The present invention relates to light emitting diodes and in particular relates to increasing the external quantum efficiency of light emitting diodes that include at least portions of the substrates on which the light emitting epitaxial layer's are grown.
Light emitting diodes (LEDs) are a class of photonic semiconductor devices that convert an applied voltage into light by encouraging electron-hole recombination events in an appropriate semiconductor material. In turn, some or all of the energy released in the recombination event produces a photon.
Light emitting diodes share a number of the favorable characteristics of other semiconductor devices. These include generally robust physical characteristics, long lifetime, high reliability, and, depending upon the particular materials, low cost.
A number of terms are used herein that are common and well-understood in the industry. In such industry use, however, these terms are sometimes informally blended in their meaning. Accordingly, these terms will be used as precisely as possible herein, but in every case their meaning will be clear in context.
Accordingly, the term “diode” or “chip” typically refers to the structure that minimally includes two semiconductor portions of opposite conductivity types (p and n) along with some form of ohmic contacts to permit current to be applied across the resulting p-n junction.
The term “lamp” is used to designate a light emitting diode that is matched with an appropriate electrical contact and potentially a lens to form a discrete device that can be added to or included in electrical circuits or lighting fixtures or both.
As used herein, the term “package” typically refers to the placement of the semiconductor chip on an appropriate physical and electrical structure (sometimes as simple as a small piece of metal through which the electrical current is applied) along with a plastic lens (resin, epoxy, encapsulant) that provides some physical protection to the diode and can optically direct the light output.
Appropriate references about the structure and operation of light emitting diodes and diode lamps include Sze, P
The color emitted by an LED is largely defined by the material from which it is formed. Diodes formed of gallium arsenide (GaAs) and gallium phosphide (GaP) tend to emit photons in the lower energy (red and yellow) portions of the visible spectrum. Materials such as silicon carbide (SiC) and the Group III nitrides have larger bandgaps and thus can generate photons with greater energy that appear in the green, blue, violet and ultraviolet portions of the electromagnetic spectrum.
In some applications, an LED is more useful when its output is moderated or converted to a different color. As the availability of blue-emitting LEDs has greatly increased, the incorporation of yellow-emitting phosphors that down-convert the blue photons has likewise increased. The combination of the blue light emitted by the diode and the yellow light emitted by the phosphor can create white light. In turn, the availability of white light from solid-state sources provides the capability to incorporate them in a number of applications, particularly including illumination and as lighting (frequently backlighting) for color displays. In such devices (e.g., flat computer screens, personal digital assistants, and cell phones), the blue LED and yellow phosphor produce white light which is then distributed in some fashion to illuminate the color pixels. Such color pixels are often formed by a combination of liquid crystals, color filters and polarizers, and the entire unit including the backlighting is generally referred to as a liquid crystal display. (“LCD”).
As the use of light emitting diodes has commercially increased and as the understanding of the basic characteristics of diodes that produce white light has matured, the advances of interest in the technology tend to be those that increase the total amount of light that is produced by a given diode structure, all other factors being equal.
In this regard, the number of individual photons produced by a diode in any given amount of time depends upon the number of recombination events occurring in the diode, with the number of photons generally being less than the number of recombination events (i.e., not every event produces a photon). In turn, the number of recombination events depends upon the amount of current flowing through the diode. Once again the number of recombination events will typically be less than the number of carriers injected across the junction. Thus, these optoelectronic properties can reduce the external output of the diode.
