. Logic gate G404 may receive gate line select signal GSELECT-m and may provide a gate line select complement signal GSELECTN-m. Logic gate G404 may be an inverter logic gate. Logic gates (G402 and G404) may include complementary conductive type IGFETs with the p-channel IGFETs receiving a body bias potential Vbp2 at a body terminal and n-channel IGFETs receiving a body bias potential Vbn2 at a body terminal. Logic gates (G402 and G404) may receive a power supply potential VDD2 and a ground potential VSS2.


Pass gate PG402 may receive gate line low drive signal GTRACK, gate line select signal GSELECT-m, and gate line select complement signal GSELECTN-m as inputs and may have an output coupled to a gate line GL-m. Pass gate PG402 can include transistors (P402 and N402). Transistor P402 may be p-channel IGFET and transistor N402 may be an n-channel IGFET. Transistor P402 may provide a controllable impedance path between source and drain terminals connected between gate line low drive signal GTRACK and gate line GL-m. Transistor P402 may receive gate line select signal GSELECT-m at a gate terminal and a body bias voltage Vbp2 at a body bias terminal. Transistor N402 may be connected in parallel with transistor P402 to provide a controllable impedance path between source and drain terminals connected between gate line low drive signal GTRACK and gate line GL-m. Transistor N402 may receive gate line select complement signal GSELECTN-m at a gate terminal and a body bias voltage Vbn2 at a body bias terminal.


Pass gate PG404 may receive gate drive signal GDRV, gate line select signal GSELECT-m, and gate line select complement signal GSELECTN-m as inputs and may have an output coupled to a gate line GL-m. Pass gate PG404 can include transistors (P404 and N404). Transistor P404 may be p-channel IGFET and transistor N404 may be an n-channel IGFET. Transistor P404 may provide a controllable impedance path between source and drain terminals connected between gate drive signal GDRV and gate line GL-m. Transistor P404 may receive gate line select complement signal GSELECTN-m at a gate terminal and a body bias voltage Vbp2 at a body bias terminal. Transistor N404 may be connected in parallel with transistor P404 to provide a controllable impedance path between source and drain terminals connected between gate drive signal GDRV and gate line GL-m. Transistor N404 may receive gate line select signal GSELECT-m at a gate terminal and a body bias voltage Vbn2 at a body bias terminal.


Referring now to FIG. 5, a circuit schematic diagram of an array drain drive circuit according to an embodiment is set forth and designated by the general reference character 500. Array drain drive circuit 500 may be used as array drain drive circuit (140-0 to 140-7) in semiconductor circuit 100 of FIG. 1.


Array drain drive circuit 500 may receive bank select signal BSk and global drain drive signal GDDRV as inputs and may have an output connected to provide local drain drive signal DDRVk. Array drain drive circuit 500 may include a logic gate G502 and a pass gate PG502.


Logic gate G502 may receive bank select signal BSk as an input and may provide an output. Logic gate G502 may be an inverter. Logic gate G502 may include complementary conductive type IGFETs with the p-channel IGFETs receiving a body bias potential Vbp1 at a body terminal and n-channel IGFETs receiving a body bias potential Vbn1 at a body terminal. Logic gate G502 may receive a power supply potential VDD1 and a ground potential VSS1.


Pass gate PG502 may receive bank select signal BSk, the output of inverter G502, and global drain drive signal GDDRV as inputs and may have an output coupled to provide local drain drive signal DDRVk. Pass gate PG502 can include transistors (P502 and N502). Transistor P502 may be p-channel IGFET and transistor N502 may be an n-channel IGFET. Transistor P502 may provide a controllable impedance path between source and drain terminals connected between global drain drive signal GDDRV and local drain drive signal DDRVk. Transistor P502 may receive the output of logic gate G502 at a gate terminal and a body bias voltage Vbp1 at a body bias terminal. Transistor N502 may be connected in parallel with transistor P502 to provide a controllable impedance path between source and drain terminals connected between between global drain drive signal GDDRV and local drain drive signal DDRVk. Transistor N502 may receive bank select signal BSk at a gate terminal and a body bias voltage Vbn1 at a body bias terminal.


