Transmyocardial shunt and its attachment mechanism, for left ventricular revascularization

Information

  • Patent Grant
  • 6926690
  • Patent Number
    6,926,690
  • Date Filed
    Thursday, September 20, 2001
    23 years ago
  • Date Issued
    Tuesday, August 9, 2005
    19 years ago
Abstract
A conduit is provided to provide a bypass around a blockage in the coronary artery. The conduit is adapted to be positioned in the myocardium or heart wall to provide a passage for blood to flow between a chamber of the heart such as the left ventricle and the coronary artery, distal to the blockage. The stent is self-expanding or uses a balloon to expand the stent in the heart wall. Various attachment means are provided to anchor the stent and prevent its migration. In one embodiment, a conduit is provided having a distal top which is more preferably a ball top, wire top, flare top or flip-down top. These top configurations anchor the shunt at one end in the coronary artery.
Description
FIELD OF THE INVENTION

The present invention relates to an apparatus for bypassing a blocked blood vessel segment, and, more particularly, to a conduit or stent positioned between the coronary artery or other blocked vessel and a chamber of the heart, such as the left ventricle of the heart, to bypass a blocked segment of the coronary artery or other blood vessel.


BACKGROUND OF THE INVENTION

Coronary artery disease is a major problem in the U.S. and throughout the world. Coronary arteries as well as other blood vessels frequently become clogged with plaque, which at the very least impairs the efficiency of the heart's pumping action, and can lead to heart attack and death. In some cases, these arteries can be unblocked through non-invasive techniques such as balloon angioplasty. In more difficult cases, a bypass of the blocked vessel is necessary.


In a bypass operation, one or more venous segments are inserted between the aorta and the coronary artery. The inserted venous segments or transplants act as a bypass of the blocked portion of the coronary artery and thus provide for a free or unobstructed flow of blood to the heart. More than 500,000 bypass procedures are performed in the U.S. every year.


Such coronary artery bypass surgery, however, is a very intrusive procedure that is expensive, time-consuming and traumatic to the patient. The operation requires an incision through the patient's sternum (sternotomy), and that the patient be placed on a bypass pump so that the heart can be operated on while not beating. A vein graft is harvested from the patient's leg, another highly invasive procedure, and a delicate surgical procedure is required to piece the bypass graft to the coronary artery (anastomosis). Hospital stays subsequent to the surgery and convalescence are prolonged.


As mentioned above, another conventional treatment is percutaneous transluminal coronary angioplasty (PTCA) or other types of angioplasty. However, such vascular treatments are not always indicated due to the type or location of the blockage, or due to the risk of emboli.


Thus, there is a need for an improved bypass system which is less traumatic to the patient.


SUMMARY OF THE INVENTION

The preferred embodiments of the present invention address the need in the previous technology by providing a bypass system that avoids the sternotomy and other intrusive procedures normally associated with coronary bypass surgery. These embodiments also free the surgeon from the multiple anastomoses necessary in the current process.


The preferred device provides a shunt for diverting blood directly from a chamber in the heart, such as the left ventricle, to the coronary artery, distal to the blockage, therefore bypassing the blocked portion of the vessel. The shunt comprises a stent or conduit adapted to be positioned in the heart wall or myocardium between a chamber in the heart such as the left ventricle and the coronary artery that allows for the direct passage of blood therethrough. As used herein, the terms “stent” and “conduit” are interchangeable, and refer to a device that allows for the passage of blood therethrough. The terms “myocardium” and “heart wall” are also used interchangeably. In addition, although the left ventricle is referred to throughout the description, it should be understood that the conduit described herein can be used to provide a passageway for the flow of blood from any heart chamber, not only the left ventricle.


The stent device is delivered either externally or internally through the coronary artery to a position distal to the blockage. At that position, the coronary artery, the myocardium and the wall of the left ventricle are pierced to provide a channel completely through from the coronary artery to the left ventricle of the heart. The stent is then positioned in the channel to provide a permanent passage for blood to flow between the left ventricle of the heart and the coronary artery, distal to the blockage. The stent is sized so that one open end is positioned within the coronary artery, while the other open end is positioned in the left ventricle. The hollow lumen of the stent provides a passage for the flow of blood.


The stent can be self-expandable or expanded by means of a balloon or similar device, and can be provided with various means to anchor it in position, such as expandable legs, hooks, barbs, flanges, collars, loops, wires, flares, suture holes and the like. The anchoring means can be adapted to anchor the conduit in the heart wall, or alternatively, in the coronary artery. The stent can be formed from a plurality of rings, which can be connected to provide stability. The stent can include a valve in its interior, and can also be used to deliver drugs or other pharmaceutical compounds directly into the myocardium and the coronary circulation.


Briefly stated, the methods and apparatus described and illustrated herein generally relate to direct coronary revascularization, wherein a conduit or opening is provided from the left ventricle to the coronary artery, oftentimes the left anterior descending (LAD), to provide blood flow directly therethrough. The conduit of the preferred embodiments has a distal top which is more preferably a ball top, wire top, flare top or flip-down top. These top configurations anchor the shunt at one end in the coronary artery.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a cross-sectional view of a human heart, aorta and coronary artery.



FIG. 1B is a side view of one embodiment of an expandable stent and the balloon catheter used for stent delivery.



FIG. 2 is a side view of the stent of FIG. 1B mounted on the distal end of the catheter for delivery into the myocardium, with the coronary artery and myocardium shown cut-away.



FIG. 3 is a side view of the distal end of the stent/catheter assembly of FIG. 1B positioned in the myocardium, with the coronary artery and myocardium shown cut-away.



FIG. 4 is a cross-sectional side view of the stent of FIG. 1B positioned within the myocardium after removal of the catheter used for delivery.



FIG. 5 is a side view of another embodiment of the stent and the catheter used for stent delivery.



FIG. 6 is a cross-sectional side view of the catheter and puncture device used to introduce the self-expanding stent of FIG. 5 into the myocardium.



FIG. 7 is a cross-sectional side view of the stent/catheter assembly of FIG. 5 positioned in the myocardium.



FIG. 8 is a side view of the self-expanding stent of FIG. 5 positioned within the myocardium after removal of the catheter and puncture device, with the coronary artery and myocardium shown cut-away.



FIG. 9 is a perspective view of another embodiment of the stent having expandable legs, showing the stent mounted on the distal end of the introducer catheter.



FIG. 10 is a perspective view of the stent of FIG. 9, showing the distal end of the introducer catheter pushed forward to allow the legs of the stent to expand.



FIG. 11 is a perspective view of the stent of FIG. 9, showing the legs of the stent in an expanded position.



FIG. 12 is a side view of another embodiment of the stent positioned within the myocardium, with the coronary artery and myocardium shown cut-away



FIG. 13 is a side view of a biodegradable stent positioned within the myocardium, with the coronary artery and myocardium shown cut-away.



FIG. 14 is a side view of a catheter and puncture device used to introduce a bulkhead stent into the myocardium, with the coronary artery and myocardium shown cut-away.



