1. Field
The present disclosure relates to power transfer devices, such as mechanisms for operating lids or doors for refuse receptacles.
2. Description of the Related Art
Receptacles and other devices with mechanisms for transferring power to a subcomponent, such as a lid or a door, are used in a variety of different settings. For example, in both residential and commercial settings, trash cans and other devices often have lids for protecting or preventing the escape of the contents of the receptacle. In the context of trash cans, some trash cans include lids or doors to prevent odors from escaping and to hide the trash within the receptacle from view. Additionally, the lid of a trash can reduce the likelihood of contaminants escaping from the receptacle.
Some commercially available trash cans have power or manually operated lids. Such cans generally include a motor that drives a gear assembly, which in turn drives the lid open and closed. Such trash cans can include a sensor positioned on or near the lid. Such a sensor can be configured to detect movement, such as a user's hand being waived near the sensor, as a signal for opening the lid. When such a sensor is activated, a motor within the trash receptacle opens the lid or door and thus allows a user to place items into the receptacle. Afterwards, the lid can be automatically closed.
However, certain conventional power operated lids present some difficulties. For example, users of current trash cans with power operated lids can experience problems if the trash within the receptacle or can is piled higher than the level of the lid itself. If the trash or other material within the can is higher than the level of the lid itself, the lid will be unable to completely close. This can cause the motor or batteries to wear down, continue running, and/or ultimately fail. It can also force the user to reset the controller, remove trash, or manually compress the trash until the lid can be closed.
Additionally, design of certain conventional lids can result in increased stress on the motor and/or the gear assembly. For example, in the closed position, the lid is generally in a horizontal position (e.g., parallel with the ground), which can result in a relatively large initial moment of force (e.g., the force of gravity acting on the horizontal moment arm of the lid) that must be overcome by a motor or by a user to begin to open the lid. Such an initial moment of force can result in increased wear on the gear assembly and the motor, which can precipitate a failure of the motor, gear assembly, or both, or require can increased amount of opening force in a manual system.
Further, to overcome the moment of force when the lid is in the closed position, the motor of certain conventional receptacles is of a greater size (e.g., in power output) than otherwise would be required. However, increasing the size of the motor generally results in the motor having to consume additional power and/or requires larger exterior dimensions. A motor that consumes additional power may produce more heat and noise and/or require more frequent replacement of a power source (e.g., batteries). A motor having larger exterior dimensions can result in an increase in the overall dimensions of the receptacle or a reduction of the holding capacity of the receptacle. Increasing the overall dimensions of the receptacle can be undesirable because the receptacle occupies additional space (e.g., in already crowded kitchens or other environments). Reducing the capacity of the receptacle can be undesirable because certain items may no longer fit into the receptacle and/or because the receptacle may require more frequent emptying.
Moreover, so as to withstand the initial moment of force, the gears of certain conventional receptacles have a tooth diameter that is relatively small and generally constant. In some instances, this type of gear configuration can result in a reduced operating speed of the lid (e.g., the time for the lid to move from closed to open). Such a delay can be undesirable, for example, when a user is in a hurry.
Furthermore, the motor and/or gear assembly can be damaged when the lid is manually operated (e.g., not opened and/or closed by the motor). For example, when the lid is manually operated, certain of the gears in connection with the lid are encouraged to move (e.g., rotate and/or translate). However, because the motor may be relatively difficult to rotate when not being operated, the motor may inhibit one or more of the gears from moving. Thus, when the lid is manually operated, a stress can result between the gears that the lid is urging to move and the gears that the motor is inhibiting from moving. Such a stress can result in damage to the gears, motor, lid, or other components of the receptacle. For instance, such stress can strip one or more teeth of the gears. Damage to the gears can, for example, result in reduced control over the motion of the lid, cause noise, and even inhibit or prevent the motor from operating the lid.
Several embodiments of refuse receptacles, such as trash cans, are disclosed. According to some embodiments, a refuse receptacle includes an outer shell component portion and a lid mounted relative to the outer shell component portion and configured to move between an open position and a closed position. Some embodiments also include a power supply and a motor configured to be powered by the power supply. Certain variants have a gear assembly that is configured to move the lid between the opened and closed positions. The gear assembly can include a variable gear rotatably engaged with a lifting gear. Some variants of the variable gear are rotatable by the motor and have a first tooth and a second tooth. The first tooth can have a first tooth radius and the second tooth can have a second tooth radius. The second tooth radius can be greater than the first tooth radius. In some embodiments, rotation of the variable gear facilitates acceleration in the angular velocity of the lid during the movement of the lid between the opened and closed positions.
In some embodiments, the variable gear comprises a plurality of teeth, each with a tooth radius. In certain implementations, a plurality of teeth have a unique tooth radius. The tooth radii generally increase and/or decrease in succession around the circumference of the variable gear. In certain embodiments, the tooth having the longest tooth radius is engaged with the lifting gear when the lid is in the open position. In some embodiments, the tooth having the shortest tooth radius is engaged with the lifting gear when the lid is in the closed position. One or more teeth positioned in between these teeth have radii in between the longest and shortest tooth radii.
In certain variants, the lifting gear comprises a rack gear having a first transverse width and a second transverse width. The first transverse width can be different than the second transverse width. In some embodiments, during movement of the lid between the opened and closed positions, at least one tooth of the variable gear is engaged with at least one tooth of the rack gear. The sum of the tooth radius and the transverse width of the engaged teeth can increase, decrease, or be generally constant.
In some embodiments, a receptacle can comprise a coupling mechanism configured to inhibit vibration from the motor from being transmitted to the variable gear.
Some implementations have a drive shaft that is rotated by the motor. The drive shaft can have a first portion with a first cross-sectional shape (e.g., generally round) and a second portion having a second cross-sectional shape (e.g., generally rectangular). The first and second cross-sectional shapes can be non-complementary.
Some embodiments include a clutch member configured to engage with the variable gear. The variable gear can have a first interface surface, such as an inclined cam surface, and the clutch member can include a corresponding second interface surface, such as an inclined cam surface, configured to nest with the first inclined cam surface. In some embodiments, wherein the lid is disposed generally parallel with the ground on which the receptacle is located in the closed position. In some embodiments, the lid is disposed generally perpendicular to the ground in the open position.
In certain implementations, a trash can, which is configured for manual and/or powered operation, can include an outer shell component and a lid mounted relative to the outer shell component and configured to move between an open position and a closed position. Some embodiments also include a power supply and a motor configured to be powered by the power supply. In some embodiments, a gear assembly is operably connected with the motor and the lid, or between a manually-operated device (e.g., a pedal) and the lid, such that powered operation of the motor can drive the lid between the open and closed positions via the gear assembly. Certain embodiments have a clutch engaged with the gear assembly. The clutch can be configured to transmit torque from the motor to a portion of the gear assembly during powered operation of the lid by the motor. The clutch can be configured to at least partly disengage from the gear assembly during manual operation of the lid to allow the at least part of the gear assembly to rotate relative to the clutch, thereby facilitating manual operation of the lid without damage to the gear assembly.
