The present application is a U.S. National Stage Application of International Application No. PCT/US2016/064674 filed Dec. 2, 2016, which is incorporated herein by reference in its entirety for all purposes.
The present disclosure relates generally to a transportation trailer, and more particularly, to a transportation trailer having a space frame to improve the ability of the transportation trailer to handle small, dense loads.
Transportation trailers have been widely used to transport a variety of types of cargo along roadways. Many such trailers are designed to provide ultimate adaptability to the cargo and are therefore not optimized for a specific purpose. For example, double drop deck trailers are often used when a fit-for-purpose trailer is not designed for the cargo. Double drop deck trailers generally feature an elongated center section that provides a deck for mounting cargo thereto, this center section disposed between two elevated deck sections (one at the front for connecting the trailer to a truck and the other at the back over the wheels). In these types of trailers, the elongated center section provides a flatbed that supports the cargo being carried on the trailer. These trailers are designed for extreme adaptability to a wide range of cargo while minimizing the height of the center of gravity of said cargo. Unfortunately, ground clearance is often sacrificed in favor of this adaptability to the cargo. In situations where more road clearance may be necessary, such as when transporting goods to a remote work site, standard double drop trailers may be ineffective.
Other types of transportation trailers are used to transport cargo along roadways. For example, intermodal containers are often mounted onto truck trailers to carry a variety of cargo. These intermodal containers are designed to be adaptable to various types of freight transport (e.g., rail, ship, and truck). The increased length of these containers decreases the bending load on the trailer while still meeting axle spread bridge laws, thereby allowing a light weight rail frame design for the trailer. However, since the containers are unloaded off the trailer from the rear, the doors are located above the axles of the trailer. This increases the center of gravity height of the cargo compared to that of drop deck trailers, reducing the stability of the load.
It is now recognized that a need exists for a trailer design that is adapted specifically to carrying dense loads along roadways with increased road clearance, reduced center of gravity height of the load, and increased stability of the trailer.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.
Certain embodiments according to the present disclosure may be directed to systems and methods for transporting small, dense cargo over roadways via a specialized transportation trailer. The disclosed transportation trailer is specifically designed to match the cargo being transported. The transportation trailer is designed to minimize the height of the cargo's center of gravity, increase trailer rigidity, increase cargo capacity, and maximize ground clearance compared to existing trailer designs. The transportation trailer design may be particularly useful for transporting containers of bulk material, which may be used in a wide variety of contexts including, but not limited to, drilling and completion of oil and gas wells, concrete mixing applications, agriculture, and others.
In an existing transportation trailer designed to carry a container of bulk material, the trailer structure passes entirely below the load (i.e., container) being carried. Such trailers may be fit-for-purpose, meaning they are designed to carry a specific type of load. For example, the trailer generally includes a conventional twin rail design with support arms extending outward from the main rails of the trailer to support the container of bulk material. Since the trailer uses a twin rail design without the deck, the weight of the trailer is reduced compared to a drop deck type trailer, allowing a heavier payload to be hauled by the trailer. However, the structure of the trailer is disposed entirely underneath the load, which makes the center of gravity of the load relatively high and increases a likelihood of accidental Jailer rollover. Additionally, the twin rail design, while offering trailer flexibility, also contributes to instability of the trailer during transportation along roadways.
The disclosed systems and methods for transporting small, dense loads (e.g., bulk material container) may eliminate the shortcomings associated with existing conventional twin rail fit-for-purpose trailers. Specifically, the disclosed systems and methods are directed to a transportation trailer that includes a specially designed space frame. The space frame includes a lower central portion that is designed to directly receive and support the cargo that is being carried by the trailer, as well as an upper portion that extends above the height of the cargo. The space frame also includes lower side portions that extend longitudinally in opposite directions from the lower central portion to connect the space frame to the wheels and trailer hookup of the transportation trailer. The space frame may further include a truss structure formed between the lower central portion, the lower side portions, and the upper portion to increase the rigidity of the trailer.
The disclosed transportation trailer with the space frame may minimize the height of the center of gravity of the trailer and cargo while increasing the rigidity of the trailer. This may reduce the occurrence or likelihood of trailer rollover during transport. The disclosed transportation trailer design may also maximize the cargo capacity of the trailer, so that bulk material or other types of cargo may be transported more efficiently to a location using the transportation trailer.