FIG. 15 is a side view of the stent/catheter assembly of FIG. 14 positioned in the myocardium, with the coronary artery and myocardium shown cutaway.



FIGS. 16-19 are progressive side views of the stent/catheter assembly of FIG. 14, showing the bulkhead stent being deployed into the myocardium.



FIGS. 20 and 21 are enlarged views of FIGS. 18 and 19, respectively, showing the bulkhead stent being deployed into the myocardium.



FIG. 22 is a perspective view of a ring of a bulkhead stent in a loaded configuration.



FIG. 23 is a perspective view of a ring of a bulkhead stent in an inserted configuration.



FIG. 24 is a perspective view of a bulk-head stent within a delivery catheter, showing the rings of the bulkhead stent being inserted.



FIG. 25 is a perspective view of a bulkhead stent, with the rings of the stent in loaded and inserted configurations.



FIG. 26 is a perspective view of an inserter device used to insert a bulkhead stent.



FIG. 27A is a schematic, cross-sectional view of the human heart, showing a catheter used to form a channel through the myocardium and into the left ventricle inserted into the coronary artery.



FIG. 27B is an enlarged view of the distal end of the catheter and the channel through the myocardium in FIG. 27A.



FIG. 28 is a schematic, cross-sectional view of a stent delivery catheter positioned inside the channel formed in the myocardium.



FIG. 29 is a schematic, partial cross-sectional view of a self-expanding spring stent being positioned in the channel formed in the myocardium.



FIG. 30 is a schematic, partial cross-sectional view of the self expanding stent deployed within the myocardium.



FIG. 31 is a perspective view of another embodiment of a stent having retention members which maintain the position of the stent.



FIG. 32 is a schematic, cross-sectional view of a human heart, showing a conduit in the myocardium of the heart for forming a bypass shunt between the left ventricle and a coronary artery.



FIG. 33A is a side view of a wire top shunt according to one embodiment of the present invention.



FIG. 33B is a side view of a wire top shunt according to another embodiment of the present invention.



FIGS. 33C-33F are schematic side views of wire top shunts inserted into a patient's coronary artery.



FIGS. 33G-33I are schematic side views of a delivery sequence for inserting a wire top shunt.



FIG. 34A is a side view of a wire top shunt according to another embodiment of the present invention.



FIG. 34B is a side view of a ball top shunt according to one embodiment of the present invention, the shunt being shown laid out flat.



FIG. 34C is a side view of the ball top shunt of FIG. 34B, shown implanted in a patient.



FIG. 34D is a side view of a ball top shunt according to another embodiment of the present invention, the shunt being shown laid out flat.



FIG. 34E is a side view of a ball top shunt according to another embodiment of the present invention, the shunt being shown in its preassembly configuration.



FIG. 34F is a side view of a ball top shunt according to another embodiment of the present invention, the shunt being shown laid out flat.



FIG. 34G is a side view of the ball top shunt of FIG. 34F, shown implanted in a patient.



FIG. 34H is a side view of a ball top shunt according to another embodiment of the present invention, the shunt being shown laid out flat.



FIG. 34I is a side view of a ball top shunt according to another embodiment of the present invention, the shunt being shown laid out flat.



FIG. 34J is a side view of a ball top shunt according to another embodiment of the present invention, the shunt being shown laid out flat.



FIG. 34K is a side view of a flexible ball top shunt.



FIG. 34L is a side view of the delivery apparatus for the ball top shunt of FIG. 34K.



FIG. 35 is a side view of a wire top shunt according to another embodiment of the present invention.



FIG. 36 is an enlarged view of the wire top shunt of FIG. 35.



FIG. 37 is a side view of a wire top shunt according to another embodiment of the present invention.



FIG. 38 is a top view of the wire top shunt of FIG. 37.



FIGS. 39A-39F are side views showing the deployment sequence of a wire top shunt.



FIG. 40A is a side view of a flare top shunt according to one embodiment of the present invention.



FIG. 40B is a side view of a flip-down shunt according to one embodiment of the present invention, the shunt being shown laid out flat.



FIG. 40C is a side view of the flip-down shunt of FIG. 40B, shown implanted in a patient.



FIG. 41 is a side view of a shunt with a T-flange.



FIG. 42 is a schematic view of a hinged conduit.



FIG. 43 is a schematic view of another embodiment of a hinged conduit.



FIG. 44A is a schematic side view of a bell shape stent having a web flange and an axially expandable region.



FIG. 44B is a schematic side view of the distal end of the stent of FIG. 44A showing more particularly the web flange in the coronary artery.



FIG. 44C is a schematic side view of the stent and web flange of FIG. 44A showing a stylet holding the web flange closed.



FIG. 46 is a schematic side view of a conduit having annular grooves.



FIG. 47A is a schematic side view of a conduit having a single loop anchoring mechanism.



FIG. 47B is a front view of the conduit of FIG. 47A.



FIG. 48A is a side view of a conduit having deployable flanges.



FIG. 48B illustrates the conduit of FIG. 48A with the flanges deployed.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As is well known, the coronary artery branches off the aorta and is positioned along the external surface of the heart wall. The anatomy of the human heart is illustrated in FIG. 1A. Oxygenated blood flows from the heart PH to the aorta AO, on to the rest of the body, some of the blood flowing into the coronary artery CA. In some individuals, plaque builds up within the coronary artery CA, blocking the free flow of blood and causing complications ranging from mild angina to heart attack and death.


In order to restore the flow of oxygenated blood through the coronary artery, one embodiment of the present invention provides for the shunting of blood directly from the heart to a site in the coronary artery that is distal to the blockage. A channel is formed through the wall of the coronary artery and the myocardium and into the left ventricle of the heart that lies beneath the coronary artery. A stent or conduit is positioned in the passage to keep it open, and allow for the flow of oxygenated blood directly from the heart into the coronary artery. Again, it should be understood that while the insertion of the conduit in the myocardium between the left ventricle and the coronary artery is described in detail below, this is merely exemplary and use of the conduit between other chambers of the heart and the coronary artery, and between blood vessels is also contemplated.


The principles of the present invention are not limited to left ventricular conduits, and include conduits for communicating bodily fluids from any space within a patient to another space within a patient, including any mammal. Furthermore, such fluid communication through the conduits is not limited to any particular direction of flow and can be antegrade or retrograde with respect to the normal flow of fluid. Moreover, the conduits may communicate between a bodily space and a vessel or from one vessel to another vessel (such as an artery to a vein or vice versa). Moreover, the conduits can reside in a single bodily space so as to communicate fluids from one portion of the space to another. For example, the conduits can be used to achieve a bypass within a single vessel, such as communicating blood from a proximal portion of an occluded coronary artery to a more distal portion of that same coronary artery.