Additionally, when photons are produced, they must also actually leave the diode and the lamp to be perceived by an observer. Although many photons will leave the lamp without difficulty, a number of well-understood effects prevent some fraction of the photons from leaving. These effects arise from the difference in refractive index of the various materials within the diode, and thus reduce the external output of an LED lamp (i.e., its efficiency). These include internal reflection of a photon until it attenuated and emitted or absorbed (i.e., Snell's Law and Fresnel Loss) rather than emitted. The difference in the index of refraction between the materials in the diode can also change the direction of an emitted photon (Snell's Law) towards an object that subsequently attenuates or absorbs it. The same results can occur for yellow photons that are emitted by the phosphor in a phosphor-containing LED lamp. In an LED lamp such “objects” can include the substrate, parts of the packaging, and the metal contact layers. Indeed, the same quantum mechanical characteristics that permit semiconductor materials to emit photons will also cause them to absorb photons. Thus, even the light emitting epitaxial layers in an LED can absorb emitted photons and reduce the overall external efficiency of the diode.
Many semiconductor devices, including many light emitting diodes, consist in basic form of a semiconductor substrate and epitaxial layers of semiconductor materials on the substrate. The epitaxial layers often (although not necessarily exclusively) form the active portions of the device. They are generally favored for this purpose because they are grown in a manner (frequently chemical vapor deposition) that increases both their chemical purity and produces a highly ordered crystal structure. Additionally, chemical vapor deposition provides an excellent technique for precisely doping an epitaxial layer. In turn, the appropriate purity, crystal structure and doping are typically desired or necessary for successful operation of the semiconductor device.
The chemical vapor deposition (CVD) and related techniques used to fabricate epitaxial layers are, however, generally more time-consuming than other crystal growth techniques such as sublimation or growth from a melt (sometimes referred to as bulk growth). As a result, these more rapid (comparatively) methods are often used to produce an appropriate crystal when the intended structure is other than an epitaxial layer.
Thus, by combining a bulk-growth substrate with epitaxial layers, an overall structure can be produced with a reasonable combination of crystal structure, compositional purity, doping, and efficient fabrication.
Nevertheless, for several crystal growth-related reasons, bulk (i.e., reasonably large size) single crystals of Group III nitrides are, for practical purposes, unavailable. Accordingly, Group III nitride LEDs are typically formed on other bulk substrate materials, most commonly sapphire (Al2O3) and silicon carbide (SiC). Sapphire is relatively inexpensive, widely available, and highly transparent. Alternatively, sapphire is a poor thermal conductor and therefore less suitable for certain high-power applications. Additionally, in some devices, electrically conductive substrates are preferred and sapphire is insulating rather than conductive. Sapphire also carries a lattice mismatch with (for example) gallium nitride of about 16%.
Silicon carbide has a better thermal conductivity than sapphire and a better lattice match with Group IIII nitrides; i.e., a mismatch of about 3.5% with gallium nitride and only about 1% with aluminum nitride. Silicon carbide can be conductively doped, but is also much more expensive than sapphire.
Thus, depending upon the desired application, both sapphire and silicon carbide can provide an appropriate substrate for Group III nitride epitaxial layers in light emitting diodes.
In almost all cases, using a substrate material that is different from the epitaxial layer material creates an additional set of problems due to different thermal coefficients of expansion (TCEs) and different crystal lattice parameters. As a result, when Group III nitride epitaxial layers are grown on a different substrate, some crystal mismatch will occur, and the resulting epitaxial layer is referred to as being “strained” either in tension or compression by these mismatches. Such mismatches, and the strain they produce, carry with them the potential for crystal defects which in turn affect the optoelectronic characteristics of the crystals and the junctions, and thus correspondingly tend to degrade or even prevent the performance of the photonic device.
The presence of multiple layers of different materials (substrate, epilayers, metal contacts) in light emitting diodes raises additional issues. In particular, light emitted from the active portion must typically pass through or across one or more of such layers before exiting the diode. Additionally, when the diode is packaged as a lamp, the light leaving the diode must travel into, through, and out of the lens material. In each of these circumstances, Snell's law dictates that the photons will be refracted as they pass from one material to the next. The amount that the photons are refracted will depend upon the difference between the refractive indexes of the two materials and the angle of incidence at which the light strikes the interface. Additionally, in almost all circumstances, some of the photons (even if a small percentage) will always be reflected at the interface between the two materials. This is referred to as Fresnel reflection or Fresnel loss.