Turning now to the drawings,
The transportation trailer 12 may be specifically designed for use with a particular size and/or type of cargo element 14 that is disposed thereon. In some embodiments, the transportation trailer 12 may be designed to transport a cargo element 14 that includes a single, dense, and relatively small load, such as the illustrated bulk material container. In other embodiments, however, the transportation trailer 12 may be designed to transport more than one cargo element 14 at the same time.
The disclosed transportation trailer 12 may include a specially designed space frame 18 for supporting the cargo element 14. As illustrated, the space frame 18 may extend longitudinally along the trailer 12 and may be connected to other components of the trailer 12. For example, the trailer 12 may include a trailer hookup 20 disposed at a first end 22 of the trailer 12. The trailer 12 may also include a plurality of wheels 24 disposed at a second end 26 of the trailer 12 opposite the first end 22. The trailer hookup 20 may be used to attach the trailer 12 to a truck that is pulling the trailer 12. The space frame 18 may include a lower central portion 30 and an upper portion 32 extending upward from the lower central portion 30. The upper portion 32 of the space frame 18 may extend above the maximum height of the cargo element 14 disposed on the trailer 12. The space frame 18 may include extended lower side portions 34A and 34B that are coupled to and extend longitudinally outward from the lower central portion 30 on both sides of the space frame 18. The lower side portion 34A may form the first end 22 of the trailer 12 that is coupled to the trailer hookup 20. The lower side portion 34B may form the second end 26 of the trailer 12 that is coupled to the plurality of wheels 24.
As illustrated, the lower side portions 34A and 34B of the space frame 18 may be elevated compared to the lower central portion 30 of the space frame 18 to account for the positioning of the trailer hookup 20 and the wheels 24. The lower central portion 30 may drop down slightly below the lower side portions 34A and 34B. That is, the lower central portion 30 may drop down below an upper surface of the lower side portions 34A and 34B. As such, the cargo element 14 may be received on and supported by the lower central portion 30 at a lower position than the upper surfaces of the lower side portions 34A and 34B on either side.
The space frame 18 may include downwardly sloping portions 36A and 36B coupled to opposite sides of the upper portion 32 and sloping downwardly and in opposite directions away from the upper portion 32 to connect the upper portion 32 to the lower side portions 34A and 34B, respectively. With these sloping portions 36A and 36B, the space frame 18 generally takes the shape of a trapezoid when viewed from the side as in
As illustrated in
The space frame 18 may be constructed entirely from mild steels or aluminum. The various parts of the space frame 18 (e.g., 30, 32, 34, 36, and 70) may be individual pieces that are welded together to form the full space frame 18.
The cargo element 14 may include iso corners 72 designed to interface with pins, locks, or other corresponding elements on the lower central portion 30 of the space frame 18 of the trailer 12. In some embodiments, the trailer 12 may include a locking assembly on the lower central portion 30 of the space frame 18 to lock the cargo element 14 into a desired position on the trailer 12. For example, the trailer 12 may include a plurality of locks (not shown) disposed on the lower central portion 30 to interface with the cargo element 14 (e.g., at the iso corners 72). The cargo element 14 may be placed on the lower central portion 30 of the space frame 18 of the trailer 12 and secured at each corner to the trailer 12 via the locks. The locks may include iso-twist locks that can be easily manipulated to secure the cargo element 14 to the trailer 12. However, other types of twist locks of other mechanically actuated locks may be used in other embodiments of the trailer 12.
The trailer 12 may be designed such that the cargo element 14 can be loaded onto and unloaded from the trailer 12 from one or both sides of the trailer 12. The term “side” refers to an edge or boundary of the trailer 12 along the trailer's width dimension (Z-axis) perpendicular to a longitudinal dimension (X-axis) of the trailer 12. As shown in
As illustrated in
As illustrated in
In other embodiments, the space frame 18 of the trailer 12 may include two openings 110, one on each side of the trailer 12 along the width dimension, enabling loading and unloading of the cargo element 14 from either side of the trailer 12. Having two openings 110 within the space frame 18 may increase the flexibility in loading/unloading the cargo element 14 from the trailer 12. This may be particularly useful when the trailer 12 is being loaded or unloaded at a crowded location where it is difficult for the trailer 12 to approach a loading/unloading area from any direction. Instead of maneuvering the trailer 12 into a specific orientation, the forklift (or other hoisting mechanism) may approach the trailer 12 from whichever side is more convenient to unload the cargo element 14 from the trailer 12.