According to some embodiments, after manual operation of the lid has ceased, the clutch is automatically reengaged with the gear assembly, thereby facilitating subsequent powered operation of the lid. Certain variants have a biasing member configured to bias the clutch into engagement with the gear assembly. Some implementations have a drive shaft and the clutch is configured to translate along a portion of the drive shaft.
In some embodiments, the gear assembly further comprises a first inclined cam surface and the clutch member comprises a corresponding second inclined cam surface configured to nest with the first inclined cam surface. In certain variants, during manual operation of the lid, the first and second inclined cam surfaces slide relative to each other. In some embodiments, during manual operation of the lid, the clutch is urged in a direction generally away from the motor.
The above-mentioned and other features of the trashcans disclosed herein are described below with reference to the drawings of certain embodiments. The illustrated embodiments are intended to illustrate, but not to limit the disclosure. The drawings contain the following Figures:
Certain embodiments of a system for opening and closing a lid or door of a refuse receptacle (e.g., a trash can) or other device are disclosed. The present disclosure describes certain embodiments in the context of a domestic trash can, due to particular utility in that context. However, the subject matter of the present disclosure can be used in many other contexts as well, such as commercial trash cans, doors, windows, security gates, and other larger doors or lids, as well as doors or lids for smaller devices, such as high precision scales, computer drives, etc. The embodiments and/or components thereof can be implemented in powered or manually-operated systems.
With reference to
Some embodiments of the outer shell component 22 include an upper shell portion 28 and lower shell portion 30. Some embodiments of the trash can assembly 20 comprise an inner liner 32 configured to be retained within the outer shell component 22. For example, an upper peripheral edge of the outer shell component 22 can be configured to support an upper peripheral edge of inner liner 32, such that the inner liner 32 is suspended by its upper peripheral edge within the outer shell component 22. In some embodiments, the trash can assembly 20 can include a liner support member 34 supported by the shell component 22 and configured to support the liner 32 within the interior of the outer shell component 22. In certain embodiments, the inner liner 32 is positioned near, or seated on, a lower portion of the outer shell component 22.
The outer shell component 22 can have any configuration. As shown in
The trash can assembly 20 can include a base portion 44. The base portion 44 can include screws or other components for attachment to the outer shell component 22, and can have a flat lower portion for resting on a surface, such as a kitchen floor. The base portion 44 of the trash can assembly 20 can be made integrally, monolithically, or separate from the outer shell component 22. Thus, the base portion 44 can be made from any material including plastic, steel, stainless steel, aluminum or any other material. Additionally, in some embodiments, such as those in which the outer shell component 22 is metal (e.g., stainless steel), the base portion 44 can be a plastic material.
The lid 24 can be pivotally attached to the trash can assembly in any manner. For example, in the illustrated embodiment, the lid 24 is pivotally attached to an upper lid support ring 46, which can be securely mounted to the upper periphery of the outer shell component 22. In some embodiments, the lid 24 is connected with hinges 48, 50, which can be constructed in any manner. The trash can assembly can include a lifting mechanism 102, such as a gearing and/or linkage assembly, which can be used to move the lid 24 between open and closed positions, as will be discussed in further detail below.
With reference to
As previously noted, in some embodiments, the trash can assembly includes a lifting mechanism 102, such as is depicted in
As depicted in
In some embodiments, the housing portion 104 can be configured to generally enclose the lifting mechanism 102. In some embodiments, the housing portion 104 has one or more openings through which a portion of the lifting mechanism 102 can extend. For example, as shown in
As shown in
In some embodiments, the motor 112 directly drives the variable gear 124. In certain implementations, the motor 112 is configured to indirectly drive the variable gear 124. For example, the coupling mechanism 111, drive shaft 120, and/or a clutch member 140 can be positioned so as to transmit driving force to the variable gear 124. In some embodiments, the motor 112 can drive the coupling mechanism 111, which can drive the drive shaft 120, which can drive the clutch member 140, which can drive the variable gear 124. In some embodiments, an output shaft of the motor 112 can connect to the drive shaft 120 directly. In some embodiments, the coupling mechanism 111 is positioned intermediate, and connects, the drive shaft 120 and the motor 112.
In several embodiments, the coupling mechanism 111 includes a first coupling member 114. The first coupling member 114 can include a generally flat first side 146, which can be configured to generally face toward the motor 112. As shown in
In some embodiments, the coupling mechanism 111 includes a second coupling member 118. In some implementations of the coupling mechanism 111, the second coupling member 118 is positioned between the first coupling member 114 and the drive shaft 120. The second coupling member 118, as depicted in
In some embodiments, the first coupling member 114 is operably connected with the motor 112 and the second coupling member 118. For example, in some variants, the motor 112 can rotate the first coupling member 114, which in turn can rotate the second coupling member 118. The second coupling member 118 can be configured to dampen undesirable transmissions (e.g., noise, vibration, and/or harshness) produced by the motor 112 that are transmitted to the second coupling member 118 via the first coupling member 114. For example, the second coupling member 118 can be made of rubber, plastic, or other generally damping, pliable, or resilient materials.
The first coupling member 114, second coupling member 118, and drive shaft 120 can be axially aligned and fit together to form a generally cylindrical structure (see
Certain embodiments of the drive shaft 120 include an extension portion 155 extending in a generally opposite direction from the protrusions 122. In some embodiments, the extension portion 155 can include a first shaft region 156 and a second shaft region 158. In some embodiments, the regions 156, 158 have a different transverse cross-section. For example, the transverse cross-section of the first shaft region 156 can be circular and the transverse cross-section of second shaft region 158 can be generally square-shaped. The transverse cross-section of the shaft regions 156, 158 can have other shapes, such as generally elliptical, pentagonal, hexagonal, star-shaped, or otherwise. The drive shaft 120 can comprise glass, plastic, aluminum, stainless steel, or any other suitable material.
In some embodiments, a portion of the drive shaft 120 is received in an opening 164 in the variable gear 124. As shown in
In certain embodiments, a portion of the drive shaft 120 is received by a receiving feature, such as an opening 170, in the clutch member 140, such as is shown in
In some embodiments, the clutch member 140 is able to move (e.g., translate) longitudinally along a portion of the length of the drive shaft 120 (e.g., away from the variable gear 124 and/or the motor 112). As will be discussed in more detail below, in some embodiments, the ability of the clutch member 140 to move along the drive shaft 120 can facilitate manual operation of the lid 24 in certain circumstances. In certain variants, a biasing member 142, such as a spring, biases the clutch member 140 generally toward the variable gear 124.
With regard to
In some embodiments, one or more of the teeth 126 includes an apex 127 and a base region 129. Each apex 127 can be pointed or blunt. Each tooth can have a tooth radius, which is the distance from the radial center of the opening 164 (about which the variable gear 124 rotates) to the apex of the tooth. In some embodiments, the variable gear 124 includes an outer diameter, which is the distance from the apex of a tooth to the apex of a generally diametrically opposite tooth.