The operation of semiconductor circuit 100 of FIG. 1 will now be discussed with reference to FIGS. 1 to 5. In the example, bank 110-1 may be activated and transistor N(30,25) in array 200 of FIG. 2 will be selected.


Bank select signal BS1 may transition to a high logic level to activate bank 110-1. The predetermined set of two row factors (RF1(7:0) and RF2(3:0)) uniquely received by gate G402 of gate mux circuit 400 (each of the other gate mux circuits 400 in column of gate mux circuits 130-1, receive a different unique combination of two row factors (RF1(7:0) and RF2(3:0))) may be at a high logic level. In this way, logic gate G402 may provide a gate line select complement signal GSELECTN-m, in this case m=30, having a logic low level and logic gate G404 may provide a gate line select signal GSELECT-m having a logic high level. With gate line select signal GSELECT-m at a logic high level, pass gate PG402 may be turned off and pass gate PG404 may be turned on and a low impedance path may be provided between gate drive signal GDRV and gate line GL-m, where m=30. In this way gate line GL-30 may be driven by gate drive signal GDRV through pass gate PG404.


All the other gate mux circuits 400 in column of gate mux circuits 130-1 that drive gate lines (GL-1 to GL-29, GL-31, and GL32) provide a gate line select signal GSELECT-m at a logic low level. With gate line select signal GSELECT-m at a logic low level, pass gate PG402 may be turned on and pass gate PG404 may be turned off and a low impedance path may be provided between gate line low drive signal GTRACK and gate line GL-m, where m=1=29, 31 and 32). In this way gate lines (GL-1 to GL-29, GL-31, and GL32) may be driven by gate line low drive signal GTRACK through pass gate PG402.


With bank select signal BS1 at a logic high level, pass gate PG502 in drive mux circuit 500 may be turned on and a low impedance path may be provided between global drain drive signal GDDRV and local drain drive signal DDRV1.


The predetermined set of two column factors (CF1(7:0) and CF2(3:0)) uniquely received by gate G302 of drain mux circuit 300 (each of the other drain mux circuits 300 in row of column mux circuits 120-1, receive a different unique combination of two column factors (CF1(7:0) and CF2(3:0))) may be at a high logic level. In this way, logic gate G302 may provide a drain line select complement signal DSELECTN-n, in this case m=25, having a logic low level and logic gate G304 may provide a drain line select signal DSELECT-n having a logic high level. With drain line select signal DSELECT-n at a logic high level, pass gate PG302 may be turned off and pass gate PG304 may be turned on and a low impedance path may be provided between local drain drive signal DDRV1 and drain line DL-n, where n=25. In this way gate line DL-25 may be driven by global drain drive signal GDDRV through pass gates PG502 and PG304.


All the other drain mux circuits 300 in row of drain mux circuits 120-1 that drive drain lines (DL-1 to DL-24, DL-26, and DL27) provide a drain line select signal DSELECT-n at a logic low level. With drain line select signal DSELECT-n at a logic low level, pass gate PG302 may be turned on and pass gate PG304 may be turned off and a low impedance path may be provided drain current reduction signal DTRACK and gate line DL-n, where n=1-24, 26, and 27). In this way drain lines (DL-1 to DL-24, DL-26, and DL27) may be driven by drain current reduction signal DTRACK through pass gate PG302.


As described above, the column of drain mux circuits 120-k may operate to drive a selected drain line DL-25 with a global drain drive signal GDDRV by way of pass gates (PG502 and PG304) while driving unselected drain lines (DL-1 to DL-24, DL-26, and DL27) with a drain current reduction signal DTRACK through pass gate PG302. In this way, a potential drop across the unselected pass gates PG304 (e.g. the 26 unselected pass gates PG304) connected to local drain drive signal DDRVk may be reduced to zero thereby eliminating or significantly reducing channel leakage currents to unselected columns. By reducing the potential across the unselected pass gates, a drive current through drain drive signal GDDRV may more accurately represent the actual drain current in selected transistor N(30,25). In this way, testing characteristics of a selected transistor N(30,25) can be more accurately performed.