In a diode or a diode lamp, although some reflected light will still escape the diode at some other location, a certain percentage will be totally internally reflected, never escape the diode or the lamp, and will thus functionally reduce the external quantum efficiency of the diode and of any lamp that includes the diode. Although the individual reduction in the percentage of photons escaping may appear to be relatively small, the cumulative effect can be significant and diodes that are otherwise very similar can have distinctly different performance efficiencies resulting from even these small percentage losses.
Accordingly, increasing the external efficiency of white light emitting diodes remains a continuing goal.
In one aspect, the invention is a light emitting diode that includes a growth substrate and a substantially transparent ohmic contact on a first surface of the growth substrate. A Group III nitride, light-emitting active region is on a second surface of the growth substrate, a p-type Group III nitride contact layer is on that active region that transmits light generated in the active region and a substantially transparent ohmic contact on the p-type contact layer,
In another aspect, the invention is a light emitting diode that includes a growth substrate, and respective p-type and n-type epitaxial layers on the growth substrate, with the epitaxial layers having an index of refraction less than or equal to the index of refraction of the growth substrate. A transparent ohmic contact is on the epitaxial layer that is opposite from the growth substrate.
In yet another aspect, the invention is a light emitting diode that includes a conductive growth substrate, a light emitting active structure formed from at least n-type and p-type epitaxial layers on the growth substrate, with the epitaxial layers having an index of refraction less than or equal to the index of refraction of the conductive growth substrate, a transparent ohmic contact to the epitaxial layer active structure, and a transparent ohmic contact to the conductive growth substrate.
In yet another aspect, the invention is a light emitting diode comprising a conductive mounting substrate, metal bonding layers on the mounting substrate, an epitaxial light emitting active structure on the bonding layers, with the light emitting active structure including at least one n-type and p-type epitaxial layer, portions of a growth substrate material on the active structure, a transparent ohmic contact to the growth substrate, and an ohmic contact to said mounting substrate.
The foregoing and other objects and advantages of the invention and the manner in which the same are accomplished will become clearer based on the followed detailed description taken in conjunction with the accompanying drawings.
The diode 10 further comprises another ohmic contact 15 to the n-type epilayer 12 that is adjacent to the growth substrate 11. In exemplary embodiments, the ohmic contact 15 to the n-type layer 12 is also transparent.
The transparent ohmic contact is most commonly formed of indium tin oxide, but other transparent ohmic materials can include the following: nickel oxide, zinc oxide, cadmium tin oxide, titanium tungsten nickel, indium oxide, tin oxide, magnesium oxide, ZnGa2O4, SnO2/Sb, Ga2O3/Sn, AgInO2/Sn, In2O3/Zn, CuAlO2, LaCuOS, CuGaO2, and SrCu2O2.
In exemplary embodiments, the epitaxial layers 12 and 13 are selected from the Group III nitride material system. In particular, the light emitting layers are most typically formed of gallium nitride (GaN) or indium gallium nitride (InxGa1-xN). Indium gallium nitride offers the advantage of controlling the emission frequency of the layer based upon the atomic fraction of indium in the compound. This is balanced, however, by the increasing instability of indium gallium nitride as the atomic fraction of indium increases. The characteristics of the Group III nitride material system and the growth of Group III nitride epitaxial layers are generally well understood in this art and will not be otherwise discussed herein in detail.
As illustrated in
The ohmic contact 15 to the n-type layer 12 can be transparent and likewise includes a bond pad 20. As used herein, the term “transparent” refers to an ohmic contact that will transmit at least about 70 percent of incident light of the frequencies generated by the diode 10 and preferably 90-100 percent of such light. If the ohmic contact 15 is transparent, then the lower portion of the bond pad 20 is preferably reflective. Alternatively the ohmic contact 15 can be reflective.