As illustrated, one or more of the teeth 126 can have valleys (e.g., a radiused regions) on each side and which can connect adjacent teeth. The radially innermost portions of valleys of on either side of a tooth can define a root radius of the tooth. Each of the teeth 126 can have a depth h, which is measured from the apex 127 to the root radius of the tooth. In some embodiments, the depth h is generally constant from tooth to tooth. In some embodiments, the depth h is variable. For example, in some variants, the depth h is proportional to the tooth radius of the tooth.
In some embodiments, the teeth 126 include a tooth pitch p, which is the distance between leading or trailing edges of adjacent teeth. The tooth pitch p can be configured to achieve desired loads, speed, etc. In certain embodiments, the tooth pitch p is generally constant around the entire variable gear 124. In some embodiments, the tooth pitch p is variable. For example, the tooth pitch p can be related to the tooth radius (e.g., the tooth pitch p increases as the tooth radius increases).
In certain implementations, the teeth 126 include a tooth thickness t, which is the circumferential thickness at about the midpoint between the apex and the root diameter of the tooth. The tooth thickness t can be constant or varied. For example, in some embodiments, the tooth thickness is a function of the tooth radius (e.g., the tooth thickness t decreases as the tooth radius increases). Certain configurations of the variable gear 124 have thicker teeth 126 that engage with the lifting member 106 during periods of increased load (e.g., when the lid is closed and thus generally horizontally disposed). Some variants have thinner teeth 126 that engage with the lifting member 106 during periods of reduced load (e.g., when the lid is positioned at an angle that is at least about 45° and/or less than or equal to about 90° relative to the ground).
In some embodiments, as shown in
In some embodiments, the radii of the variable gear 124 can vary such that the radius gradually increases from tooth to tooth around the circumference of the gear 124. In certain embodiments, the increase in tooth radius is rapid and/or discontinuous. For example, the radius of a tooth may be double, triple, or more, the radius of an adjacent tooth. In some embodiments, the radius can increase and decrease from tooth to tooth around the variable gear 124.
In some embodiments, the shortest tooth radius of the variable gear 124 is greater than about 1 mm and/or less than or equal to about 10 mm. In certain variants, the shortest tooth radius is greater than about 2.5 mm and/or less than or equal to about 7.5 mm. The shortest tooth radius of some implementations is greater than about 4 mm and/or less than or equal to about 5 mm. In some embodiments, the shortest radius is about 4.5 mm.
In some embodiments, the longest tooth radius of the variable gear 124 is greater than about 5 mm and/or less than or equal to about 15 mm. In some embodiments, the longest tooth radius is greater than about 7.5 mm and/or less than or equal to about 12.5 mm. The longest tooth radius of certain variants is greater than about 9 mm and/or less than or equal to about 10 mm. In some embodiments, longest radius is about 9 mm. In some embodiments, the ratio of the tooth radius of the longest tooth to the tooth radius of the shortest tooth is greater than or equal to about: 1.25:1, 1.5:1, 2:1, 3:1, values in between, or otherwise.
In some embodiments, the radius generally constantly increases between adjacent teeth of the variable gear 124. For example, the increase can be greater than about 0.1 mm and/or less than or equal to about 1.0 mm. In some implementations, the increase is greater than about 0.25 mm and/or less than or equal to about 0.75 mm. In some embodiments, the increase is greater than about 0.4 mm and/or less than or equal to about 0.5 mm. In some embodiments, the increase of the tooth radius between adjacent teeth is about 0.45 mm. In certain variants, the radius generally between adjacent teeth of the variable gear 124 changes non-linearly. For example, in some embodiments, the difference between the tooth radius of adjacent teeth changes in a non-linear manner.
A variable, or non-constant, tooth radius may be desirable at least in part because a smaller tooth radius can be advantageous in certain instances, and a larger tooth radius can be advantageous in other instances. For example, a smaller tooth radius may be desirable when an increased level of torque is to be transmitted, as the moment arm between the center of the gear and the tooth is reduced and thus the stress on the gear can be reduced. In some embodiments, this increase in torque is helpful in overcoming the moment of inertia of the resting lid 24 in the closed position. This mechanically induced increase in torque can require less power to be produced by the motor 112 to lift the lid 24. This can help prolong the power stored in the battery to operate the trash can 20 and/or can reduce the size and/or capacity of the motor 112, which can provide for cost and space savings. However, a larger tooth radius can increase the angular velocity of the gear, which can allow for more rapid movement (e.g., opening of the lid 24).
As previously noted, the variable gear 124 can have teeth 126 with variable radii. Such a configuration can, for example, allow for the lid 24 to be moved (e.g., opened) more efficiently, smoothly, rapidly, or otherwise. For example, the gear 124 can be configured to engage one or more of the teeth 126 that have a smaller tooth radius with the lifting member 106 in order to drive a lid 24 from the closed (e.g., generally horizontal) position, which generally presents the longest moment of force on the lid 24 and can impose higher stress on the motor and gear assembly.
In some embodiments, as the lid 24 rotates open, the horizontal moment arm of the lid 24 decreases, which decreases the moment of force from gravity and may decrease the stress on the motor and gear assembly. Thus, some embodiments are configured to engage the teeth 126 having a progressively larger tooth radius with the lifting member 106 as a function of the rotation of the lid 24. For example, the tooth radius can increase as the percentage of open (e.g., the rotational distance that the lid 24 has rotated from closed to open, divided by the total rotational distance that the lid 24 rotates from closed to open) of the lid 24 increases. In certain variants, the progressively increasing tooth radius of the teeth engaged with the lifting member 106 results in the lid 24 being progressively driven open more quickly.
In some embodiments, the tooth depth h remains substantially the same around the generally entire variable gear 124. In certain variants, the tooth depth h varies from tooth to tooth. In some embodiments, the tooth depth h increases (e.g., gradually) from tooth to tooth. In certain embodiments, the change in tooth depth h is rapid or discontinuous. For example, a first tooth depth can be at least about double or triple a second tooth depth. In some embodiments, the tooth depth increases and decreases from tooth to tooth around the variable gear 124.
In some arrangements, an increase in the tooth depth h can increase the strength of the tooth (e.g., by providing more area over which to distribute a load). In some embodiments, the tooth depth h increases as the tooth radius increases. In certain variants, the tooth depth h increases as the radius tooth radius decreases.
As previously noted, in some scenarios, it may be desirable to have a variable gear 124 having varied tooth radii. In certain implementation, a rack (e.g., the lifting member 106) and pinion (e.g., the variable gear 124) mechanism with larger teeth radii can drive the lid 24 open more quickly. However, in certain scenarios, engagement of teeth with larger radii may be less capable of withstanding some types of stress than a configuration in which teeth with shorter radii are engaged. Thus, some embodiments of the variable gear 124 are configured to drive the lid 24 open with a portion of a variable gear 124 having shorter teeth when the lid 24 in or near the closed position (e.g., when additional force is necessary to open). Some embodiments of the variable gear 124 are configured to drive the lid 24 open with progressively larger teeth as the level of force to open the lid decreases. In some embodiments, the variable gear 124 is configured to accelerate the rate at which the lid 24 is opened. For example, the variable gear 124 can engage teeth 126 having a progressively increasing tooth radius as the lid moves from open to closed.