In addition, the conduits and related methods can preferably traverse various intermediate destinations and are not limited to any particular flow sequence. For example, in one preferred embodiment of the present invention, the conduit communicates from the left ventricle, through the myocardium, into the pericardial space, and then into the coronary artery. However, other preferred embodiments are disclosed, including direct transmyocardial communication from a left ventricle, through the myocardium and into the coronary artery. Thus, as emphasized above, the term “transmyocardial” should not be narrowly construed in connection with the preferred fluid communication conduits, and other non-myocardial and even noncardiac fluid communication are preferred as well. With respect to the walls of the heart (and more specifically the term “heart wall”), the preferred conduits and related methods are capable of fluid communication through all such walls including, without limitation, the pericardium, epicardium, myocardium, endocardium, septum, etc.


The bypass which is achieved with certain preferred embodiments and related methods is not limited to a complete bypass of bodily fluid flow, but can also include a partial bypass which advantageously supplements the normal bodily blood flow. Moreover, the occlusions which are bypassed may be of a partial or complete nature, and therefore the terminology “bypass” or “occlusion” should not be construed to be limited to a complete bypass or a complete occlusion but can include partial bypass and partial occlusion as described.


The preferred conduits and related methods disclosed herein can also provide complete passages or partial passages through bodily tissues. In this regard, the conduits can comprise stents, shunts, or the like, and therefore provide a passageway or opening for bodily fluid such as blood. Moreover, the conduits are not necessarily stented or lined with a device but can comprise mere tunnels or openings formed in the tissues of the patient.


The conduits of the present invention preferably comprise both integral or one-piece conduits as well as plural sections joined together to form a continuous conduit. The present conduits can be deployed in a variety of methods consistent with sound medical practice including vascular or surgical deliveries, including minimally invasive techniques. For example, various preferred embodiments of delivery rods and associated methods may be used. In one embodiment, the delivery rod is solid and trocar-like. It may be rigid or semi-rigid and capable of penetrating the tissues of the patient and thereby form the conduit, in whole or in part, for purposes of fluid communication. In other preferred embodiments, the delivery rods may be hollow so as to form the conduits themselves (e.g., the conduits are preferably self-implanting or self-inserting) or have a conduit mounted thereon (e.g., the delivery rod is preferably withdrawn leaving the conduit installed). Thus, the preferred conduit device and method for installation is preferably determined by appropriate patient indications in accordance with sound medical practices.


In some individuals, aortic insufficiency or peripheral venous insufficiency occurs. Aortic insufficiency is the leakage of blood through the aortic valve, resulting in a backflow of blood into the left ventricle. The heart compensates for the backflow of blood by pumping harder, resulting in hypertrophy (thickening of the heart muscle) and dilation of the left ventricle wall. Left untreated, heart failure can result. In venous insufficiency, the heart valves are unable to prevent the backflow of blood. This too can result in heart failure. Accordingly, one embodiment of the invention provides for the use of a conduit placed within the heart wall to improve the flow of oxygenated blood through the body.


Balloon Expanded Stent


A first embodiment of the present invention is illustrated in FIG. 1B. This embodiment is a balloon-expanded stent 10. The stent 10 is introduced as described below, using a high-pressure balloon catheter 12 to deploy the stent 10 once it is properly positioned in the myocardium MYO (FIG. 2). When the stent 10 is positioned inside the myocardial wall MYO, the balloon 14 is inflated to expand the stent 10 and open the conduit from the left ventricle LV into the coronary artery CA. The stent 10 can include attachment mechanisms not limited to hooks, barbs, flanges, large collars, suture holes and/or other means to ensure a seal is created between the coronary artery CA and the wall of the myocardium MYO and to prevent the threat of stent 10 migration. When the attachment of the stent 10 is completed, the remaining catheter assembly 12 is removed, leaving the stent 10 in place. Upon deflating the balloon 14, the stent 10 will remain open. Because of the shape of this stent 10, a dumbbell shaped balloon 14 is preferably used to ensure proper expansion, as described below.



FIGS. 1B through 4 illustrate the introduction of the balloon-expanded stent 10 into the myocardial wall MYO. FIG. 1B illustrates the stent 10 mounted over the balloon 14 on the distal end of the stent introducer catheter 12. FIG. 2 illustrates the stent introducer catheter 12 following the path created by a puncture wire 16 extending past the distal end of the introducer catheter 12, and used to access the left ventricle LV through the coronary artery CA and myocardium MYO.



FIG. 3 illustrates the non-expanded stent 10 positioned inside the myocardial wall MYO prior to inflation of the balloon 14. FIG. 4 illustrates an expanded stent 10 in position, with the introducer catheter 12 removed. Because of the way the attachment mechanisms 18 expand on this stent 10, a dumbbell shaped balloon 14 is preferably used to flare out the ends of the stent 10. These flared edges 18 maintain the stent 10 in its proper position in the heart wall MYO and provide a seal between the coronary artery CA and the outer heart wall MYO.


Self Expanding Stent


The second embodiment of the stent or conduit incorporates a self-expanding stent 20, illustrated in FIGS. 5-8. The stent 20, having a retaining sheath 26 to hold it in a non-expanded configuration, is introduced into the wall of the myocardium MYO as follows. The stent delivery catheter 22 is advanced over a puncture mechanism 24 and into the wall of the myocardium MYO as described above. When the stent 20 is properly seated in the myocardial wall MYO, its retaining sheath 26 is withdrawn, allowing the stent 20 to expand and open a conduit from the ventricle LV to the coronary artery CA. This stent 20 also includes attachment mechanisms not limited to hooks, barbs, flanges, large collars, suture holes and/or other means to ensure a seal is created between the artery CA ad the wall of the myocardium MYO, and to prevent the threat of stent 20 migration. When the positioning is completed, the remaining catheter assembly 22 is removed, leaving the stent 20 in place.


The self-expanding stent 20 mounted on the distal end of the stent introducer catheter 22 is illustrated in FIG. 5. FIG. 6 illustrates the stent introducer 22 following the path created by a puncture wire 24 used to form the passage between the coronary artery CA and the left ventricle LV. FIG. 7 illustrates a non-expanded stent 20 located in position on the stent introducer catheter 22 with the introducer catheter 22 in position in the heart wail MYO. FIG. 8 illustrates the self-expanding stent 20 in position, with the introducing catheter 22 removed. Flared edges 28 on the stent 20 maintain its proper position in the heart wall MYO and provide a seal between the coronary vessel CA and outer surface of the heart MYO.


For the stent designs described above, additional anchoring methods may be desired to maintain the stent's proper position and/or create a leak-free seal in the coronary artery. Suitable attachment mechanisms include a set of barbs located on the stent body or flares and a collar on the coronary side to help seal and prevent blood from exiting the gap between the vessel and outer heart wall. The stent can also be anchored in place by applying sutures. The stent can include holes at either end to facilitate the placement of these anchoring sutures. A suture gun can be used to apply multiple sutures at the same time. In addition, the stents can be lined, if desired, with materials such as polymers, for example polytetrafluoroethylene (PTFE), silicone or GORTEX to provide for the ease of blood flow therethrough.