The removable truss section 130 may help to increase stability of the space frame 18 as the trailer 12 is traveling down a road, while easily enabling exposure of one or more openings 110 in the side of the space frame 18 for unloading/loading cargo. As described above, the space frame 18 may include openings 110 formed in one or both sides of the space frame 18. Similarly, the trailer 12 may include one or more removable truss sections 130 disposed over the corresponding openings 110 on one or both sides of the space frame 18.
The disclosed trailer 12 of
The disclosed trailer 12 having the space frame 18 may facilitate a relatively low CG of the cargo element 14 being transported on the trailer 12 while maximizing ground clearance of the trailer 12. The term ground clearance refers to the amount of space between a point where the wheels 24 of the trailer 12 touch the ground and a bottom surface of the lower central portion 30 of the trailer 12. By using the trailer 12 with the space frame 18, the same ground clearance may be maintained while reducing the CG of the cargo element 14 supported on the trailer 12 compared to a similar trailer that does not include a space frame extending above the cargo. This may be particularly useful when transporting a cargo element 14 (e.g., large container of material) off-road or on roads with varying levels of terrain where maximum ground clearance is desired.
The disclosed trailer 12 comprising the space frame 18 may be constructed within the dimension limits set by the Department of Transportation (DOT) or other relevant regulatory bodies. For example, the overall height of the trailer 12 (i.e., from the ground to the upper portion 32 of the space frame) may be limited to 13 feet, 6 inches. Since the space frame 18 enables the placement of the cargo element 14 on the trailer 12 at a lower position than would otherwise be available, a larger (e.g., taller) cargo element 14 may be positioned on the trailer 12. The drop in position at which the cargo element 14 is elevated by trailer 12 (due to the distributed space frame 18) is generally greater than the height the upper portion 32 of the space frame 18 extends over the cargo element 14. Therefore, the space frame 18 may increase the cargo capacity of the trailer 12 compared to other trailers while remaining within the regulatory dimension limits.
Furthermore, spreading the structure of the trailer 12 (space frame 18) above and below the cargo element 14 may improve the rigidity of the trailer 12 and optimize the way trailer material is used to support the cargo load. This increased stability keeps the trailer 12 from flexing too much as it travels down the road. The space frame 18 enables a relatively rigid trailer structure using less material than would be necessary for a similarly rigid structure without a space frame extending above the cargo. Thus, the space frame 18 may increase the trailer rigidity while minimizing or reducing overall trailer weight. The amount of weight that is removed from the trailer structure 12 may then be shifted to the cargo element 14, while keeping the weight of the entire system (trailer 12 and cargo 14) within legal road limits. This may be particularly useful in instances where several trailers 12 are needed to deliver the same type of cargo 14 to a location. By increasing the cargo capacity and weight of the cargo, the disclosed trailer design may necessitate fewer trips to a location to deliver the same total amount of cargo.
Embodiments disclosed herein include:
A. A transportation trailer including a space frame, a trailer hookup disposed at a first longitudinal end of the space frame, and a plurality of wheels disposed at a second end of the space frame opposite the first end. The space frame includes a lower central portion for directly supporting cargo thereon, lower side portions coupled to and extending longitudinally outward from the lower central portion on both sides of the space frame, and an upper portion extending upward from the lower side portions to a location above a maximum height of the cargo.
B. A system including a transportation trailer having a space frame coupled to a trailer hookup and a plurality of wheels. The space frame includes a lower central portion, lower side portions coupled to and extending longitudinally outward from the lower central portion on both sides of the space frame, and an upper portion extending upward from the lower side portions to a position above the lower central portion. The system also includes a cargo element to be transported on the transportation trailer. The cargo element is disposed directly on and supported by the lower central portion of the space frame, and the upper portion of the space frame extends to a position above a height of the cargo element when the cargo element is disposed on the lower central portion of the space frame.