In several embodiments, the variable gear 124 can engage or interact with the lifting member 106, such as to open the lid 24. For example, the lifting member 106 and variable gear 124 can be configured as a rack and pinion. In certain implementations, the lifting member 106 is positioned generally perpendicular to the longitudinal axis of the motor 112. As shown in
In some embodiments, lifting member 106 includes a guide surface 162. As shown in
The lifting member 106 can have a recessed portion 174 on the guide surface 162. The recessed portion 174 can facilitate manufacturability of the lifting member 106. The recessed portion is generally configured to not inhibit movement of the guide roller 172 along the guide surface 162 (e.g., the recessed portion 174 is configured such that the guide roller 172 does not enter the recessed portion 174).
In some embodiments, the lifting member 106 can include a stopping member 130, which can inhibit the lifting member 106 from moving past a predetermined position. For example, the stopping member 130 can inhibit the lifting member 106 from moving toward the base portion 44 of the trash can assembly 20 to such an extent that the lifting member 106 disengages with the teeth 126 of the variable gear 124. In certain variants, the stopping member 130 can be positioned along the guide surface 162. Some embodiments have the stopping member 130 located at, near, or adjacent to an end generally opposite the eyelet 108.
In some embodiments, the lifting member 106 can include a flagging member 132. As shown, in certain variants, the flagging member 132 is positioned along a side of the lifting member 106. Some embodiments have the flagging member 132 positioned at, near, or adjacent to an end generally opposite the eyelet 108. The flagging member 132 can be used to indicate the position of the lifting member 106, in cooperation with one or more position sensors, which can be positioned on a circuit board in the housing 104 (not shown). In certain embodiments, based on the detected position of the lifting member 106, the position of the lid 24 can be determined (e.g., by a processor implementing an algorithm).
In some embodiments, the lifting member 106 has a plurality of teeth 128 along the pinion side surface 160. In certain implementations, one or more of the teeth 128 have an apex 133 and a base region 135. The apex 133 can be pointed or blunt. Similar to the discussion above in connection with the variable gear 124, the teeth 128 of the lifting member 106 can include a tooth pitch p, tooth depth h, and tooth thickness t. As shown, the tooth pitch p, tooth depth h, and tooth thickness t of the teeth 128 are generally constant. In certain embodiments, the tooth pitch p, tooth depth h, and/or tooth thickness t of one or more of the teeth 128 change along the a portion of the length of the lifting member 106.
In some embodiments, the teeth 128 of the lifting member 106 have a transverse width w, which can be the distance from the guide surface 162 to the apex 133 of one or more of the teeth 128. In certain variants, the transverse width w of the teeth 126 is generally constant. In certain embodiments, the transverse width w varies from tooth to tooth. For example, as illustrated in
In some embodiments, as the lifting member 106 and the variable gear 124 engage, the sum of the transverse width w of the engaged tooth 128 of the lifting member 106 and the tooth radius (e.g., r1, r2, etc.) of the engaged tooth 126 of the variable gear 124 is generally constant. For example, in some embodiments, as the tooth radius of the variable gear 124 increases (e.g., during opening of the lid 24), the transverse width w of the tooth 128 of that is engaged with the tooth 126 decreases. In certain embodiments, the distance (e.g., generally transverse to the guide surface) between the guide surface 162 of the lifting member 106 and about the center of the opening 164 of the variable gear 124 is substantially constant. For example, in some implementations, throughout the normal operation of the lifting member 106 and the variable gear 124, the distance between the guide surface 162 and about the center of the opening 164 is greater than or equal to about 4.0 mm and/or less than or equal to about 13.0 mm.
In some embodiments, the teeth 128 extend along a portion of the lifting member 106. In certain embodiments, the linear distance between the outermost of the teeth 128 is about equal to the circumference of the variable gear 124. Thus, in some embodiments, the teeth 128 at or near a first end of the teeth 128 are engaged with the variable gear 124 when the lid 24 is at or near a first position (e.g., closed). In certain variants, the teeth 128 at or near a second end of the teeth 128 are engaged with the variable gear 124 when the lid 24 is at or near a second position (e.g., open).
In some embodiments, the transverse width w varies along the lifting member 106. In some embodiments, the tooth depth h and thickness t remain substantially the same from tooth to tooth. Certain variants have the teeth 128 positioned at a gradual incline, as depicted in
In some embodiments, the transverse width w of lifting member 106 gradually increases or decreases (e.g., linearly, exponentially, or otherwise) from tooth to tooth. In certain embodiments, the increase or decrease may be rapid or discontinuous. For example, a first transverse width w across a first tooth can be greater than or equal to approximately double or approximately triple the distance of a second transverse width w across a second tooth.
In some embodiments, the distance from the guide surface 162 to the base region of each tooth 128 is generally the same as the portion (e.g., the extent of the teeth 128) of the lifting member 106. In certain embodiments, the tooth depth h varies from tooth to tooth. In some embodiments, the tooth depth h gradually increases (e.g., linearly, exponentially, or otherwise) from tooth to tooth. In certain embodiments, the change in tooth depth h is rapid or discontinuous. For example, a first tooth depth can be greater than or equal to approximately double or approximately triple a second tooth depth.
As shown in
In some embodiments, when the trash can is at or near the closed position, the variable gear 124 is positioned on the tooth 128 near or closest to eyelet 108, as shown in
Several embodiments of the lifting member 106 and the variable gear 124 can be configured to efficiently open the lid 24. In some embodiments, the variable gear 124 is configured to balance strength (e.g., the capability of the gears 124 to withstand the force incurred during the initial stage of opening the lid 24) and speed (e.g., the rate at which the lid 24 is moved). As discussed above, certain embodiments of the variable gear 124 can be modified to provide additional strength or additional speed by modifying the extent and/or rate of change of the tooth radii generally around the circumference of the gear 124. For example, if increased velocity of the lid 24 is desired, the tooth radii of the teeth 126 can be increased (e.g., from about a 2 mm radius difference between adjacent teeth, to about 4 mm radius difference between adjacent teeth).
In the embodiment depicted in
In some embodiments, the lifting mechanism 102 is configured to permit manual operation of the lid (e.g., operation without the motor). For example, some embodiments allow the lid 24 to be opened and/or closed without, or against, the rotation of the motor 112. In some embodiments, the lifting mechanism 102 is configured to permit the variable gear 124 to rotate relative to the drive shaft 120 and/or the motor 112. For example, in certain variants, manual opening or closing of the lid 24 moves the lifting member 106, which rotates the variable gear 124, and the drive shaft 120 remains generally stationary.
In some embodiments, the variable gear 124 includes a first cam surface 180 and a first return surface 182. As shown in
In some embodiments, the clutch member 140 includes a second cam surface 184 and a second return surface 186. As illustrated in
As shown in
In certain variants, when the lid 24 is moved manually, the lifting member 106 is moved, which in turn rotates the variable gear 124. As previously discussed, the opening 164 in the variable gear 124 is configured so that the gear 124 can rotate in relation to the drive shaft 120. For example, the opening 164 is generally round and has a diameter larger than the diameter of the drive shaft 120. In some embodiments, the variable gear 124 is positioned on the first shaft region 156 (e.g., the round region of the shaft 120). In certain variants, the variable gear 124 is positioned on the second shaft region 158 (e.g., the generally square region of the shaft 120). Typically, the diameter of the opening 164 can be larger than the largest transverse dimension (e.g., the diameter or the distance between generally opposite corners) of the shaft 120. Thus, in certain embodiments, rotation of the variable gear 124 during manual operation of the lid 24 may not be transmitted to the drive shaft 120, coupling mechanism 11, and/or motor 112. Rather, certain embodiments are configured to permit the variable gear 124 to rotationally “slip” relative to the drive shaft 120, coupling mechanism 11, and/or motor 112.