For transistors operating with extremely low currents, for example low voltage IGFETs, such as FINFETs, DDC transistors, and/or transistors operating in subthreshold regions, the reduction of alternate leakage current paths may be particularly necessary to provide accurate current measurements.


In yet another feature, the row of gate mux circuits 130-k may operate to drive a selected gate line GL-30 with a gate drive signal GDRV by way of pass gate PG404 while driving unselected gate lines (GL-1 to GL-29, GL-31, and DL-32) with a gate line low drive signal GTRACK through pass gate PG402. In this way, a gate potential of unselected transistors (e.g. the 31 unselected transistors (N(1,25) to N(29,25), N(31,25), and N(32,25) along drain line DL25) may be set to a potential below ground potential VSS. The low gate potential may provide a substantially higher impedance path through the unselected transistors (N(1,25) to N(29,25), N(31,25), and N(32,25) along drain line DL25) and leakage current along drain line DL-25 may be substantially reduced. In this way, testing characteristics of a selected transistor N(30,25) can be more accurately performed.


Referring now to FIG. 6, a circuit schematic diagram of an array according to an embodiment is set forth and given the general reference character 600.


Array 600 of FIG. 6 may differ from array 200 of FIG. 2 in that transistors (N(1,1) to N(32,27)) can be p-channel IGFETs. In this configuration, the common sources of the transistors (N(1,1) to N(32,27)) may be connected to a power supply potential VDDSOURCE. Note that with back bias potentials (Vbn1 and Vbn2) normally separated between the column and row paths, in the embodiment tying the two voltages together improves the test accuracy for drain current IDD and gate voltages VG.


Referring now to FIG. 7, a table is set forth and designated by the general reference character 700. Table 700 may include potentials in which various signals and supplies may be set when testing current characteristics of transistors in an n-channel array 200 and a p-channel array 600.


Referring now to FIG. 8, a table is set forth and designated by the general reference character 800. Table 800 sets forth simulation results of drain current IDD actually flowing through the transistor in the array being tested as well as the drain current IDD flowing from an output pad that may drive the global drain drive signal GDDRV as well as the actual gate potential on the transistor in the array being tested as well as the potential placed on the pad connected to gate drive signal GDRV. As can be seen, the actual current IDD is about the same as the current flowing from the output pad, with essentially matching actual gate line (GL-m) potential and gate drive signal GDRV potential indicating that the methods described above are substantially reducing leakage current that can otherwise make test results inaccurate.


Referring now to FIG. 9, a flow diagram according to an embodiment is set forth and given the general reference character 900. Flow diagram 900 illustrates testing semiconductor circuit 100 of FIG. 1. Flow diagram 900 will now be described with reference to FIG. 9 in conjunction with FIGS. 1 and 2.


At step S910, the semiconductor circuit 100 may be provided on a probing apparatus. At step S920, a reset signal RST may be provided. In this way, address generator 190 may be reset to begin incrementing at the first address. At step S930, gate drive signal GDRV may be provided on a pad. At step S940, gate line low drive signal GTRACK may be provided on a pad. At step S950, global drain drive signal GDDRV may be provided on a pad. At step S960, drain current reduction signal DTRACK may be provided on a pad. At this point, the gate drive signal GDRV can be provided to the gate terminal of the transistor being tested, for instance, GL1 connected to transistor under test N(1,1). Global drain drive signal GDDRV may be provided to the drain line of the transistor being tested, for instance DL1 connected to transistor under test N(1,1). Also, at this time, the gate line low drive signal GTRACK can be provided to the gate lines (GL2-GL32) of transistors that are not selected and the drain current reduction signal can be provided to the drain lines (DL2-DL27) of transistors that are not selected. At step S970, the current flowing through global drain drive signal GDDRV may be determined. The current in step S970 may have a current value that is essentially the same as the current flowing through the transistor under test N(1,1). By driving a target current through drive signal at given drain voltage and slewing gate voltage, the gate voltage rises until the target current is hit, then the gate voltage can be measured for a selected drain voltage (typically value of 0.1V or Vdd).


