1. Field of the Invention
The instant disclosure relates to a transparent conductive structure and a method of making the same, and more particularly, to a transparent conductive structure applied to a touch panel and a method of making the same.
2. Description of Related Art
Touch panels can be produced in a variety of types and sizes without mouse, button or direction key and can be used as input part of a wide variety of electronic devices. With information appliance developing, the touch panels have replaced keyboard and mouse to communicate with the information appliance. The touch panels provide users a friendly interface such that operations of computers or electronic products become simple, straightforward, lively and interesting. Depending on fields of applications, touch panels are applied to portable communication and information products (for example, personal digital assistant (PDA)), financial/commercial system, medical registration system, monitoring system, information guiding system, and computer-aided teaching system, and thereby enhancing convenience of handling for users.
Generally speaking, touch panels may be operated by means of infrared, ultrasonic, piezoelectric, capacitive or resistive sensing. The capacitive touch panel has inner wires made of transparent conductive materials on a glass substrate, and transmitting signals to integrated circuits (IC) configured on an outer flexible PCB or rigid PCB via peripheral conductive wires on the glass substrate. Such structure constitutes a touch sensor, which configured to an outer printed circuit board and a top protecting cover to complete a touch panel. A uniform electric field is generated on surface of the glass substrate when touching. Coordinates of the contact point are determined by variation of capacitance due to electrostatic reaction generated between the user's finger and the electric field when a user touches the touch panel.
Referring to
One particular aspect of the instant disclosure is to provide a transparent conductive structure applied to a touch panel and a method of making the same.
One of the embodiments of the instant disclosure provides a transparent conductive structure applied to a touch panel, comprising: a substrate unit, a first coating unit, a transparent conductive unit, and a second coating unit. The substrate unit includes at least one transparent substrate. The first coating unit includes at least one first coating layer formed on the top surface of the transparent substrate. The transparent conductive unit includes at least one transparent conductive layer formed on the top surface of the first coating layer, wherein the transparent conductive layer includes a plurality of conductive circuits, and the conductive circuits are arranged to form a predetermined circuit pattern. The second coating unit includes at least one second coating layer formed on the top surface of the transparent conductive layer to cover the conductive circuits, wherein the second coating layer has a touching surface formed on the top side thereof, and the touching surface allows an external object (such as user's finger, any type of touch pen, or etc.) to touch.
One of the embodiments of the instant disclosure provides a method of making a transparent conductive structure applied to a touch panel, comprising the steps of providing a substrate unit including at least one transparent substrate; forming at least one first coating layer on the top surface of the transparent substrate; forming at least one transparent conductive layer on the top surface of the first coating layer, wherein the transparent conductive layer includes a plurality of conductive circuits, and the conductive circuits are arranged to form a predetermined circuit pattern; and then forming at least one second coating layer on the top surface of the transparent conductive layer to cover the conductive circuits, wherein the second coating layer has a touching surface formed on the top side thereof, and the touching surface allows an external object (such as user's finger, any type of touch pen, or etc.) to touch.
Therefore, the distance between the touching surface of the second coating layer and the predetermined circuit pattern of the transparent conductive unit is reduced (the touching surface is very close to the predetermined circuit pattern), thus the conductive range (the electric conductivity) of the predetermined circuit pattern P may be substantially between 0.8 ohm/square (Ω/□) and 3 ohm/square (Ω/□) without using conductive circuits made of ultra-low conductive material.
To further understand the techniques, means and effects the instant disclosure takes for achieving the prescribed objectives, the following detailed descriptions and appended drawings are hereby referred, such that, through which, the purposes, features and aspects of the instant disclosure can be thoroughly and concretely appreciated. However, the appended drawings are provided solely for reference and illustration, without any intention that they be used for limiting the instant disclosure.
Referring to FIGS. 2 and 2A-2C, where the instant disclosure provides a method of making a transparent conductive structure applied to a touch panel, substantially comprising the steps of (from the step S100 to the step 106 in
The step S100 is that: referring to
The step S102 is that: referring to
The step S104 is that: referring to
The step S106 is that: referring to
Referring to
For example, the transparent substrate 10 may be polyethylene terephthalate (PET), poly carbonate (PC), polyethylene (PE), poly vinyl chloride (PVC), poly propylene (PP), poly styrene (PS), or polymethylmethacrylate (PMMA), and the thickness of the transparent substrate is between 50 μm and 125 μm. The first coating layer 20 may be a hard coating layer, and the hard coating layer may be an ultraviolet hardening layer. Each conductive circuit 300 may be a silver circuit, an aluminum circuit, a copper circuit, or any conductive circuit, and the conductive circuits 300 can be formed on the top surface of the transparent conductive layer 30. The conductive range of the predetermined circuit pattern P may be substantially between 0.8 and 3 ohm/square. The second coating layer 40 may be a hard protection layer, the hard protection layer may be an oxide layer having a thickness substantially between 3 μm and 5 μm, and the oxide layer may be a silicon oxide layer or an aluminum oxide layer.
In conclusion, the distance between the touching surface of the second coating layer and the predetermined circuit pattern of the transparent conductive unit is reduced, thus the conductive range (the electric conductivity) of the predetermined circuit pattern P may be substantially between 0.8 and 3 ohm/square without using conductive circuits made of ultra-low conductive material.
The above-mentioned descriptions merely represent the preferred embodiments of the instant disclosure, without any intention or ability to limit the scope of the instant disclosure which is fully described only within the following claims. Various equivalent changes, alterations or modifications based on the claims of instant disclosure are all, consequently, viewed as being embraced by the scope of the instant disclosure.