C. A method including providing a transportation trailer including a space frame. The space frame includes a lower central portion, lower side portions coupled to and extending longitudinally outward from the lower central portion on both sides of the space frame, and an upper portion extending upward from the lower side portions to a position above the lower central portion. The method also includes loading a cargo element onto the transportation trailer such that the cargo element is disposed directly onto the lower central portion of the space frame, and supporting the cargo element via the space frame. The upper portion of the space frame extends above a height of the cargo element. The method further includes transporting the cargo element via the transportation trailer.
Each of the embodiments A, B, and C may have one or more of the following additional elements in combination: Element 1: wherein a ground clearance of the lower central portion of the space frame is less than a ground clearance of the lower side portions of the space frame. Element 2: wherein the space frame includes a truss structure connecting the lower central portion to the upper portion of the space frame. Element 3: wherein an opening is formed on at least one side of the space frame to enable movement of cargo onto the transportation trailer from a side of the transportation trailer. Element 4: wherein the space frame includes a removable truss section disposed over the opening on the at least one side of the space frame. Element 5: wherein the space frame further includes downwardly sloping portions coupled to opposite sides of the upper portion and sloping downwardly and in opposite directions away from the upper portion to connect the upper portion to the lower side portions of the space frame. Element 6: wherein the lower central portion of the space frame includes a plurality of iso locks for selectively coupling the cargo to the space frame.
Element 7: wherein a bottom surface of the cargo element is supported by the lower central portion of the space frame at a position that is below the top surfaces of the lower side portions of the space frame. Element 8: wherein the cargo element includes a single, dense load disposed on the lower central portion of the space frame. Element 9: wherein the cargo element includes a container holding bulk material. Element 10: wherein the lower central portion of the space frame includes a plurality of iso locks, and wherein the cargo element is selectively coupled to the space frame via the plurality of iso locks. Element 11: wherein the cargo element further includes forklift pockets formed therein to facilitate lifting of the cargo element relative to the transportation trailer. Element 12: wherein the space frame includes a truss structure connecting the lower central portion to the upper portion of the space frame. Element 13: wherein the space frame further includes downwardly sloping portions coupled to opposite sides of the upper portion and sloping downwardly and in opposite directions away from the upper portion to connect the upper portion to the lower side portions of the space frame.