At step S980, the clock signal CLK may transition through one clock cycle. In this way, address generator may output a subsequent address. The process may return to step S930 to test a subsequent transistor in accordance with the subsequent address. The test process may continue in this manner until all of the transistors in all of the arrays (110-0 to 110-7) may be tested.


The appearance of the phrase “in one embodiment” in various places in the specification do not necessarily refer to the same embodiment. The term “to couple” or “electrically connect” as used herein may include both to directly and to indirectly connect through one or more intervening components. While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. Accordingly, the specifications and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A circuit, comprising: an array of transistors;a plurality of drain lines, each drain line coupled to a plurality of the array of transistors in a drain line direction; anda plurality of drain line multiplexers, each drain line multiplexer having a first drain multiplexer terminal coupled to a drain line drive signal, a second drain multiplexer terminal coupled to a leakage current reduction signal, and a third drain multiplexer terminal coupled to a corresponding one of the plurality of drain lines wherein each one of the plurality of drain line multiplexers includes a first pass gate having a first pass gate controllable impedance path coupled between the first drain multiplexer terminal and the third drain multiplexer terminal and a second pass gate having a second pass gate controllable impedance path coupled between the second drain multiplexer terminal and the third drain multiplexer terminal, and wherein when one of the plurality of drain line multiplexers provides a low impedance path between the first drain multiplexer terminal and the third drain multiplexer terminal, the other of the plurality of drain line multiplexers provides a low impedance path between the second drain multiplexer terminal and the third drain multiplexer terminal.
  • 2. The circuit of claim 1, further including: a global drain drive signal; anda third pass gate having a controllable impedance path between the global drain drive signal and the first drain multiplexer terminal.
  • 3. The circuit of claim 1, wherein: the array of transistors are n-channel insulated gate field effect transistors and the drain line drive signal has about the same potential as the leakage current reduction signal.
  • 4. The circuit of claim 1, wherein: the array of transistors are p-channel insulated gate field effect transistors and the drain line drive signal has about the same potential as the leakage current reduction signal.
  • 5. The circuit of claim 1, further including: a plurality of gate lines, each gate line coupled to a plurality of the array of transistors in a gate line direction; anda plurality of gate line multiplexers, each gate line multiplexer having a first gate multiplexer terminal coupled to a first gate line drive signal, a second gate multiplexer terminal coupled to a second gate line drive signal, and a third gate multiplexer terminal coupled to a corresponding one of the plurality of gate lines wherein when one of the plurality of gate line multiplexers provides a low impedance path between the first gate multiplexer terminal and the third gate multiplexer terminal, the other of the plurality of gate line multiplexers provides a low impedance path between the second gate multiplexer terminal and the third gate multiplexer terminal.