Stent with Attachment Flanges


A third embodiment of the stent design, illustrated in FIGS. 9-11, incorporates attachment flanges or “legs” 30 that expand after introduction into the myocardium to hold the stent 34 in place. The puncture instrument 32 and stent 34 are mated together and are advanced into the myocardial wall as a single unit. The puncture instrument's distal end 36 is shaped in a “nose-cone” configuration, which is responsible for containing the legs 30 of the stent 34 while it is being introduced into the wall of the myocardium. When the stent 34 is in the proper position in the myocardial wall, the nose cone 36 is pushed forward, releasing the attachment legs 30 of the stent 34. The internal diameter (ID) of the stent 34 is large enough to allow the nose cone 36 to pass back through. The stent 34 is then released from the catheter 38 and the catheter 38 is removed.



FIG. 9 illustrates the stent 34 mounted on the introducer catheter 38. The expanding legs 30 of the stent 34 are held in place by the nose cone 36 on the distal end of the catheter 38 that acts as a dilator. The catheter assembly 38 is advanced over a puncture wire if desired, into proper position in the myocardium, and the nose cone 36 is pushed forward allowing the legs 30 to expand as shown in FIG. 10. The nose-cone/puncture assembly 32, 36 is then withdrawn through the lumen of the stent 34. When the nose-cone/puncture assembly 32, 36 is removed, the stent 34 can be pushed off the introducer catheter 38 and remains in the myocardium in the position shown in FIG. 11. FIG. 11 also illustrates a sealing collar 44 that may be used in the interface between the coronary artery and the outer wall of the heart to prevent hemorrhaging around the stent 34 and to hold the stent 34 in place. Sutures can be used to ensure that the stent is maintained in its proper position and prevent migration.


Biodegradable Stent


If desired, the stent or conduit of the present invention can be formed of biodegradable or bioabsorbable materials and/or used to deliver drugs directly into the myocardium and the coronary circulation. Such a stent 52 is illustrated in FIG. 13. The biodegradable stent 52 can extend only partially through the myocardium MYO as illustrated in FIG. 13, but can also extend entirely through from the left ventricle LV to the coronary artery CA. Once positioned in the myocardium MYO, the stent 52 degrades, dissolves or is absorbed over time to release drugs, genes, angiogenesis or growth factors, or other pharmaceutical compounds directly into the heart muscle MYO and the coronary artery CA, as shown by the arrows in FIG. 13. Bioabsorbable materials include, but are not limited to, polymers of the linear aliphatic polyester and glycolide families, such as polylactide and polyglycolide.


Bulkhead Stent



FIG. 12 illustrates a further embodiment of the present invention, a “bulkhead” stent 50. This stent 50 consists of a plurality of rings, which are placed in the myocardium MYO. The rings 50 form a passage through which blood flows from a chamber in the heart, such as the left ventricle LV, directly into the coronary artery CA. The stent 50 is preferably formed of biocompatible material such as a metal or polymer. A gun or other suitable device can be used to implant the stent 50 in the myocardium MYO.


If desired, the separate units or rings of the stent 50 can be connected via a wire, suture thread, or similar means. The wire is threaded through the holes 51 located in each ring. Connecting the rings of the stent 50 in this manner serves to make the stent 50 more stable and to prevent the migration of the individual units. If desired, a valve (not shown) can be incorporated into the stent 50 to help prevent the backflow of blood into the left ventricle LV.


Turning now to FIGS. 14-26, there is illustrated in greater detail one preferred method and apparatus for providing a bulkhead stent 50, as shown in FIG. 12, into the myocardium MYO. As shown in FIG. 14, a stent delivery catheter 60 is advanced over a puncture wire 62 and into the wall of the myocardium MYO as described above. The stent delivery catheter 60 follows the path created by the puncture wire 62 used to form the passage between the coronary artery CA and the left ventricle LV. FIG. 15 illustrates a bulk-head stent 50 still located in position inside the stent delivery catheter 60 with the catheter 60 in position in the heart wall MYO.



FIGS. 16-19 show one embodiment for deploying the bulkhead stent 50 into the myocardium MYO. As the delivery catheter 60 is retracted proximally from the myocardium MYO, the rings comprising the bulkhead stent 50 are deployed into the myocardium MYO. FIGS. 20 and 21 are enlarged views of FIG. 18 and 19, showing the rings of the bulkhead stent 50 positioned within the myocardium MYO to form the passageway therethrough.



FIGS. 22-25 illustrate more particularly the structure and deployment of the rings comprising the bulkhead stent 50. As shown in FIG. 24, the bulkhead stent comprises a plurality of rings 64 that are initially loaded into the delivery catheter 60. While inside the lumen of the catheter 60, each ring 64 has a loaded configuration 64A, shown in FIGS. 22 and 25. After ejectment from the catheter 60, the ring 64 assumes an inserted configuration 64B, shown in FIGS. 23 and 25. Preferably, the inserted configuration of ring 64B includes a plurality of flanges 66 around the circumference of each ring 64, thereby providing a securement mechanism to anchor each ring 64 to the myocardium MYO. Each ring 64 transforms from its loaded configuration 64A to its inserted configuration 64B by virtue of being released from the catheter 60. Specifically, the catheter 60 acts as a restraint on each ring 64 to keep it in its loaded configuration 64A. Then, once the ring 64 is released from the catheter 60, the flanges 66 provided along the circumference of each ring 64 are allowed to extend outward to provide the securement mechanism.



FIG. 26 illustrates an inserter device or handle 68 that may be used in deploying the bulkhead stent 50 into the myocardium. The inserter handle 68 preferably comprises a gun 70 with a trigger 72, and a wire 74 extending from a nozzle 76. The rings 64 (not shown) of the bulkhead stent 50 are preferably loaded onto the wire 74, and may be deployed into the myocardium preferably one at a time by pressing the trigger 72.


Screw Stent



FIGS. 27-30 illustrate another embodiment of the present invention. Here, a self-expanding spring or screw stent 140 is delivered into the myocardium MYO. As illustrated in FIG. 27A, a channel 142 through the wall of the myocardium MYO is first created, as described above, using a device 144 delivered through the aorta AO and coronary artery CA. The channel 142 travels from the coronary artery CA through the myocardium MYO and into the left ventricle LV as shown in FIG. 27B. The distal end of the stent delivery catheter 146 bearing the stent 140 is then positioned within the channel 142, as shown in FIG. 28. Preferably, the position of the distal end of the delivery catheter 146 is checked radiographically, to ensure proper positioning. Next, as illustrated in FIG. 29, the self-expanding spring stent 140 is delivered into the channel 142 wall of the myocardium MYO. The stent 140 is cut such that it does not extend past the myocardium MYO and into either the left ventricle LV or the coronary artery CA. Again, the proper positioning and length of the stent 140 is preferably checked radiographically and any necessary adjustments made before the delivery catheter 146 is removed, as shown in FIG. 30.