Element 14: further including loading the cargo element onto the transportation trailer using a forklift. Element 15: further including loading the cargo element onto the transportation trailer from a side of the transportation trailer through an opening in the space frame, wherein the space frame includes a truss structure extending between the lower central portion and the upper portion of the space frame. Element 16: further including removing a truss section from the space frame to expose the opening. Element 17: further including locking the cargo element onto the transportation trailer via iso locks disposed on the lower central portion of the space frame.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/064674 | 12/2/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/101959 | 6/7/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
710611 | Ray | Oct 1902 | A |
802254 | Baker et al. | Oct 1905 | A |
917646 | Otto | Apr 1909 | A |
1519153 | Mitton | Dec 1924 | A |
1726603 | Allen | Sep 1929 | A |
1795987 | Henry | Mar 1931 | A |
2231911 | Hitt et al. | Feb 1941 | A |
2281497 | Hyson et al. | Apr 1942 | A |
2385245 | Willoughby | Sep 1945 | A |
2415782 | Zademach et al. | Feb 1947 | A |
2513012 | Dugas | Jun 1950 | A |
2563470 | Kane | Aug 1951 | A |
2652174 | Shea | Sep 1953 | A |
2670866 | Glesby | Mar 1954 | A |
2678737 | Mangrum | May 1954 | A |
2759737 | Manning | Aug 1956 | A |
2802603 | McCray | Aug 1957 | A |
2867336 | Coody et al. | Jan 1959 | A |
3049248 | Heltzel et al. | Aug 1962 | A |
3083879 | Coleman | Apr 1963 | A |
3151779 | Rensch et al. | Oct 1964 | A |
3203370 | Friedrich et al. | Aug 1965 | A |
3217927 | Bale, Jr. et al. | Nov 1965 | A |
3318473 | Jones et al. | May 1967 | A |
3326572 | Murray | Jun 1967 | A |
3343688 | Ross | Sep 1967 | A |
3354918 | Coleman | Nov 1967 | A |
3380333 | Clay et al. | Apr 1968 | A |
3404963 | Fritsche et al. | Oct 1968 | A |
3410530 | Gilman | Nov 1968 | A |
3432151 | O'Loughlin et al. | Mar 1969 | A |
3467408 | Regalia | Sep 1969 | A |
3476270 | Cox et al. | Nov 1969 | A |
3602400 | Cooke | Aug 1971 | A |
3627555 | Driscoll | Dec 1971 | A |
3675964 | Pringle | Jul 1972 | A |
3698693 | Poncet | Oct 1972 | A |
3785534 | Smith | Jan 1974 | A |
3802584 | Sackett, Sr. et al. | Apr 1974 | A |
3986708 | Heltzel et al. | Oct 1976 | A |
4023719 | Noyon | May 1977 | A |
4058239 | Van Mill | Nov 1977 | A |
4138163 | Calvert et al. | Feb 1979 | A |
4178117 | Brugler | Dec 1979 | A |
4204773 | Bates | May 1980 | A |
4230360 | Eisenman | Oct 1980 | A |
4248337 | Zimmer | Feb 1981 | A |
4258953 | Johnson | Mar 1981 | A |
4313708 | Tiliakos | Feb 1982 | A |
4395052 | Rash | Jul 1983 | A |
4398653 | Daloisio | Aug 1983 | A |
4423884 | Gevers | Jan 1984 | A |
4544279 | Rudolph | Oct 1985 | A |
4548507 | Mathis et al. | Oct 1985 | A |
4583663 | Bonerb | Apr 1986 | A |
4626166 | Jolly | Dec 1986 | A |
4701095 | Berryman et al. | Oct 1987 | A |
4806065 | Holt | Feb 1989 | A |
4850702 | Arribau et al. | Jul 1989 | A |
4856681 | Murray | Aug 1989 | A |
4900157 | Stegemoeller et al. | Feb 1990 | A |
4919540 | Stegemoeller et al. | Apr 1990 | A |
4956821 | Fenelon | Sep 1990 | A |
4993883 | Jones | Feb 1991 | A |