  • 6. The circuit of claim 5, wherein: each one of the plurality of gate line multiplexers includes a first pass gate having a first pass gate controllable impedance path coupled between the first gate multiplexer terminal and the third gate multiplexer terminal.
  • 7. The circuit of claim 6, wherein: each one of the plurality of gate line multiplexers further includes a second pass gate having a first pass gate controllable impedance path coupled between the second gate multiplexer terminal and the third gate multiplexer terminal.
  • 8. The circuit of claim 5, wherein: the first gate line drive signal is bound between a first potential and a second potential and the second gate line drive signal has a potential that is outside the bounds of the first gate line drive signal.
  • 9. The circuit of claim 5, wherein: the plurality of drain line multiplexers receive a first power supply potential and the plurality of gate line multiplexers receive a second power supply potential.
  • 10. The circuit of claim 1, wherein: the plurality of transistors are insulated gate field effect transistors including a structure having a gate overlying a channel, wherein the channel comprises a substantially undoped channel having a relatively high mobility and a heavily doped screen layer lying a predetermined distance below the transistor gate.
  • 11. The circuit of claim 1, each of the first pass gate and the second pass gate includes a transistor of which structure is different from a structure of a transistor included in the array of transistors.
  • 12. The circuit of claim 1, each of the first pass gate and the second pass gate includes a NMOS transistor and a PMOS transistor, and the array of transistors includes memory transistors.
  • 13. A circuit, comprising: a first array of transistors;a first plurality of drain lines, each drain line coupled to a plurality of the first array of transistors in a drain line direction; anda first plurality of drain line multiplexers, each one of the first plurality of drain line multiplexers having a first drain multiplexer terminal coupled to a drain line drive signal, a second drain multiplexer terminal coupled to a second drain line drive signal, and a third drain multiplexer terminal coupled to a corresponding one of the first plurality of drain lines each one of the first plurality of drain line multiplexers includes a first pass gate having a first pass gate controllable impedance path coupled between the first drain multiplexer terminal and the third drain multiplexer terminal and a second pass gate having a second pass gate controllable impedance path coupled between the second drain multiplexer terminal and the third drain multiplexer terminal, and wherein when one of the first plurality of drain line multiplexers provides a low impedance path between the first drain multiplexer terminal and the third drain multiplexer terminal, the other of the first plurality of first drain line multiplexers provides a low impedance path between the second drain multiplexer terminal and the third drain multiplexer terminal;a second array of transistors;a second plurality of drain lines, each drain line coupled to a plurality of the second array of transistors in a drain line direction; anda second plurality of drain line multiplexers, each one of the second plurality of drain line multiplexers having a first drain multiplexer terminal coupled to the drain line drive signal, a second drain multiplexer terminal coupled to the second drain line drive signal, and a third drain multiplexer terminal coupled to a corresponding one of the second plurality of drain lines wherein when one of the second plurality of drain line multiplexers provides a low impedance path between the first drain multiplexer terminal and the third drain multiplexer terminal, the other of the second plurality of first drain line multiplexers provides a low impedance path between the second drain multiplexer terminal and the third drain multiplexer terminal.