Stent with Retention Members



FIG. 31 illustrates another embodiment of the stent 200 having retention members 202. The hollow stent body 204 is held in place in the heart wall by one or more retention members 202 which are deployed after the stent 200 is properly positioned, as described above. FIG. 31 shows the retention members 202 in their deployed position. A flange 206 acts to seal the opening in the coronary artery, while the retention members 202 reside in the myocardium, helping to anchor the stent 200 in place.


Distal Top Shunts


In another embodiment, as illustrated in FIG. 32, a coronary artery bypass is accomplished by disposing a left ventricular conduit 300 in a heart wall or myocardium MYO of a patient's heart PH. The conduit 300 preferably extends from the left ventricle LV of heart PH to a clogged coronary artery CA at a point downstream of a blockage BL. Conduit 300 is preferably made of a biocompatible material such as stainless steel or nitinol, although other materials such as Ti, Ti alloys, Ni alloys, Co alloys and biocompatible polymers may also be used. The conduit 300 may also be coated. The conduits described herein are further characterized by a distal top that is preferably collapsible into a first configuration and expandable into a second configuration. The collapsible and expandable characteristics of the distal top may be accomplished by using a shape memory alloy or superelastic material.



FIG. 33A illustrates a wire top shunt 300 according to one embodiment of the present invention. The shunt 300 preferably comprises an elongate tubular body 311, preferably made of NiTi, having a proximal end 312 and a distal end 314 and a lumen 316 extending therethrough. The distal end 314 corresponds to the end 30 that opens into the coronary artery CA. The proximal end 312 as shown is joined to the distal end of second tube 320, which is preferably made of stainless steel. In one embodiment, the second tube 320 may be a sheath over the tube 312. In the embodiment shown, the shunt 310 comprises both the tubular body 311 and the tube 320, with the proximal end of tube 320 (not shown) opening into the left ventricle. The diameter change from tube 312 to tube 320 allows for a smooth transition from the unsheathed section of the shunt to the sheathed section. The step between the two tubes also provides a mechanical stop for the shunt which is used to transmit axial force from the sheathed section to the shunt during insertion.


Wire loops 318 are preferably attached to the distal end 314 to form the distal top. The wire loops preferably form a generally ball-shaped configuration, with the diameter of the ball corresponding approximately with the diameter of the artery. When implanted, the wire loops 318 are preferably located in the coronary artery CA to hold the shunt therein. The wire loops 318 preferably expand beyond the diameter of the tubular body. Therefore, these loops are preferably collapsible such that they can be inserted into a delivery tube, as described below.


Although FIG. 33A illustrates a design with two loops, it will be appreciated that multiple designs with different numbers of loops and other configurations are possible. Moreover, loops having different shapes, such as hoops, arches, etc., are also contemplated. Furthermore, wires of different sizes may be used. The wire loops 318 and the tubular body 311 may also be integrally formed from a single piece of material and laser cut into the desired configuration. FIG. 33B illustrates another embodiment having folded down loops 318. In this embodiment the shunt 310 has a proximal end 312 which itself opens into the left ventricle when implanted. The proximal end 312 is pointed to assist in inserting the shunt 310 through the heart wall, as described below.



FIGS. 33C-33F illustrate different embodiments of a loop top shunt implanted in a patient. More particularly, the proximal end (not shown) of the conduit preferably extends into the left ventricle, and the distal end having loops 318 extends into the coronary artery. The loops 318 of each of these embodiments are preferably sized to open against the walls of the coronary artery CA, as shown.



FIGS. 33G-33I illustrate one preferred delivery sequence of a shunt having wire loops 318. It will be appreciated that this delivery method can be applied to other types of shunts, such as the shunts described below. As shown in FIG. 33G, a delivery sheath 326 is placed over the loops 318 to restrain the loops into a collapsed configuration. An optional stylet 327 may also be used to restrain the loops In this configuration the shunt is implanted into a heart wall, with the loops 318 (located within the sheath 326) being positioned in a coronary artery CA. As shown in FIG. 33I, the sheath 326 is removed, allowing the loops 318 to expand outward. As shown in FIG. 33I, when the sheath 326 is fully removed, the loops 318 assume an expanded configuration against the walls of the coronary artery CA.



FIG. 34A illustrates another embodiment of a shunt 310. In this embodiment, the tubular body 311 is preferably made of NiTi, and preferably has a proximal end 312 which itself opens into the left ventricle when implanted. The shunt 310 of FIG. 34A has a pointed tip 312 to assist in inserting the shunt 310 through the heart wall, as described below. The distal top in this embodiment is a wire top 322, preferably integrally formed with the tubular body 311, and is to be implanted into the coronary artery CA. The wire top 322 preferably comprises a plurality of wire segments that form generally a ball shape. The shape and size of the ball can be varied to conform to a range of artery sizes. Like the embodiment of FIGS. 32A-32F, the wire top 322 can be collapsed for insertion into the body, and expanded like a stent to position the shunt 310, more particularly the wire top 322, in the artery.



FIGS. 34B-34I illustrate several other embodiments of ball top stents, particularly showing wire tops 322 having various configurations. Furthermore, the shunts 310 illustrated in FIGS. 34B-34G are formed such that near proximal end 312 the shunt has a solid portion 313, and between solid portion 313 and wire top 322 the shunt 310 substantially comprises a wire frame 311. The wire frame 311 gives the shunt 310 flexibility to bend into curved configurations. This wire frame is preferably laser cut from a solid piece of tubing, though other methods of manufacture may also be used. FIGS. 34H-34J illustrates shunts 310 having substantially solid body constructions, with pointed proximal ends 312.



FIG. 34K illustrates one embodiment of a shunt 310 having a solid proximal portion 313, a flexible portion 311 and a wire top or ball top 322. FIG. 34L illustrates a delivery system used to delivery the shunt 310 of FIG. 34K. A stylet 372 is inserted through the shunt 310. The stylet 372 as shown may be curved, and because the portion 311 of the shunt is flexible, the shunt 310 also curves. A sleeve 374 extends over the distal top 322 to hold the top in a collapsed configuration. The arrangement as shown in FIG. 34L is inserted into the patient's heart wall, preferably through the coronary artery, through the heart wall and into the left ventricle. The distal top 322 is arranged such that it is located within the coronary artery. The sleeve 374 is removed to expand the distal top 322 in the coronary artery.



FIGS. 35 and 36 illustrate enlarged views of a shunt 310 with a wire top 322, where the wire top 322 is preferably integrally formed. As can be seen, the wire top 322 preferably uses a four strut design, wherein the tubular body 311 at the distal end 314 transitions into four wires 324 forming the wire top 322. This embodiment is more preferably referred to as a knub top design.



FIGS. 37 and 38 illustrate another embodiment wherein the shunt of FIGS. 35 and 36 instead have a flat top design.