As previously discussed, in some embodiments, torque from the motor 112 can be transmitted through the coupling mechanism 111 and the drive shaft 120. In some embodiments, the motor torque is transmitted to the clutch member 140 via the generally square second region 158 of the drive shaft 120, which engages the generally square aperture 170 in the clutch member 140. Thus, in certain variants, the clutch member 140 is inhibited or prevented from rotating relative to the shaft 120. In certain implementations, the clutch member 140 is configured to transmit torque from the motor 112 to the variable gear 124, such as by friction between the first and second cam surfaces 180, 184 and/or between the first and second return surfaces 182, 186.
In some embodiments, the clutch member 140 can translate along a portion of the longitudinal length of the drive shaft 120. As shown, a retaining member 141 (e.g., a nut and washer assembly) can retain the biasing member 142, which can bias the clutch member 140 into engagement with the variable gear 124. In some embodiments, translation of the clutch member 140 (e.g., in a direction away from the motor 112) along a portion of the drive shaft 120 is generally against the bias of the biasing member.
In some embodiments, when the lid 24 is manually operated, the variable gear 124 rotates. In certain implementations, when the lid 24 is manually operated, the clutch member 140 remains stationary. Some embodiments of the clutch member 140 remain stationary because, as noted above, the variable gear 124 can rotate without rotating the drive shaft 120, which can drive the clutch member 140. Thus, in certain configurations, the variable gear 124 rotates relative to the clutch member 140.
In some embodiments, rotation of the variable gear 124 relative to the clutch member 140 results in relative movement between the first and second inclined cam surfaces 180, 184. In certain configurations, the inclined cam surfaces 180, 184 slide relative to each other, which results in the inclined cams climbing each other. For example, as the inclined cam surfaces 180, 184 slide relative to each other, the summits 180a, 184a of the inclined cam surfaces 180, 184 circumferentially approach each other.
In certain embodiments, the relative movement between the first and second inclined cam surfaces 180, 184 (e.g., by the interaction of the inclines) urges the variable gear 124 and the clutch member 140 apart. For example, the variable gear 124 and the clutch member 140 can be urged in generally opposite directions along the longitudinal axis of the drive shaft 120. In some embodiments, the variable gear 124 is generally restrained from moving away from the clutch member 140 (e.g., by abutting with the coupling mechanism 111). However, certain embodiments of the clutch member 140 are able to move away from variable gear 124 by translating along the drive shaft 120 (e.g., against the bias of the biasing member 142). Thus, in certain implementations, relative rotation of the inclined cam surfaces 180, 184 results in the clutch member 140 translating along a portion of the longitudinal length of the drive shaft 120 (e.g., in a direction away from the motor 112), against the bias of the biasing member 142. Thus, some embodiments facilitate relative rotation of the variable gear 124 and the clutch member 140 without imposing undue stress on, or damage to, the variable gear 124, clutch member 140, drive shaft 120, and/or motor 112. Accordingly, manual operation of the lid 24 can be performed without imposing undue stress on, or damage to, components of the trash can assembly 20.
In some implementations, when manual operation of the lid 24 ceases, the bias of the biasing member 142 can return the clutch member 140 into generally full engagement with the variable gear 124. For example, after manual operation of the lid 24 ceases, the bias of the biasing member 142 can facilitate re-engagement of the inclined cam surfaces 180, 184. In some embodiments, re-engaging the clutch member 140 and the variable gear 124 allows the transmission of torque from the motor 112 to the variable gear 124, which can provide powered operation of the lid. Thus, some embodiments provide automatic and/or passive engagement and/or disengagement of the motor 112 and/or drive shaft 120 from the variable gear 124 and/or the lid 24.
Although the trash cans have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the trash cans and obvious modifications and equivalents thereof. In addition, while several variations of the trash cans have been shown and described in detail, other modifications, which are within the scope of the present disclosure, will be readily apparent to those of skill in the art. For example, additional and/or alternate gearing and/or torque transmission components can be included in the lifting mechanism 102. For instance, in some embodiments, the lifting mechanism 102 includes a gear reduction (e.g., greater than or equal to about 1:5, 1:10, 1:50, values in between, or any other gear reduction that would provide the desired characteristics), which can modify the rotational speed applied to the drive shaft 120, clutch member 140, variable gear 124, lifting member 106 and/or other components.
It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the present disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the trashcans. Thus, it is intended that the scope of the present disclosure should not be limited by the particular disclosed embodiments described above.