  • 14. The circuit of claim 13, wherein: the first array of transistors are n-channel insulated gate field effect transistors (IGFETs); andthe second array of transistors are p-channel IGFETs.
  • 15. The circuit of claim 13, wherein: the first array of transistors include at least two transistors that are different types.
  • 16. The circuit of claim 13, each of the first pass gate and the second pass gate includes a transistor of which structure is different from a structure of a transistor included in the first array of transistors.
  • 17. The circuit of claim 13, each of the first pass gate and the second pass gate includes a NMOS transistor and a PMOS transistor, and the first array of transistors includes memory transistors.
US Referenced Citations (257)
Number Name Date Kind
3958266 Athanas May 1976 A
4000504 Berger Dec 1976 A
4021835 Etoh et al. May 1977 A
4242691 Kotani et al. Dec 1980 A
4276095 Beilstein, Jr. et al. Jun 1981 A
4315781 Henderson Feb 1982 A
4578128 Mundt et al. Mar 1986 A
4617066 Vasudev Oct 1986 A
4761384 Neppl et al. Aug 1988 A
4819043 Yazawa et al. Apr 1989 A
5034337 Mosher et al. Jul 1991 A
5144378 Hikosaka Sep 1992 A
5156989 Williams et al. Oct 1992 A
5156990 Mitchell Oct 1992 A
5166765 Lee et al. Nov 1992 A
5208473 Komori et al. May 1993 A
5298763 Shen et al. Mar 1994 A
5369288 Usuki Nov 1994 A
5384476 Nishizawa et al. Jan 1995 A
5559368 Hu et al. Sep 1996 A
5608253 Liu et al. Mar 1997 A
5663583 Matloubian et al. Sep 1997 A
5712501 Davies et al. Jan 1998 A
5719422 Burr et al. Feb 1998 A
5726488 Watanabe et al. Mar 1998 A
5780899 Hu et al. Jul 1998 A
5847419 Imai et al. Dec 1998 A
5856003 Chiu Jan 1999 A
5861334 Rho Jan 1999 A
5877049 Liu et al. Mar 1999 A
5889315 Farrenkopf et al. Mar 1999 A
5895954 Yasumura et al. Apr 1999 A
5923987 Burr Jul 1999 A
5989963 Luning et al. Nov 1999 A
6020227 Bulucea Feb 2000 A
6087210 Sohn Jul 2000 A
6087691 Hamamoto Jul 2000 A
6096611 Wu Aug 2000 A
6103562 Son et al. Aug 2000 A
6121153 Kikkawa Sep 2000 A
6147383 Kuroda Nov 2000 A
6157073 Lehongres Dec 2000 A
6175582 Naito et al. Jan 2001 B1
6184112 Maszara et al. Feb 2001 B1
6190979 Radens et al. Feb 2001 B1
6194259 Nayak et al. Feb 2001 B1
6218895 De et al. Apr 2001 B1
6229188 Aoki et al. May 2001 B1
6245618 An et al. Jun 2001 B1
6288429 Iwata et al. Sep 2001 B1
6300177 Sundaresan et al. Oct 2001 B1
6313489 Letavic et al. Nov 2001 B1
6320222 Forbes et al. Nov 2001 B1
6326666 Bernstein et al. Dec 2001 B1
6358806 Puchner Mar 2002 B1
6380019 Yu et al. Apr 2002 B1
6391752 Colinge et al. May 2002 B1
6426279 Huster et al. Jul 2002 B1
6444550 Hao et al. Sep 2002 B1
6444551 Ku et al. Sep 2002 B1
6461920 Shirahata Oct 2002 B1
6461928 Rodder Oct 2002 B2
6472278 Marshall et al. Oct 2002 B1
6482714 Hieda et al. Nov 2002 B1
6489224 Burr Dec 2002 B1
6492232 Tang et al. Dec 2002 B1
6500739 Wang et al. Dec 2002 B1
6503801 Rouse et al. Jan 2003 B1
6506640 Ishida et al. Jan 2003 B1
6518623 Oda et al. Feb 2003 B1
6534373 Yu Mar 2003 B1
6541829 Nishinohara et al. Apr 2003 B2
6548842 Bulucea et al. Apr 2003 B1
6551885 Yu Apr 2003 B1
6573129 Hoke et al. Jun 2003 B2
6600200 Lustig et al. Jul 2003 B1
6620671 Wang et al. Sep 2003 B1
6624488 Kim Sep 2003 B1
6630710 Augusto Oct 2003 B1
6660605 Liu Dec 2003 B1
6667200 Sohn et al. Dec 2003 B2
6670260 Yu et al. Dec 2003 B1
6693333 Yu Feb 2004 B1