FIGS. 39A-39F illustrate a preferred deployment sequence of a conduit 310 having a wire top 322. The shunt 310 is preferably inserted into the delivery tube 326, distal end first, such that the wire top 322 is inserted into the tube 326 and is collapsed therein. As shown in FIG. 39A, the delivery tube preferably has a bulged region 32S for receiving the wire top 322 when in its collapsed configuration. The bulged region 328 gives the operator tactile feedback for sensing when the sheath is in the proper position for deployment. The arrangement shown in FIG. 39A, in one embodiment, is inserted into the heart with the proximal end of the shunt 310 extending into the left ventricle and the distal end of the shunt extending into the coronary artery. With the shunt 310 in position, the delivery tube is retracted, as shown in FIGS. 39B-39F from the shunt to release the wire top 322 into its expanded configuration in the coronary artery.



FIG. 40A illustrates another embodiment of a shunt 310 having a flare top 330. The shunt illustrated in FIG. 40A has six flares extending from distal end 314 and integrally formed therewith. It will be appreciated that fewer or more flares may be provided, and that these flares may extend away from the shunt body 311 at various angles to hold the shunt within the coronary artery. These flares are preferably collapsible to allow the shunt to be inserted into a delivery tube such as described above. FIGS. 40B and 40C illustrate a flip-down shunt having sections 332 which fold down when implanted in a patient to anchor the shunt to the artery CA. This shunt 310, as illustrated, has a wire portion 311 and a solid portion 313.



FIG. 41 illustrates another embodiment of a shunt 310. The shunt 310 has a proximal end 312 and a distal end 314, the proximal end preferably having an opening for receiving blood from the left ventricle. The distal end also has an opening for delivering blood from the left ventricle to the coronary artery. The shunt 310 shown in FIG. 41 preferably has a T-flange 376 at the distal end. When implanted, this T-flange preferably is positioned on the outside of the heart, and holes 378 are used to suture the device to the heart wall.


Hinged Conduit


Additional embodiments include conduits which are engaged and aligned with the left ventricle and the coronary artery in the patient's heart. FIG. 42 illustrates a conduit 420 for connecting the left ventricle LV to the coronary artery CA. The conduit 420 comprises a solid tube that has a cut section 422 that can be bent over to align with the artery CA.



FIG. 43 illustrates a conduit 424 similar to the conduit of FIG. 42, which is more preferably a nitinol stent having a short hinged section 426 to align with the coronary artery.


Bell-Shape Conduit



FIGS. 44A and 44B illustrate an alternate embodiment of a conduit 428 between the left ventricle and coronary artery which is preferably a nitinol stent. The proximal end 430 of the stent opening into the left ventricle preferably is heat set to have a bell shape to hold to the interior heart wall and to introduce flow. The distal end 432 preferably has small heat set fingers 434 which extend outward to anchor the stent against the interior wall of the coronary artery. A web flange 436 on the distal end 432 preferably comprises two or more rings which, when placed in the heart, open in the coronary artery to position the conduit while allowing blood flow. These rings are preferably shaped to extend outward in a curved configuration as shown in FIG. 44A when deployed. Between the proximal and distal ends is an axially expandable region 438, provided by slots 440 cut in the region.



FIG. 44C illustrates a stylet 442 used for inserting a conduit 428 having the web flange 436 shown in FIGS. 44A and 44B. More particularly, the stylet 442 is inserted through the rings of the web flange 436 to bring the rings together or closed for insertion. Removal of the stylet 442 after the conduit 428 is placed in the heart allows the rings to expand outward to the shape shown in FIGS. 44A and 44B.


Conduit Having Annular Grooves



FIG. 46 illustrates an embodiment where the conduit is provided with annular grooves. Grooves may also be provided longitudinally along the conduit. The raised or protruding portions on the outer surface of the conduit are imbedded into the heart wall to anchor the conduit in place, thereby preventing migration of the conduit after it is placed between the left ventricle and the coronary artery.


Single Loop Conduit



FIGS. 47A and 47B illustrate an alternative embodiment of a conduit 500, having a single loop 502 (similar to a basket handle) used to anchor the conduit 500 in the coronary artery CA. The conduit 500 is preferably a one-piece construction formed from a nitinol tube. The loop 502 can be heat formed, such that it conforms to the inner wall of the coronary artery CA. The loop 502 includes flexure regions 504 which provide elasticity. The elasticity allows the conduit 500 to accommodate artery constriction and variation in the internal diameter of the artery. The loop 502 provides axial and radial support to prevent migration of the conduit 500.


Conduit with Rotating Sheath and Deployable Flanges



FIGS. 48A and 48B illustrate yet another embodiment of a conduit 510, having deployable flanges 514 used to anchor the conduit 510 in place. The conduit 510 includes a sheath 516 which is rotatable, and flanges 514 that include spring arms 512. The sheath 516 has windows 518 through which the flanges 514 are deployed. Prior to positioning in the body, the sheath 516 is positioned on the conduit 510 so as to retain the flanges 514. After the conduit 510 is properly positioned, the sheath 516 is rotated such that the windows 518 are aligned with the flanges 514. The spring arms 514 cause the flanges 514 to be deployed through the windows 518 following rotation of the retaining sheath 516, thus anchoring the conduit 510 in its proper position. It should be noted that no axial rotation is required to deploy the flanges 514.


It should be appreciated that the stents and conduits described above, and particularly the bulkhead stent, are useful in other applications in addition to stenting the myocardium. For example, these stents may also serve as other types of coronary stents, arterial or venous stents, as well as billiary and esophageal stents.


The present vascular shunt provides significant improvements in the present treatment of blockages in the coronary artery. Although the invention has been described in its preferred embodiments in connection with the particular figures, it is not intended that this description should be limited in any way.

Claims
  • 1. A conduit for providing a passageway of blood between a chamber of the heart and an adjacent blood vessel, comprising: an elongate body having a first end and a second end and a lumen extending therethrough; and a top that is collapsible into a first configuration and expandable into a second configuration, the top when expanded being sized and configured to hold the top within the blood vessel, wherein the top comprises a flip-down top, and wherein the body and the top form a substantially T-shaped configuration when the top is in the second configuration.
  • 2. The conduit of claim 1, wherein the flip-down top comprises a plurality of tab-like sections configured to fold down relative to the elongate body.
  • 3. The conduit of claim 2, wherein the flip-down top comprises two tab-like sections.
  • 4. The conduit of claim 1, further comprising a coating on the conduit.
  • 5. The conduit of claim 1, wherein the flip down top is disposed at only one end of the elongate body.
  • 6. The conduit of claim 1, wherein the elongate body comprises a solid portion and a mesh portion.
  • 7. The conduit of claim 6, wherein the mesh portion comprises a wire mesh.
  • 8. The conduit of claim 6, wherein the solid portion comprises stainless steel.
  • 9. The conduit of claim 1, wherein an end of the conduit opposite the top is configured to pierce tissue.
  • 10. A conduit for providing a passageway of blood between a chamber of the heart and an adjacent blood vessel, comprising: an elongate body having a first end and a second end and a lumen extending therethrough; and a top that is collapsible into a first configuration and expandable into a second configuration, the top when expanded being sized and configured to hold the top within the blood vessel, wherein the top further comprises a plurality of tab-like sections configured to fold down relative to the elongate body so as to form a substantially T-shaped configuration.
  • 11. The conduit of claim 10, wherein the elongate body comprises a solid portion and a mesh portion.
  • 12. The conduit of claim 11, wherein the mesh portion comprises a wire mesh.
  • 13. The conduit of claim 11, wherein the solid portion comprises stainless steel.
  • 14. The conduit of claim 10, wherein the top comprises two tab-like sections.
  • 15. The conduit of claim 10, further comprising a coating on the conduit.
  • 16. The conduit of claim 10, wherein the top is disposed at only one end of the elongate body.
  • 17. The conduit of claim 10, wherein an end of the conduit opposite the top is configured to pierce tissue.
Parent Case Info