In the embodiment illustrated in
Exemplary (but not limiting) techniques and resulting lenticular surfaces are set forth in copending and commonly assigned application Ser. Nos. 11/082,470 filed Mar. 17, 2005 for “High Efficiency Group III Nitride LED with Lenticular Surface;” 11/461,018 filed Jul. 31, 2006 for “Method of Forming 3D Features on LEDs For Improved Light Extraction;” and 11/343,180 filed Jan. 30, 2006 for, “Improved External Extraction Light Emitting Diode Based Upon Crystallographic Faceted Surfaces.” The contents of each of these applications are incorporated entirely herein by reference. As respectively indicated therein, such lenticular surfaces can be generated with an embossing technique or chemically developed. Such lenticular surfaces are sometimes referred to as being “roughened” or “textured” surfaces.
A substantially transparent ohmic contact 37 is on the p-type contact layer 36. The transparent ohmic contact layers 30 and 37 are typically formed of indium tin oxide (ITO), but can include the other compositions referred to with respect to
The growth substrate 27 is typically formed of silicon carbide. Sapphire (Al2O3) is somewhat easier to obtain in high transparency, but cannot be conductively doped. Alternatively, silicon carbide (SiC) provides a closer lattice matched to the Group III nitride material system and can be conductively doped if desired (which in turn increases the number of design choice available using silicon carbide).
In the embodiments illustrated in
Accordingly, persons of skill in this art will choose the appropriate substrate and resulting diode structure based upon the overall advantages in any one or more given applications.
Both
Basically, in growth substrate diodes, the growth substrate supports the epitaxial layers and remains as the structural portion of the diode. In some cases (e.g., parent application Ser. No. 11/338,918), the epilayers are mounted to a lead frame with the growth substrate forming the main emitting surface of the diode. These are generally referred to as “flip chip” orientations.
For a number of reasons, however, some structures offer advantages when the growth substrate is partially or entirely removed and replaced by a carrier substrate (which can even be the same material as the growth substrate). For example, in addition to some structural advantages, growing Group III nitride epitaxial layers on silicon carbide and then removing the silicon carbide substrate can reduce the overall cost of the resulting diodes, because the removed silicon carbide substrate (which can be used as a wafer and removed as a wafer) can be reused. Thus, although silicon carbide is comparatively more expensive than sapphire or other substrate materials, reusing it in this fashion moderates the cost of fabrication while providing the growth advantages of SiC for Group III nitride epilayers.
The diode 50 includes one or more metal bonding layers, two of which are illustrated at 52 and 53 in
In some embodiments, the ohmic contact 61 to the mounting substrate can be transparent. As stated earlier, such a transparent contact will transmit at least about 70 percent of the light emitted by the active portion 54, in some cases more than 90 percent, and in some cases 100 percent of the frequencies emitted by the active portion 54.
In exemplary embodiments, at least one of the layers metal bonding 53 or 52 are reflective, or an additional reflective layer can be optionally along with the illustrated layers 52 and 53.
As illustrated by the breakout diagram 62, and in a matter analogous to the earlier embodiments, the growth substrate portions 57 and the ohmic contact 60 can define a lenticular surface 62. As in the other embodiments, the lenticular surface 62 can be formed in several known techniques and generally serves to enhance the external extraction of light from the diode 50.
In many embodiments, the residual growth substrate portion 57 is silicon carbide because silicon carbide is a favored substrate material for the epitaxial growth of Group III nitride layers that are most typically used for the active portion 54 and the epitaxial layers 55 and 56. As noted earlier herein, silicon carbide provides an excellent thermal and lattice match to the Group III nitride material system.
As
The diode 50 can include a bond pad 64 that provides an appropriate connection for circuits or other devices. The bond pad can also include at least one reflective layer 65 that faces the epitaxial layers that form the active portion 54. As noted previously, although reflecting the light back into the active layers has some disadvantages (because these layers absorb photons for reasons directly related to their emission of photons), the bond pad 64 also absorbs emitted photons and thus reflecting photons in another direction is preferred and will increase light extraction.