4997335 | Prince | Mar 1991 | A |
5036979 | Selz | Aug 1991 | A |
5092721 | Prince | Mar 1992 | A |
5096096 | Calaunan | Mar 1992 | A |
5114169 | Botkin | May 1992 | A |
5149192 | Hamm et al. | Sep 1992 | A |
5303998 | Whitlatch et al. | Apr 1994 | A |
5339996 | Dubbert et al. | Aug 1994 | A |
5343813 | Septer | Sep 1994 | A |
5375730 | Bahr et al. | Dec 1994 | A |
5401129 | Eatinger | Mar 1995 | A |
5413154 | Hurst, Jr. et al. | May 1995 | A |
5426137 | Allen | Jun 1995 | A |
5441321 | Karpisek | Aug 1995 | A |
5443350 | Wilson | Aug 1995 | A |
5445289 | Owen | Aug 1995 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5609417 | Otte | Mar 1997 | A |
5722552 | Olson | Mar 1998 | A |
5772390 | Walker | Jun 1998 | A |
5806441 | Chung | Sep 1998 | A |
5913459 | Gill et al. | Jun 1999 | A |
5915913 | Greenlaw | Jun 1999 | A |
5927356 | Henderson | Jul 1999 | A |
5944470 | Bonerb | Aug 1999 | A |
5997099 | Collins | Dec 1999 | A |
6059372 | McDonald et al. | May 2000 | A |
6112946 | Bennett et al. | Sep 2000 | A |
6126307 | Black et al. | Oct 2000 | A |
6193402 | Grimland et al. | Feb 2001 | B1 |
6247594 | Garton | Jun 2001 | B1 |
6379086 | Goth | Apr 2002 | B1 |
6425627 | Gee | Jul 2002 | B1 |
6491421 | Rondeau et al. | Dec 2002 | B2 |
6497541 | Pawluk | Dec 2002 | B2 |
6517232 | Blue | Feb 2003 | B1 |
6536939 | Blue | Mar 2003 | B1 |
6537015 | Lim et al. | Mar 2003 | B2 |
6568567 | McKenzie et al. | May 2003 | B2 |
6622849 | Sperling | Sep 2003 | B1 |
6655548 | McClure, Jr. et al. | Dec 2003 | B2 |
6876904 | Oberg et al. | Apr 2005 | B2 |
6980914 | Bivens et al. | Dec 2005 | B2 |
7008163 | Russell | Mar 2006 | B2 |
7086342 | O'Neall et al. | Aug 2006 | B2 |
7100896 | Cox | Sep 2006 | B1 |
7114905 | Dibdin | Oct 2006 | B2 |
7252309 | Eng Soon et al. | Aug 2007 | B2 |
7284579 | Elgan | Oct 2007 | B2 |
7451015 | Mazur et al. | Nov 2008 | B2 |
7475796 | Garton | Jan 2009 | B2 |
7500817 | Furrer et al. | Mar 2009 | B2 |
7513280 | Brashears et al. | Apr 2009 | B2 |
7665788 | Dibdin | Feb 2010 | B2 |
7762281 | Schuld | Jul 2010 | B2 |
7997213 | Gauthier et al. | Aug 2011 | B1 |
8376385 | Shannon | Feb 2013 | B2 |
8387824 | Wietgrefe | Mar 2013 | B2 |
8434778 | Ehrlich et al. | May 2013 | B2 |
8434990 | Claussen | May 2013 | B2 |
D688349 | Oren et al. | Aug 2013 | S |
D688350 | Oren et al. | Aug 2013 | S |
D688351 | Oren et al. | Aug 2013 | S |
D688772 | Oren et al. | Aug 2013 | S |
8505780 | Oren | Aug 2013 | B2 |
8545148 | Wanek-Pusset et al. | Oct 2013 | B2 |
8573917 | Renyer | Nov 2013 | B2 |
8585341 | Oren | Nov 2013 | B1 |
8607289 | Brown et al. | Dec 2013 | B2 |
8616370 | Allegretti et al. | Dec 2013 | B2 |
8622251 | Oren | Jan 2014 | B2 |
8662525 | Dierks | Mar 2014 | B1 |
8668430 | Oren et al. | Mar 2014 | B2 |
D703582 | Oren | Apr 2014 | S |
8827118 | Oren | Sep 2014 | B2 |
8834012 | Case et al. | Sep 2014 | B2 |
8887914 | Allegretti et al. | Nov 2014 | B2 |
RE45713 | Oren et al. | Oct 2015 | E |
9162603 | Oren | Oct 2015 | B2 |
RE45788 | Oren et al. | Nov 2015 | E |
9211830 | Hensley et al. | Dec 2015 | B1 |
9248772 | Oren | Feb 2016 | B2 |
RE45914 | Oren et al. | Mar 2016 | E |
9296518 | Oren | Mar 2016 | B2 |
9340353 | Oren et al. | May 2016 | B2 |