This is a continuation of U.S. patent application Ser. No. 09/787,801, now abandoned that entered the U.S. National Stage on Mar. 23, 2001, based on international Application No. PCT/US99/20714, filed Sep. 10, 1999, which is a con. of U.S. application Ser. No. 09/369,048, filed Aug. 4, 1999 and U.S. Provisional Application Nos. 60/099,767, filed on Sep. 10, 1998; 60/104,397, filed on Oct. 15, 1998; 60/147,202, filed on Aug. 4, 1999; and 60/147,218, filed on Aug. 4, 1999, all of which are incorporated herein by reference.

US Referenced Citations (205)
Number Name Date Kind
2127903 Bowen Aug 1938 A
3620218 Schmitt et al. Nov 1971 A
4267202 Nakayama et al. May 1981 A
4508606 Andrade et al. Apr 1985 A
4786556 Hu et al. Nov 1988 A
4953553 Tremulis Sep 1990 A
5034265 Hoffman et al. Jul 1991 A
5132108 Narayanan et al. Jul 1992 A
5169675 Bartoszek-Loza et al. Dec 1992 A
5190058 Jones et al. Mar 1993 A
5226889 Sheiban Jul 1993 A
5229163 Fox Jul 1993 A
5229172 Cahalan et al. Jul 1993 A
5308704 Suzuki et al. May 1994 A
5336518 Narayanan et al. Aug 1994 A
5389096 Aita et al. Feb 1995 A
5455040 Marchant Oct 1995 A
5456694 Marin et al. Oct 1995 A
5554119 Harrison et al. Sep 1996 A
5597456 Maruyama et al. Jan 1997 A
5643278 Wijay Jul 1997 A
5643580 Subramaniam Jul 1997 A
5676670 Kim Oct 1997 A
5700742 Payne Dec 1997 A
5723219 Kolluri et al. Mar 1998 A
5733267 Del Toro Mar 1998 A
5782908 Cahalan et al. Jul 1998 A
5797920 Kim Aug 1998 A
5807384 Mueller Sep 1998 A
5810871 Tuckey et al. Sep 1998 A
5876373 Giba et al. Mar 1999 A
5885259 Berg Mar 1999 A
5922022 Nash et al. Jul 1999 A
5925012 Murphy-Chutorian et al. Jul 1999 A
5931848 Saadat Aug 1999 A
5938632 Ellis Aug 1999 A
5962138 Kolluri et al. Oct 1999 A
5968064 Selmon et al. Oct 1999 A
5976153 Fischell et al. Nov 1999 A
5976155 Foreman et al. Nov 1999 A
5979455 Maginot Nov 1999 A
5980530 Willard et al. Nov 1999 A
5980533 Holman Nov 1999 A
5989263 Shmulewitz Nov 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6013855 McPherson et al. Jan 2000 A
6026814 LaFontaine et al. Feb 2000 A
6035856 LaFontaine et al. Mar 2000 A
6036677 Javier, Jr. et al. Mar 2000 A
6036697 DiCaprio Mar 2000 A
6039721 Johnson et al. Mar 2000 A
6042581 Ryan et al. Mar 2000 A
6056743 Ellis et al. May 2000 A
6080170 Nash et al. Jun 2000 A
6092526 LaFontaine et al. Jul 2000 A
6093177 Javier, Jr. et al. Jul 2000 A
6093185 Ellis et al. Jul 2000 A
6120520 Saadat et al. Sep 2000 A
6124523 Banas et al. Sep 2000 A
6126654 Giba et al. Oct 2000 A
6132451 Payne et al. Oct 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159531 Dang et al. Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6171251 Mueller et al. Jan 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6197324 Crittenden Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6213126 LaFontaine et al. Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217575 DeVore et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6224584 March et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231551 Barbut May 2001 B1
6235000 Milo et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6251079 Gambale et al. Jun 2001 B1
6251104 Kesten et al. Jun 2001 B1
6251116 Shennib et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6253769 LaFontaine et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6290709 Ellis et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6299787 Li et al. Oct 2001 B1
6322548 Payne et al. Nov 2001 B1
6363939 Wilk Apr 2002 B1
6387119 Wolf et al. May 2002 B2
6390098 LaFontaine et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6409751 Hall et al. Jun 2002 B1
6416490 Ellis et al. Jul 2002 B1
6432119 Saadat Aug 2002 B1
6440166 Kolluri Aug 2002 B1
6443158 LaFontaine et al. Sep 2002 B1
6458092 Gambale et al. Oct 2002 B1
6458140 Akin et al. Oct 2002 B2
6458323 Boekstegers Oct 2002 B1
6461665 Scholander Oct 2002 B1
6475226 Belef et al. Nov 2002 B1
6475244 Herweck et al. Nov 2002 B2
6482220 Mueller Nov 2002 B1
6491689 Ellis et al. Dec 2002 B1
6491707 Makower et al. Dec 2002 B2
6506408 Palasis Jan 2003 B1
6508825 Selmon et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514217 Selmon et al. Feb 2003 B1
6514271 Evans et al. Feb 2003 B2
6517527 Gambale et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524323 Nash et al. Feb 2003 B1
6544230 Flaherty Apr 2003 B1
6559132 Holmer May 2003 B1
6561998 Roth et al. May 2003 B1
6565528 Mueller May 2003 B1
6565594 Herweck et al. May 2003 B1
6569145 Shmulewitz et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6573311 Martakos et al. Jun 2003 B1
6575168 LaFontaine et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6582444 Wilk Jun 2003 B2
6599304 Selmon et al. Jul 2003 B1
6605113 Wilk Aug 2003 B2
6610100 Phelps et al. Aug 2003 B2
6613081 Kim et al. Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6616876 Labrecque et al. Sep 2003 B1
6638237 Guiles et al. Oct 2003 B1