Number | Name | Date | Kind |
---|---|---|---|
1426211 | Pausin | Aug 1922 | A |
1461253 | Obadiah | Jul 1923 | A |
1754802 | Raster | Apr 1930 | A |
1820555 | Buschman | Aug 1931 | A |
1891651 | Padelford et al. | Dec 1932 | A |
1922729 | Giebel | Aug 1933 | A |
1980938 | Geibel | Nov 1934 | A |
2308326 | Calcagno | Jan 1943 | A |
D148825 | Snider | Feb 1948 | S |
2457274 | Rifken | Dec 1948 | A |
2759625 | Ritter | Aug 1956 | A |
2888307 | Graves et al. | May 1959 | A |
2946474 | Knapp | Jul 1960 | A |
3008604 | Garner | Nov 1961 | A |
3023922 | Arrington et al. | Mar 1962 | A |
3137408 | Taylor | Jun 1964 | A |
3654534 | Fischer | Apr 1972 | A |
3820200 | Myers | Jun 1974 | A |
3825150 | Taylor | Jul 1974 | A |
3825215 | Borglum | Jul 1974 | A |
3886425 | Weiss | May 1975 | A |
3891115 | Ono | Jun 1975 | A |
4014457 | Hodge | Mar 1977 | A |
4027774 | Cote | Jun 1977 | A |
4081105 | Dagonnet et al. | Mar 1978 | A |
4189808 | Brown | Feb 1980 | A |
4200197 | Meyer et al. | Apr 1980 | A |
4217616 | Jessup | Aug 1980 | A |
4303174 | Anderson | Dec 1981 | A |
4320851 | Montoya | Mar 1982 | A |
4357740 | Brown | Nov 1982 | A |
4416197 | Kehl | Nov 1983 | A |
4457483 | Gagne | Jul 1984 | A |
4535911 | Goulter | Aug 1985 | A |
4570304 | Montreuil et al. | Feb 1986 | A |
4576310 | Isgar et al. | Mar 1986 | A |
D284320 | Kubic et al. | Jun 1986 | S |
4609117 | Pamment | Sep 1986 | A |
4630332 | Bisbing | Dec 1986 | A |
4630752 | DeMars | Dec 1986 | A |
4664347 | Brown et al. | May 1987 | A |
4697312 | Freyer | Oct 1987 | A |
4711161 | Swin et al. | Dec 1987 | A |
4729490 | Ziegenbein | Mar 1988 | A |
4753367 | Miller et al. | Jun 1988 | A |
4763808 | Guhl et al. | Aug 1988 | A |
4765548 | Sing | Aug 1988 | A |
4765579 | Robbins et al. | Aug 1988 | A |
4792039 | Dayton | Dec 1988 | A |
4794973 | Perisic | Jan 1989 | A |
4834260 | Auten | May 1989 | A |
4863053 | Oberg | Sep 1989 | A |
4867339 | Hahn | Sep 1989 | A |
4884717 | Bussard et al. | Dec 1989 | A |
4892223 | DeMent | Jan 1990 | A |
4892224 | Graham | Jan 1990 | A |
4913308 | Culbertson | Apr 1990 | A |
4915347 | Iqbal et al. | Apr 1990 | A |
4918568 | Stone et al. | Apr 1990 | A |
D308272 | Koepsell | May 1990 | S |
4923087 | Burrows | May 1990 | A |
4948004 | Chich | Aug 1990 | A |
4964523 | Bieltvedt et al. | Oct 1990 | A |
4972966 | Craft, Jr. | Nov 1990 | A |
4996467 | Day | Feb 1991 | A |
5031793 | Chen et al. | Jul 1991 | A |
5048903 | Loblein | Sep 1991 | A |
5054724 | Hutcheson | Oct 1991 | A |
5065272 | Owen et al. | Nov 1991 | A |
5065891 | Casey | Nov 1991 | A |
D323573 | Schneider | Jan 1992 | S |
5090785 | Stamp | Feb 1992 | A |
5100087 | Ashby | Mar 1992 | A |
5111958 | Witthoeft | May 1992 | A |
D327760 | Donnelly | Jul 1992 | S |
D329929 | Knoedler et al. | Sep 1992 | S |
5147055 | Sampson et al. | Sep 1992 | A |
5156290 | Rodrigues | Oct 1992 | A |
5170904 | Neuhaus | Dec 1992 | A |
5174462 | Hames | Dec 1992 | A |
5213272 | Gallagher et al. | May 1993 | A |
5222704 | Light | Jun 1993 | A |
D337181 | Warman | Jul 1993 | S |
5226558 | Whitney et al. | Jul 1993 | A |
5230525 | Delmerico et al. | Jul 1993 | A |
5242074 | Conaway et al. | Sep 1993 | A |
D340333 | Duran et al. | Oct 1993 | S |
5249693 | Gillispie et al. | Oct 1993 | A |
5261553 | Mueller et al. | Nov 1993 | A |
5305916 | Suzuki et al. | Apr 1994 | A |
5314151 | Carter-Mann | May 1994 | A |
5322179 | Ting | Jun 1994 | A |
5329212 | Feigleson | Jul 1994 | A |
5348222 | Patey | Sep 1994 | A |
5381588 | Nelson | Jan 1995 | A |
5385258 | Sutherlin | Jan 1995 | A |
5390818 | LaBuda | Feb 1995 | A |
5404621 | Heinke | Apr 1995 | A |
5407089 | Bird et al. | Apr 1995 | A |
5419452 | Mueller et al. | May 1995 | A |
5471708 | Lynch | Dec 1995 | A |
5474201 | Liu | Dec 1995 | A |
5501358 | Hobday | Mar 1996 | A |
5520067 | Gabas | May 1996 | A |
5520303 | Bernstein et al. | May 1996 | A |
5531348 | Baker et al. | Jul 1996 | A |
5535913 | Asbach et al. | Jul 1996 | A |
5558254 | Anderson et al. | Sep 1996 | A |
D377554 | Adriaansen | Jan 1997 | S |
5611507 | Smith | Mar 1997 | A |
5628424 | Gola | May 1997 | A |
5632401 | Hurd | May 1997 | A |
5636416 | Anderson | Jun 1997 | A |
5644111 | Cerny et al. | Jul 1997 | A |
5645186 | Powers et al. | Jul 1997 | A |
5650680 | Chula | Jul 1997 | A |
D383277 | Peters | Sep 1997 | S |
5662235 | Nieto | Sep 1997 | A |
5690247 | Boover | Nov 1997 | A |
5695088 | Kasbohm | Dec 1997 | A |
5699929 | Ouno | Dec 1997 | A |
D388922 | Peters | Jan 1998 | S |
D389631 | Peters | Jan 1998 | S |
5704511 | Kellams | Jan 1998 | A |
5724837 | Shin | Mar 1998 | A |
5730312 | Hung | Mar 1998 | A |
5732845 | Armaly, Jr. | Mar 1998 | A |
5735495 | Kubota | Apr 1998 | A |
5738239 | Triglia | Apr 1998 | A |
5799909 | Ziegler | Sep 1998 | A |
5816431 | Giannopoulos | Oct 1998 | A |
5816640 | Nishimura | Oct 1998 | A |
D401383 | Gish | Nov 1998 | S |
D401719 | Van Leeuwen et al. | Nov 1998 | S |
5873643 | Burgess, Jr. et al. | Feb 1999 | A |
5881896 | Presnell et al. | Mar 1999 | A |
5881901 | Hampton | Mar 1999 | A |
5884237 | Kanki et al. | Mar 1999 | A |
5887748 | Nguyen | Mar 1999 | A |
5967392 | Niemi et al. | Oct 1999 | A |