6730568 Sohn May 2004 B2
6737724 Hieda et al. May 2004 B2
6743291 Ang et al. Jun 2004 B2
6753230 Sohn et al. Jun 2004 B2
6770944 Nishinohara et al. Aug 2004 B2
6797994 Hoke et al. Sep 2004 B1
9787424 Yu Sep 2004
6808994 Wang Oct 2004 B1
6821825 Todd et al. Nov 2004 B2
6822297 Nandakumar et al. Nov 2004 B2
6831292 Currie et al. Dec 2004 B2
6881641 Wieczorek et al. Apr 2005 B2
6881987 Sohn Apr 2005 B2
6893947 Martinez et al. May 2005 B2
6916698 Mocuta et al. Jul 2005 B2
6930007 Bu et al. Aug 2005 B2
6930360 Yamauchi et al. Aug 2005 B2
6963090 Passlack et al. Nov 2005 B2
7002214 Boyd et al. Feb 2006 B1
7008836 Algotsson et al. Mar 2006 B2
7013359 Li Mar 2006 B1
7015546 Herr et al. Mar 2006 B2
7057216 Quyang et al. Jun 2006 B2
7061058 Chakravarthi et al. Jun 2006 B2
7064039 Liu Jun 2006 B2
7064399 Babcock et al. Jun 2006 B2
7071103 Chan et al. Jul 2006 B2
7078325 Curello et al. Jul 2006 B2
7078776 Nishinohara et al. Jul 2006 B2
7089515 Hanafi et al. Aug 2006 B2
7119381 Passlack Oct 2006 B2
7170120 Datta et al. Jan 2007 B2
7186598 Yamauchi et al. Mar 2007 B2
7189627 Wu et al. Mar 2007 B2
7199430 Babcock et al. Apr 2007 B2
7202517 Dixit et al. Apr 2007 B2
7211871 Cho May 2007 B2
7221021 Wu et al. May 2007 B2
7223646 Miyashita et al. May 2007 B2
7226833 White et al. Jun 2007 B2
7226843 Weber et al. Jun 2007 B2
7235822 Li Jun 2007 B2
7294877 Rueckes et al. Nov 2007 B2
7297994 Wieczorek et al. Nov 2007 B2
7301208 Handa et al. Nov 2007 B2
7304350 Misaki Dec 2007 B2
7312500 Miyashita et al. Dec 2007 B2
7323754 Ema et al. Jan 2008 B2
7332439 Lindert et al. Feb 2008 B2
7348629 Chu et al. Mar 2008 B2
7354833 Liaw Apr 2008 B2
7427788 Li et al. Sep 2008 B2
7442971 Wirbeleit et al. Oct 2008 B2
7462908 Bol et al. Dec 2008 B2
7485536 Jin et al. Feb 2009 B2
7491988 Tolchinsky et al. Feb 2009 B2
7494861 Chu et al. Feb 2009 B2
7498637 Yamaoka et al. Mar 2009 B2
7501324 Babcock et al. Mar 2009 B2
7507999 Kusumoto et al. Mar 2009 B2
7521323 Surdeanu et al. Apr 2009 B2
7531393 Doyle et al. May 2009 B2
7538412 Schulze et al. May 2009 B2
7564105 Chi et al. Jul 2009 B2
7592241 Takao Sep 2009 B2
7598142 Ranade et al. Oct 2009 B2
7605041 Ema et al. Oct 2009 B2
7605060 Meunier-Beillard et al. Oct 2009 B2
7605429 Bernstein et al. Oct 2009 B2
7608496 Chiu Oct 2009 B2
7615802 Elpelt et al. Nov 2009 B2
7622341 Chudzik et al. Nov 2009 B2
7642140 Bae et al. Jan 2010 B2
7645665 Kubo et al. Jan 2010 B2
7651920 Siprak Jan 2010 B2
7655523 Babcock et al. Feb 2010 B2
7675126 Cho Mar 2010 B2
7678638 Chu et al. Mar 2010 B2
7681628 Joshi et al. Mar 2010 B2
7682887 Dokumaci et al. Mar 2010 B2
7683442 Burr et al. Mar 2010 B1
7696000 Liu et al. Apr 2010 B2
7704844 Zhu et al. Apr 2010 B2
7709828 Braithwaite et al. May 2010 B2
7723750 Zhu et al. May 2010 B2
7750405 Nowak Jul 2010 B2
7750682 Bernstein et al. Jul 2010 B2
7755146 Helm et al. Jul 2010 B2
7759714 Itoh et al. Jul 2010 B2
7795677 Bangsaruntip et al. Sep 2010 B2
7818702 Mandelman et al. Oct 2010 B2
7829402 Matocha et al. Nov 2010 B2
7867835 Lee et al. Jan 2011 B2
7883977 Babcock et al. Feb 2011 B2
7888747 Hokazono Feb 2011 B2
7897495 Ye et al. Mar 2011 B2
7906413 Cardone et al. Mar 2011 B2
7906813 Kato Mar 2011 B2
7919791 Flynn et al. Apr 2011 B2
7948008 Liu et al. May 2011 B2
7952147 Ueno et al. May 2011 B2
7960232 King et al. Jun 2011 B2
7960238 Kohli et al. Jun 2011 B2
7968400 Cai Jun 2011 B2
7968411 Williford Jun 2011 B2
8004024 Furukawa et al. Aug 2011 B2
8012827 Yu et al. Sep 2011 B2
8039332 Bernard et al. Oct 2011 B2
8048791 Hargrove et al. Nov 2011 B2
8048810 Tsai et al. Nov 2011 B2
8067279 Sadra et al. Nov 2011 B2
8105891 Yeh et al. Jan 2012 B2