6638247 Selmon et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6641610 Wolf et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652546 Nash et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6660003 DeVore et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6669709 Cohn et al. Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6694983 Wolf et al. Feb 2004 B2
20010000041 Selmon et al. Mar 2001 A1
20010003985 Lafontaine et al. Jun 2001 A1
20010008969 Evans et al. Jul 2001 A1
20010018596 Selmon et al. Aug 2001 A1
20010020172 Selmon et al. Sep 2001 A1
20010029385 Shennib et al. Oct 2001 A1
20010034547 Hall et al. Oct 2001 A1
20010037149 Wilk Nov 2001 A1
20010039445 Hall et al. Nov 2001 A1
20010044631 Akin et al. Nov 2001 A1
20010049523 DeVore et al. Dec 2001 A1
20010053932 Phleps et al. Dec 2001 A1
20020004662 Wilk Jan 2002 A1
20020007138 Wilk et al. Jan 2002 A1
20020058897 Renati May 2002 A1
20020077654 Javier, Jr. et al. Jun 2002 A1
20020092535 Wilk Jul 2002 A1
20020092536 LaFontaine et al. Jul 2002 A1
20020095206 Addonizio et al. Jul 2002 A1
20020100484 Hall et al. Aug 2002 A1
20020138087 Shennib et al. Sep 2002 A1
20020143285 Eno et al. Oct 2002 A1
20020143289 Ellis et al. Oct 2002 A1
20020161383 Akin et al. Oct 2002 A1
20020165479 Wilk Nov 2002 A1
20020165606 Wolf et al. Nov 2002 A1
20020179098 Makower et al. Dec 2002 A1
20020183716 Herweck et al. Dec 2002 A1
20020193782 Ellis et al. Dec 2002 A1
20030018379 Knudson et al. Jan 2003 A1
20030044315 Boekstegers Mar 2003 A1
20030045828 Wilk Mar 2003 A1
20030055371 Wolf et al. Mar 2003 A1
20030073973 Evans et al. Apr 2003 A1
20030078561 Gambale et al. Apr 2003 A1
20030100920 Akin et al. May 2003 A1
20030105514 Phelps et al. Jun 2003 A1
20030120195 Milo et al. Jun 2003 A1
20030149474 Becker Aug 2003 A1
20030158573 Gittings et al. Aug 2003 A1
20030163198 Morra et al. Aug 2003 A1
20030181938 Roth et al. Sep 2003 A1
20030191449 Nash et al. Oct 2003 A1
20030195457 LaFontaine et al. Oct 2003 A1
20030195458 Phelps et al. Oct 2003 A1
20030204160 Kamm et al. Oct 2003 A1
20030212413 Wilk Nov 2003 A1
20030216679 Wolf et al. Nov 2003 A1
20030229366 Makower Dec 2003 A1
20030236542 Makower Dec 2003 A1
20040006298 Wilk Jan 2004 A1
20040015225 Kim et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040044392 Van Oepen Mar 2004 A1
Foreign Referenced Citations (102)
Number Date Country
757647 Aug 1999 AU
0 104 608 Apr 1984 EP
0 104 608 Apr 1984 EP
0 124 200 Nov 1984 EP
0 351 314 Jan 1990 EP
0 426 486 May 1991 EP
0 519 087 Dec 1992 EP
0 623 354 Nov 1994 EP
0 627 226 Dec 1994 EP
0 714 270 Jun 1996 EP
0 714 487 Jun 1996 EP
0 758 953 Feb 1997 EP
0 775 472 May 1997 EP
0 815 798 Jul 1997 EP
0 829 239 Aug 1997 EP
0 792 624 Sep 1997 EP
0 797 957 Oct 1997 EP
0 797 958 Oct 1997 EP
0 799 604 Oct 1997 EP
0 801 928 Oct 1997 EP
0 836 834 Oct 1997 EP
0 809 999 Dec 1997 EP
0 876 796 May 1998 EP
0 853 921 Jul 1998 EP
0 858 779 Aug 1998 EP
0 873 732 Oct 1998 EP
0 888 750 Jan 1999 EP
0 895 752 Feb 1999 EP
0 934 728 Aug 1999 EP
0 941 740 Sep 1999 EP
1 088 564 Apr 2001 EP
1 181 943 Feb 2002 EP
0 959 815 Dec 2002 EP
1 112 098 Feb 2003 EP
2 257 147 Jan 1993 GB
WO 9221387 Dec 1992 WO
WO 9505132 Feb 1995 WO
WO 9529647 Nov 1995 WO
WO 9628115 Sep 1996 WO
WO 9632972 Oct 1996 WO
WO 9635469 Nov 1996 WO
WO 9639962 Dec 1996 WO
WO 9639964 Dec 1996 WO
WO 9639965 Dec 1996 WO
WO 9722631 Jun 1997 WO
WO 9749434 Dec 1997 WO
WO 9800090 Jan 1998 WO
WO 9803118 Jan 1998 WO
WO 9808456 Mar 1998 WO
WO 9810116 Mar 1998 WO
WO 9810806 Mar 1998 WO
WO 9812990 Apr 1998 WO
WO 9824373 Jun 1998 WO
WO 9825533 Jun 1998 WO
WO 9825549 Jun 1998 WO
WO 9826731 Jun 1998 WO
WO 9838916 Sep 1998 WO
WO 9838925 Sep 1998 WO
WO 9838939 Sep 1998 WO
WO 9838941 Sep 1998 WO
WO 9839038 Sep 1998 WO
WO 9846115 Oct 1998 WO
WO 9857590 Dec 1998 WO
WO 9857592 Dec 1998 WO
WO 9907296 Feb 1999 WO
WO 9915220 Apr 1999 WO
WO 9917671 Apr 1999 WO
WO 9922658 May 1999 WO
WO 9922670 May 1999 WO
WO 9927985 Jun 1999 WO
WO 9935977 Jul 1999 WO
WO 9935979 Jul 1999 WO
WO 9935980 Jul 1999 WO
WO 9938455 Aug 1999 WO
WO 9940853 Aug 1999 WO
WO 9940963 Aug 1999 WO
WO 9944524 Sep 1999 WO
WO 9947077 Sep 1999 WO
WO 9948549 Sep 1999 WO
WO 0012029 Mar 2000 WO
WO 0013719 Mar 2000 WO
WO 0013722 Mar 2000 WO
WO 0018323 Apr 2000 WO
WO 0018328 Apr 2000 WO
WO 0018462 Apr 2000 WO
WO 0023124 Apr 2000 WO
WO 0038590 Jul 2000 WO
WO 0043051 Jul 2000 WO
WO 0045886 Aug 2000 WO
WO 0048530 Aug 2000 WO
WO 0049952 Aug 2000 WO
WO 0049954 Aug 2000 WO
WO 0049956 Aug 2000 WO
WO 0054660 Sep 2000 WO
WO 0054661 Sep 2000 WO
WO 0056224 Sep 2000 WO
WO 0056225 Sep 2000 WO
WO 0069345 Nov 2000 WO
WO 0069504 Nov 2000 WO
WO 0106953 Feb 2001 WO
WO 0108566 Feb 2001 WO
WO 0115633 Mar 2001 WO
Related Publications (1)
Number Date Country
20020058897 A1 May 2002 US
Provisional Applications (4)
Number Date Country
60147218 Aug 1999 US
60147202 Aug 1999 US
60104397 Oct 1998 US
60099767 Sep 1998 US
Continuations (2)
Number Date Country
Parent 09787801 US
Child 09956099 US
Parent 09369048 Aug 1999 US
Child 09787801 US