5987708 | Newton | Nov 1999 | A |
6000569 | Liu | Dec 1999 | A |
6010024 | Wang | Jan 2000 | A |
6024238 | Jaros | Feb 2000 | A |
6036050 | Ruane | Mar 2000 | A |
6102239 | Wien | Aug 2000 | A |
6123215 | Windle | Sep 2000 | A |
D431700 | Roudebush | Oct 2000 | S |
6126031 | Reason | Oct 2000 | A |
6129233 | Schiller | Oct 2000 | A |
D435951 | Yang et al. | Jan 2001 | S |
6209744 | Gill | Apr 2001 | B1 |
6211637 | Studer | Apr 2001 | B1 |
6234339 | Thomasd | May 2001 | B1 |
6250492 | Verbeek | Jun 2001 | B1 |
D445980 | Tjugum | Jul 2001 | S |
6286706 | Tucker | Sep 2001 | B1 |
6328320 | Walski et al. | Dec 2001 | B1 |
6345725 | Lin | Feb 2002 | B1 |
6364147 | Meinzinger et al. | Apr 2002 | B1 |
6386386 | George | May 2002 | B1 |
6390321 | Wang | May 2002 | B1 |
6401958 | Foss et al. | Jun 2002 | B1 |
6519130 | Breslow | Feb 2003 | B1 |
6557716 | Chan | May 2003 | B1 |
6596983 | Brent | Jul 2003 | B2 |
6626316 | Yang | Sep 2003 | B2 |
6626317 | Pfiefer et al. | Sep 2003 | B2 |
D482169 | Lin | Nov 2003 | S |
6659407 | Asaro | Dec 2003 | B2 |
6681950 | Miller, Jr. et al. | Jan 2004 | B2 |
D488604 | Yang et al. | Apr 2004 | S |
D488903 | Yang et al. | Apr 2004 | S |
D489503 | Lin | May 2004 | S |
D489857 | Yang et al. | May 2004 | S |
D490583 | Yang et al. | May 2004 | S |
D490954 | Brand | Jun 2004 | S |
D491706 | Yang et al. | Jun 2004 | S |
6758366 | Bourgund et al. | Jul 2004 | B2 |
D493930 | Wang | Aug 2004 | S |
D494723 | Lin | Aug 2004 | S |
6812655 | Wang et al. | Nov 2004 | B1 |
6814249 | Lin | Nov 2004 | B2 |
D499450 | Goodman et al. | Dec 2004 | S |
6837393 | Kuo | Jan 2005 | B1 |
6857538 | Lin | Feb 2005 | B2 |
6859005 | Boliver | Feb 2005 | B2 |
D503021 | Yang et al. | Mar 2005 | S |
6866826 | Moore et al. | Mar 2005 | B2 |
6883676 | Lin | Apr 2005 | B2 |
D507090 | Yang et al. | Jul 2005 | S |
6920994 | Lin | Jul 2005 | B2 |
6974948 | Brent | Dec 2005 | B1 |
D513445 | Lin | Jan 2006 | S |
6981606 | Yang et al. | Jan 2006 | B2 |
D517764 | Wang | Mar 2006 | S |
D517767 | Yang et al. | Mar 2006 | S |
D518266 | Yang et al. | Mar 2006 | S |
7017773 | Gruber et al. | Mar 2006 | B2 |
7044323 | Yang et al. | May 2006 | B2 |
D525756 | Yang et al. | Jul 2006 | S |
7073677 | Richardson et al. | Jul 2006 | B2 |
7077283 | Yang et al. | Jul 2006 | B2 |
7080750 | Wein et al. | Jul 2006 | B2 |
7086550 | Yang et al. | Aug 2006 | B2 |
D528726 | Lin | Sep 2006 | S |
7121421 | Yang et al. | Oct 2006 | B2 |
D531499 | Zaidman | Nov 2006 | S |
D535799 | Epps | Jan 2007 | S |
D535800 | Yang et al. | Jan 2007 | S |
D537223 | Lin | Feb 2007 | S |
D537599 | Lin | Feb 2007 | S |
D537601 | Lin | Feb 2007 | S |
D537999 | Lin | Mar 2007 | S |
D538995 | Lin | Mar 2007 | S |
D539498 | Yang et al. | Mar 2007 | S |
D539499 | Yang et al. | Mar 2007 | S |
D540001 | Zimmerman | Apr 2007 | S |
D542001 | Yang et al | May 2007 | S |
D542995 | Lin | May 2007 | S |
D544170 | Lin | Jun 2007 | S |
D544171 | Lin | Jun 2007 | S |
D544671 | Saunders et al. | Jun 2007 | S |
D545024 | Liao | Jun 2007 | S |
7225943 | Yang et al. | Jun 2007 | B2 |
D547020 | Chen | Jul 2007 | S |
7243811 | Ramsey | Jul 2007 | B1 |
D550918 | Wang et al. | Sep 2007 | S |
D552319 | Gusdorf | Oct 2007 | S |
D552321 | Yang et al. | Oct 2007 | S |
D552823 | Yang et al. | Oct 2007 | S |
D552824 | Zimmerman | Oct 2007 | S |
D552825 | Yang et al. | Oct 2007 | S |
D559494 | Yang et al. | Jan 2008 | S |
D559495 | Yang et al. | Jan 2008 | S |
7328842 | Wagner et al. | Feb 2008 | B2 |
D564169 | Wang | Mar 2008 | S |
D566367 | Lin | Apr 2008 | S |
D566369 | Shek | Apr 2008 | S |
D566923 | Lin | Apr 2008 | S |
D568572 | Yang et al. | May 2008 | S |
7374060 | Yang et al. | May 2008 | B2 |
D571520 | Lin | Jun 2008 | S |
7398913 | McClure | Jul 2008 | B2 |
7404499 | Ramsey | Jul 2008 | B1 |
D576371 | Zimmerman | Sep 2008 | S |
D578265 | Presnell | Oct 2008 | S |
D578266 | Yang et al. | Oct 2008 | S |
D578722 | Yang et al. | Oct 2008 | S |
7438199 | Tidrick | Oct 2008 | B1 |
D580120 | Lin | Nov 2008 | S |
D580613 | Yang et al. | Nov 2008 | S |
D580615 | Yang et al. | Nov 2008 | S |
D584470 | Bizzell et al. | Jan 2009 | S |
D585171 | Bizzell et al. | Jan 2009 | S |
D585618 | Yang et al. | Jan 2009 | S |
7494021 | Yang et al. | Feb 2009 | B2 |
7540396 | Yang et al. | Jun 2009 | B2 |
7543716 | Lin | Jun 2009 | B2 |
7559433 | Yang et al. | Jul 2009 | B2 |
D599074 | Bizzell et al. | Aug 2009 | S |
D603119 | Yang et al. | Oct 2009 | S |
7607552 | Efstathiou | Oct 2009 | B2 |
7621420 | Bandoh et al. | Nov 2009 | B2 |
7656109 | Yang et al. | Feb 2010 | B2 |
D611216 | Yang et al. | Mar 2010 | S |
D611217 | Bizzell et al. | Mar 2010 | S |
D611671 | Yang et al. | Mar 2010 | S |
7694838 | Yang et al. | Apr 2010 | B2 |
7703622 | Bynoe | Apr 2010 | B1 |
D615722 | Yang et al. | May 2010 | S |
7712285 | Stravitz et al. | May 2010 | B2 |
7741801 | Fukuizumi | Jun 2010 | B2 |
7748556 | Yang et al. | Jul 2010 | B2 |
7781995 | Yang et al. | Aug 2010 | B2 |
7806285 | Yang et al. | Oct 2010 | B2 |
D631221 | Yang et al. | Jan 2011 | S |
D632864 | Yang et al. | Feb 2011 | S |
D634911 | Yang et al. | Mar 2011 | S |
7896187 | Haibel | Mar 2011 | B2 |
7922024 | Yang et al. | Apr 2011 | B2 |