9358916 | Oren | Jun 2016 | B2 |
9394102 | Oren et al. | Jul 2016 | B2 |
9403626 | Oren | Aug 2016 | B2 |
9421899 | Oren | Aug 2016 | B2 |
9440785 | Oren et al. | Sep 2016 | B2 |
9446801 | Oren | Sep 2016 | B1 |
9475661 | Oren | Oct 2016 | B2 |
9511929 | Oren | Dec 2016 | B2 |
9522816 | Taylor | Dec 2016 | B2 |
9527664 | Oren | Dec 2016 | B2 |
9580238 | Friesen et al. | Feb 2017 | B2 |
RE46334 | Oren et al. | Mar 2017 | E |
9617065 | Allegretti et al. | Apr 2017 | B2 |
9617066 | Oren | Apr 2017 | B2 |
9624030 | Oren et al. | Apr 2017 | B2 |
9624036 | Luharuka et al. | Apr 2017 | B2 |
9643774 | Oren | May 2017 | B2 |
9650216 | Allegretti | May 2017 | B2 |
9656799 | Oren et al. | May 2017 | B2 |
9669993 | Oren et al. | Jun 2017 | B2 |
9670752 | Glynn et al. | Jun 2017 | B2 |
9676554 | Glynn et al. | Jun 2017 | B2 |
9682815 | Oren | Jun 2017 | B2 |
9694970 | Oren et al. | Jul 2017 | B2 |
9701463 | Oren et al. | Jul 2017 | B2 |
9718609 | Oren et al. | Aug 2017 | B2 |
9718610 | Oren | Aug 2017 | B2 |
9725233 | Oren et al. | Aug 2017 | B2 |
9725234 | Oren et al. | Aug 2017 | B2 |
9738439 | Oren et al. | Aug 2017 | B2 |
RE46531 | Oren et al. | Sep 2017 | E |
9758081 | Oren | Sep 2017 | B2 |
9758993 | Allegretti et al. | Sep 2017 | B1 |
9771224 | Oren et al. | Sep 2017 | B2 |
9783338 | Allegretti et al. | Oct 2017 | B1 |
9796319 | Oren | Oct 2017 | B1 |
9796504 | Allegretti et al. | Oct 2017 | B1 |
9809381 | Oren et al. | Nov 2017 | B2 |
9828135 | Allegretti et al. | Nov 2017 | B2 |
9840366 | Oren et al. | Dec 2017 | B2 |
9969564 | Oren | May 2018 | B2 |
9988182 | Allegretti et al. | Jun 2018 | B2 |
10059246 | Oren | Aug 2018 | B1 |
10081993 | Walker et al. | Sep 2018 | B2 |
10189599 | Allegretti et al. | Jan 2019 | B2 |
10207753 | O'Marra | Feb 2019 | B2 |
10287091 | Allegretti | May 2019 | B2 |
10308421 | Allegretti | Jun 2019 | B2 |
10486854 | Allegretti et al. | Nov 2019 | B2 |
10518828 | Oren | Dec 2019 | B2 |
10604338 | Allegretti | Mar 2020 | B2 |
20020121464 | Soldwish-Zoole et al. | Sep 2002 | A1 |
20030159310 | Hensley et al. | Aug 2003 | A1 |
20040008571 | Coody et al. | Jan 2004 | A1 |
20040009050 | Rediehs | Jan 2004 | A1 |
20040031335 | Fromme et al. | Feb 2004 | A1 |
20040206646 | Goh et al. | Oct 2004 | A1 |
20040258508 | Jewell | Dec 2004 | A1 |
20050219941 | Christenson et al. | Oct 2005 | A1 |
20060013061 | Bivens et al. | Jan 2006 | A1 |
20070014185 | Diosse et al. | Jan 2007 | A1 |
20070065261 | Chambers et al. | Mar 2007 | A1 |
20070201305 | Heilman et al. | Aug 2007 | A1 |
20080187423 | Mauchle | Aug 2008 | A1 |
20080294484 | Furman et al. | Nov 2008 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090129903 | Lyons, III | May 2009 | A1 |
20090292572 | Alden et al. | Nov 2009 | A1 |
20090297306 | Cook | Dec 2009 | A1 |
20090314791 | Hartley et al. | Dec 2009 | A1 |
20100196129 | Buckner | Aug 2010 | A1 |
20100319921 | Eia et al. | Dec 2010 | A1 |
20120017812 | Renyer et al. | Jan 2012 | A1 |
20120018093 | Zuniga et al. | Jan 2012 | A1 |
20120037231 | Janson | Feb 2012 | A1 |
20120181093 | Fehr et al. | Jul 2012 | A1 |
20120219391 | Teichrob et al. | Aug 2012 | A1 |
20130128687 | Adams | May 2013 | A1 |
20130135958 | O'Callaghan | May 2013 | A1 |