8106424 Schruefer Jan 2012 B2
8106481 Rao Jan 2012 B2
8119482 Bhalla et al. Feb 2012 B2
8120069 Hynecek Feb 2012 B2
8129246 Babcock et al. Mar 2012 B2
8129797 Chen et al. Mar 2012 B2
8134159 Hokazono Mar 2012 B2
8143120 Kerr et al. Mar 2012 B2
8143124 Challa et al. Mar 2012 B2
8143678 Kim et al. Mar 2012 B2
8148774 Mori et al. Apr 2012 B2
8163619 Yang et al. Apr 2012 B2
8173502 Yan et al. May 2012 B2
8178430 Kim et al. May 2012 B2
8183096 Wirbeleit May 2012 B2
8183107 Mathur et al. May 2012 B2
8236661 Dennard et al. Aug 2012 B2
20010014495 Yu Aug 2001 A1
20030122203 Nishinohara et al. Jul 2003 A1
20030183856 Wieczorek et al. Oct 2003 A1
20030202374 Hayashi Oct 2003 A1
20040075118 Heinemann et al. Apr 2004 A1
20040084731 Matsuda et al. May 2004 A1
20050116282 Pattanayak et al. Jun 2005 A1
20050250289 Babcock et al. Nov 2005 A1
20060022270 Boyd et al. Feb 2006 A1
20060049464 Rao Mar 2006 A1
20060068555 Zhu et al. Mar 2006 A1
20060068586 Pain Mar 2006 A1
20060071278 Takao Apr 2006 A1
20060154428 Dokumaci Jul 2006 A1
20060284633 Park Dec 2006 A1
20070040222 Van Camp et al. Feb 2007 A1
20070158790 Rao Jul 2007 A1
20070238253 Tucker Oct 2007 A1
20080067589 Ito et al. Mar 2008 A1
20080169493 Lee et al. Jul 2008 A1
20080197439 Goerlach et al. Aug 2008 A1
20080227250 Ranade et al. Sep 2008 A1
20080258198 Bojarczuk et al. Oct 2008 A1
20080272409 Sonkusale et al. Nov 2008 A1
20090057746 Sugll et al. Mar 2009 A1
20090108350 Cai et al. Apr 2009 A1
20090134468 Tsuchiya et al. May 2009 A1
20090302388 Cai et al. Dec 2009 A1
20090311837 Kapoor Dec 2009 A1
20090321849 Miyamura et al. Dec 2009 A1
20100012988 Yang et al. Jan 2010 A1
20100038724 Anderson et al. Feb 2010 A1
20100187641 Zhu et al. Jul 2010 A1
20110073961 Dennard et al. Mar 2011 A1
20110074498 Thompson et al. Mar 2011 A1
20110079860 Verhulst Apr 2011 A1
20110079861 Shifren et al. Apr 2011 A1
20110169082 Zhu et al. Jul 2011 A1
20110175170 Wang et al. Jul 2011 A1
20110180880 Chudzik et al. Jul 2011 A1
20110193164 Zhu Aug 2011 A1
20120021594 Gurtei et al. Jan 2012 A1
20120056275 Cai et al. Mar 2012 A1
20120108050 Chen et al. May 2012 A1
20120190177 Kim et al. Jul 2012 A1
Foreign Referenced Citations (7)
Number Date Country
0274278 Jul 1988 EP
59-193066 Nov 1984 JP
4-186774 Jul 1992 JP
8-153873 Jun 1996 JP
8-288508 Nov 1996 JP
2004087671 Mar 2004 JP
2011062788 May 2011 WO
Non-Patent Literature Citations (21)
Entry
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995.
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001.
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006.
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006.
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000.
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008.
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009.
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001.
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996.
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002.
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809 -814, Apr. 1998.
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378 -1383, Jul. 1999.
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002.
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000.
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998.
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999.
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997.
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19, 1998.
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996.
Werner, P. et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998.
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992.