The transparent ohmic contacts are typically formed of indium tin oxide or one of the other compositions described earlier with respect to the other embodiments.
In each of the illustrated embodiments, the ohmic contact can be formed of multiple layers of conductive oxides to form a graded index of refraction fraction that minimizes Fresnel loss as photons exit the diode. Alternatively, the atomic fraction of indium in ITO can be graded through the contact for the same purpose.
The diode 10 (or other embodiments) is positioned on a header 71 which forms an electrical contact to the diode 10 through the wire 72. The header 71 also acts as an electrode for the lamp 70. A second wire 73 provides electrical contact to a second electrode 74. The term “header” is used in a broad sense to describe an appropriate electromechanical support for an LED in the context of a lamp.
An encapsulant 75 covers the LED 10 and portions of the header 71 and the electrode 74. The encapsulant 75 provides a lens for the lamp 70, and also provides environmental protection to the diode 10. As set forth in commonly assigned and co-pending application Ser. No. 11/676,715 filed Feb. 20, 2007 for “Group III Nitride Diodes on Low Index Carrier Substrates,” the index of refraction of a mounting substrate (e.g. 51 in
As set forth earlier, in certain embodiments, the encapsulant contains a phosphor indicated by the shaded portion 76 which typically down-converts the light emitted by the diode 10. Most typically, because the Group III nitride material system emits in the blue portion of the spectrum, the phosphor 76 responds to the blue frequencies and emits primarily (although not exclusively) in the yellow-red portion of the visible spectrum. The combination of the blue light from the diode 10 and the yellow light from the phosphor 76 produces an external emission of white light. Cerium-doped yttrium aluminum garnet (YAG) is an exemplary phosphor for this purpose.
In many circumstances, the display will also include a set of liquid crystals schematically designated by the rectangle 82, and an appropriate set of one or more color filters schematically illustrated by the single rectangle 83. Other elements can be included in the display, but are omitted here for the sake of clarity. The liquid crystals generally operate in and “on” or “off” orientation when a signal is applied to them, so that in combination with the color filters 83 the display 80 produces a color image.
In the drawings and specification there has been set forth a preferred embodiment of the invention, and although specific terms have been employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.
This is a continuation in part of Ser. No. 11/539,423 filed Oct. 6, 2006, now U.S. Pat. No. 7,473,938, and of Ser. No. 11/338,918 filed Jan. 25, 2006, and now published as No. 20060131599. The contents of these applications are incorporated entirely herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4822144 | Vriens | Apr 1989 | A |
4860069 | Yamazaki | Aug 1989 | A |
4894703 | Hamamsy et al. | Jan 1990 | A |
5077587 | Albergo et al. | Dec 1991 | A |
5113233 | Kitagawa et al. | May 1992 | A |
5214306 | Hashimoto | May 1993 | A |
RE34861 | Davis et al. | Feb 1995 | E |
5393993 | Edmond et al. | Feb 1995 | A |