20130142601 | McIver et al. | Jun 2013 | A1 |
20130206415 | Sheesley | Aug 2013 | A1 |
20130284729 | Cook et al. | Oct 2013 | A1 |
20140023463 | Oren | Jan 2014 | A1 |
20140044508 | Luharuka et al. | Feb 2014 | A1 |
20140076569 | Pham et al. | Mar 2014 | A1 |
20140083554 | Harris | Mar 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140305769 | Eiden, III et al. | Oct 2014 | A1 |
20140377042 | McMahon | Dec 2014 | A1 |
20150003955 | Oren et al. | Jan 2015 | A1 |
20150016209 | Barton et al. | Jan 2015 | A1 |
20150183578 | Oren et al. | Jul 2015 | A9 |
20150191318 | Martel | Jul 2015 | A1 |
20150284194 | Oren et al. | Oct 2015 | A1 |
20150353293 | Richard | Dec 2015 | A1 |
20150366405 | Manchuliantsau | Dec 2015 | A1 |
20150368052 | Sheesley | Dec 2015 | A1 |
20150375930 | Oren et al. | Dec 2015 | A1 |
20160031658 | Oren et al. | Feb 2016 | A1 |
20160039433 | Oren et al. | Feb 2016 | A1 |
20160046438 | Oren et al. | Feb 2016 | A1 |
20160046454 | Oren et al. | Feb 2016 | A1 |
20160068342 | Oren et al. | Mar 2016 | A1 |
20160090741 | Jobin et al. | Mar 2016 | A1 |
20160130095 | Oren et al. | May 2016 | A1 |
20160244279 | Oren et al. | Aug 2016 | A1 |
20160264352 | Oren | Sep 2016 | A1 |
20160332809 | Harris | Nov 2016 | A1 |
20160332811 | Harris | Nov 2016 | A1 |
20170021318 | McIver et al. | Jan 2017 | A1 |
20170123437 | Boyd et al. | May 2017 | A1 |
20170129696 | Oren | May 2017 | A1 |
20170144834 | Oren et al. | May 2017 | A1 |
20170190523 | Oren et al. | Jul 2017 | A1 |
20170203915 | Oren | Jul 2017 | A1 |
20170217353 | Vander Pol | Aug 2017 | A1 |
20170217671 | Allegretti | Aug 2017 | A1 |
20170225883 | Oren | Aug 2017 | A1 |
20170240350 | Oren et al. | Aug 2017 | A1 |
20170240361 | Glynn et al. | Aug 2017 | A1 |
20170240363 | Oren | Aug 2017 | A1 |
20170267151 | Oren | Sep 2017 | A1 |
20170283165 | Oren et al. | Oct 2017 | A1 |
20170313497 | Schaffner et al. | Nov 2017 | A1 |
20170320660 | Sanders et al. | Nov 2017 | A1 |
20170349226 | Oren | Dec 2017 | A1 |
20180002120 | Allegretti et al. | Jan 2018 | A1 |
20180257814 | Allegretti et al. | Sep 2018 | A1 |
20190009231 | Warren et al. | Jan 2019 | A1 |
20190111401 | Lucas et al. | Apr 2019 | A1 |
20190241356 | Schaffner et al. | Aug 2019 | A1 |
20200062448 | Allegretti et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
0010985 | May 1980 | EP |
2937826 | Oct 2015 | EP |
795852 | May 1958 | GB |
2066220 | Jul 1981 | GB |
2204847 | Nov 1988 | GB |
2008239019 | Oct 2008 | JP |
2008012513 | Jan 2008 | WO |
2013095871 | Jun 2013 | WO |
2013142421 | Sep 2013 | WO |
2014018129 | Jan 2014 | WO |
2014018236 | May 2014 | WO |
2015119799 | Aug 2015 | WO |
2015191150 | Dec 2015 | WO |
2015192061 | Dec 2015 | WO |
2016044012 | Mar 2016 | WO |
2016160067 | Oct 2016 | WO |
2016178691 | Nov 2016 | WO |
2016178692 | Nov 2016 | WO |
2016178694 | Nov 2016 | WO |
2016178695 | Nov 2016 | WO |
2017014768 | Jan 2017 | WO |
2017014771 | Jan 2017 | WO |
2017014774 | Jan 2017 | WO |
2017027034 | Feb 2017 | WO |
Entry |
---|
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2016/064674 dated Aug. 16, 2017, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20200055548 A1 | Feb 2020 | US |