5404282 | Klinke et al. | Apr 1995 | A |
5416342 | Edmond et al. | May 1995 | A |
5523589 | Edmond et al. | Jun 1996 | A |
5550091 | Fukuda et al. | Aug 1996 | A |
5563422 | Nakamura et al. | Oct 1996 | A |
5567523 | Rosenblum et al. | Oct 1996 | A |
5578839 | Nakamura et al. | Nov 1996 | A |
5583351 | Brown et al. | Dec 1996 | A |
5585648 | Tischler | Dec 1996 | A |
5592501 | Edmond et al. | Jan 1997 | A |
5616937 | Kitagawa et al. | Apr 1997 | A |
5652434 | Nakamura et al. | Jul 1997 | A |
5708280 | Lebby et al. | Jan 1998 | A |
5739554 | Edmond et al. | Apr 1998 | A |
5767581 | Nakamura et al. | Jun 1998 | A |
5798537 | Nitta | Aug 1998 | A |
5812105 | Van de ven | Sep 1998 | A |
5813752 | Singer et al. | Sep 1998 | A |
5813753 | Vriens et al. | Sep 1998 | A |
5877558 | Nakamura et al. | Mar 1999 | A |
5959401 | Asami et al. | Sep 1999 | A |
6258617 | Nitta et al. | Jul 2001 | B1 |
6268618 | Miki et al. | Jul 2001 | B1 |
6344663 | Slater, Jr. et al. | Feb 2002 | B1 |
6380564 | Chen et al. | Apr 2002 | B1 |
6429460 | Chen et al. | Aug 2002 | B1 |
6445007 | Wu et al. | Sep 2002 | B1 |
6459100 | Doverspike et al. | Oct 2002 | B1 |
6524971 | Fetter et al. | Feb 2003 | B1 |
6586781 | Wu et al. | Jul 2003 | B2 |
6586876 | Tsai et al. | Jul 2003 | B2 |
6717362 | Lee et al. | Apr 2004 | B1 |
6781305 | Fujii | Aug 2004 | B1 |
6791119 | Slater, Jr. et al. | Sep 2004 | B2 |
6825501 | Edmond et al. | Nov 2004 | B2 |
6946682 | Slater et al. | Sep 2005 | B2 |
6995401 | Yamada et al. | Feb 2006 | B2 |
7026659 | Slater, Jr. et al. | Apr 2006 | B2 |
7259402 | Edmond et al. | Aug 2007 | B2 |
7473938 | Edmond et al. | Jan 2009 | B2 |
20010023964 | Wu et al. | Sep 2001 | A1 |
20020030194 | Camras et al. | Mar 2002 | A1 |
20030062530 | Okazaki et al. | Apr 2003 | A1 |
20040135166 | Yamada et al. | Jul 2004 | A1 |
20050001952 | Han | Jan 2005 | A1 |
20050082562 | Ou et al. | Apr 2005 | A1 |
20050095737 | Edmond et al. | May 2005 | A1 |
20060006554 | Yoo et al. | Jan 2006 | A1 |
20060060874 | Edmond et al. | Mar 2006 | A1 |
20060094145 | Otsuka et al. | May 2006 | A1 |
20060131599 | Slater, Jr. et al. | Jun 2006 | A1 |
20060175628 | Otsuka et al. | Aug 2006 | A1 |
20060186418 | Edmond et al. | Aug 2006 | A1 |
20060202217 | Ro et al. | Sep 2006 | A1 |
20060273336 | Fujikura et al. | Dec 2006 | A1 |
20070018180 | Lai et al. | Jan 2007 | A1 |
20070037307 | Donfrio | Feb 2007 | A1 |
20070102692 | Asahara et al. | May 2007 | A1 |
20070114515 | Aoyagi et al. | May 2007 | A1 |
20080003777 | Slater et al. | Jan 2008 | A1 |
20080073665 | Slater et al. | Mar 2008 | A1 |
20080197378 | Kong et al. | Aug 2008 | A1 |
20080258161 | Edmond et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
0357458 | Mar 1990 | EP |
0404565 | Dec 1990 | EP |
0622858 | Nov 1994 | EP |
1052705 | Nov 2000 | EP |
1278249 | Jan 2003 | EP |
1486818 | Dec 2004 | EP |
07-326823 | Dec 1995 | JP |
09-191160 | Jul 1997 | JP |
2002026385 | Jan 2002 | JP |
2003133590 | May 2003 | JP |
WO 9624167 | Aug 1996 | WO |
WO 9910936 | Mar 1999 | WO |
2006006556 | Jan 2006 | WO |
2007029842 | Mar 2007 | WO |
2008130823 | Oct 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080083930 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11539423 | Oct 2006 | US |
Child | 11738122 | US | |
Parent | 11338918 | Jan 2006 | US |
Child | 11539423 | US |