7950543 | Yang et al. | May 2011 | B2 |
D644390 | Smeets et al. | Aug 2011 | S |
7992742 | Kim | Aug 2011 | B1 |
8006857 | Lin | Aug 2011 | B2 |
D649728 | Campbell | Nov 2011 | S |
8074833 | Yang et al. | Dec 2011 | B2 |
8096445 | Yang et al. | Jan 2012 | B2 |
8136688 | Lee et al. | Mar 2012 | B2 |
D657108 | Yang et al. | Apr 2012 | S |
D657109 | Liao | Apr 2012 | S |
D672520 | Yang et al. | Dec 2012 | S |
D675802 | Yang et al. | Feb 2013 | S |
D675803 | Yang et al. | Feb 2013 | S |
8418869 | Yang et al. | Apr 2013 | B2 |
8567630 | Yang et al. | Oct 2013 | B2 |
8569980 | Yang et al. | Oct 2013 | B2 |
8672171 | Wynn et al. | Mar 2014 | B2 |
8686676 | Yang et al. | Apr 2014 | B2 |
8716969 | Yang et al. | May 2014 | B2 |
8720728 | Yang et al. | May 2014 | B2 |
20010002690 | Rosky | Jun 2001 | A1 |
20010020619 | Pfeifer et al. | Sep 2001 | A1 |
20020092853 | Wang | Jul 2002 | A1 |
20020096524 | Hardesty | Jul 2002 | A1 |
20020104266 | Ranaudo | Aug 2002 | A1 |
20030089719 | Berger | May 2003 | A1 |
20030201265 | Lin | Oct 2003 | A1 |
20030230576 | Lin | Dec 2003 | A1 |
20040016756 | Lin | Jan 2004 | A1 |
20040134924 | Hansen et al. | Jul 2004 | A1 |
20040140782 | Okabe et al. | Jul 2004 | A1 |
20040164077 | Kuo | Aug 2004 | A1 |
20040174268 | Scott et al. | Sep 2004 | A1 |
20040175303 | Lin | Sep 2004 | A1 |
20040199401 | Wagner | Oct 2004 | A1 |
20040200938 | Forlivio | Oct 2004 | A1 |
20040206758 | Lin | Oct 2004 | A1 |
20040206760 | Gagnebin | Oct 2004 | A1 |
20040251746 | Ichimaru et al. | Dec 2004 | A1 |
20050017006 | Kuo | Jan 2005 | A1 |
20050017010 | Siegel et al. | Jan 2005 | A1 |
20050133506 | Yang et al. | Jun 2005 | A1 |
20050258794 | Fukuizumi | Nov 2005 | A1 |
20060027579 | Yang et al. | Feb 2006 | A1 |
20060103086 | Niemeyer et al. | May 2006 | A1 |
20060175336 | Wang | Aug 2006 | A1 |
20060186121 | Yang et al. | Aug 2006 | A1 |
20060196874 | Yang | Sep 2006 | A1 |
20060249510 | Lin | Nov 2006 | A1 |
20060278643 | Chiou | Dec 2006 | A1 |
20070112699 | Yang et al. | Jan 2007 | A1 |
20070034334 | Ramsey et al. | Feb 2007 | A1 |
20070090112 | Kalman et al. | Apr 2007 | A1 |
20070114847 | Ichimaru et al. | May 2007 | A1 |
20070181579 | Kuo et al. | Aug 2007 | A1 |
20070209846 | Wilson | Sep 2007 | A1 |
20070241109 | Lin | Oct 2007 | A1 |
20070266637 | McGowan | Nov 2007 | A1 |
20070272691 | Wang et al. | Nov 2007 | A1 |
20070289972 | Wynn et al. | Dec 2007 | A1 |
20080011754 | Ramsey | Jan 2008 | A1 |
20080011910 | Ramsey | Jan 2008 | A1 |
20080083756 | Daniels | Apr 2008 | A1 |
20080164257 | Boll et al. | Jul 2008 | A1 |
20080236275 | Breed et al. | Oct 2008 | A1 |
20080237234 | Yang et al. | Oct 2008 | A1 |
20080257889 | Kovacevich et al. | Oct 2008 | A1 |
20080257890 | Kovacevich et al. | Oct 2008 | A1 |
20080257891 | Kovacevich et al. | Oct 2008 | A1 |
20080264948 | Kovacevich et al. | Oct 2008 | A1 |
20080264950 | Kovacevich et al. | Oct 2008 | A1 |
20080272119 | Efstathiou | Nov 2008 | A1 |
20080272127 | Kovacevich et al. | Nov 2008 | A1 |
20090084788 | Yang et al. | Apr 2009 | A1 |
20090194532 | Yang et al. | Aug 2009 | A1 |
20090230131 | McDuffie et al. | Sep 2009 | A1 |
20090261105 | Cunningham et al. | Oct 2009 | A1 |
20090266836 | Mobley | Oct 2009 | A1 |
20100006572 | Chiou | Jan 2010 | A1 |
20100170904 | Kalman et al. | Jul 2010 | A1 |
20100224627 | Yang et al. | Sep 2010 | A1 |
20100237074 | Yang et al. | Sep 2010 | A1 |
20100252557 | Clements | Oct 2010 | A1 |
20100294769 | Lee et al. | Nov 2010 | A1 |
20110139781 | Jin et al. | Jun 2011 | A1 |
20110220646 | Yang et al. | Sep 2011 | A1 |
20110220647 | Yang et al. | Sep 2011 | A1 |
20110220648 | Yang et al. | Sep 2011 | A1 |
20110220655 | Yang et al. | Sep 2011 | A1 |
20110272409 | Kasbohm | Nov 2011 | A1 |
20130233857 | Yang et al. | Sep 2013 | A1 |
20130248532 | Yang et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
622536 | Apr 1992 | AU |
2519295 | Mar 2007 | CA |
132181 | Jun 2010 | CA |
136938 | May 2011 | CA |
141819 | Apr 2012 | CA |
146601 | Feb 2013 | CA |
152797 | Apr 2014 | CA |
102190144 | Sep 2011 | CN |
301947175 | Jun 2012 | CN |
201130284559.9 | Jun 2012 | CN |
103300590 | Sep 2013 | CN |
201330418089.X | Mar 2014 | CN |
1610087 | Jun 1950 | DE |
1283741 | Jul 1966 | DE |
8436939 | Mar 1985 | DE |
9108341 | Oct 1991 | DE |
4225936 | Feb 1994 | DE |
19525885 | Mar 1997 | DE |
19617823 | Nov 1997 | DE |
19809331 | May 1999 | DE |
29918687 | Mar 2000 | DE |
19933180 | Jan 2001 | DE |
10148997 | Apr 2003 | DE |
20217561 | Mar 2004 | DE |
0582240 | Jul 1993 | EP |
0903305 | Mar 1999 | EP |
0906876 | Apr 1999 | EP |
1094017 | Apr 2001 | EP |
1361176 | Nov 2003 | EP |
1136393 | Apr 2004 | EP |
1447342 | Aug 2004 | EP |
1600373 | Nov 2005 | EP |
1647503 | Apr 2006 | EP |
1686073 | Aug 2006 | EP |
1918223 | May 2008 | EP |
1700799 | Aug 2009 | EP |
001164826-0001 | Sep 2009 | EP |
001232904-0001 | Oct 2010 | EP |
001908575-0001 | Aug 2011 | EP |
001317416-0001 | Apr 2012 | EP |
001317416-0002 | Apr 2012 | EP |
001335285-0001 | Jul 2012 | EP |
001335293-0001 | Jul 2012 | EP |
001381636-001 | Aug 2013 | EP |
001381792-0001 | Aug 2013 | EP |
2636611 | Sep 2013 | EP |
2636613 | Sep 2013 | EP |
2887152 | Dec 2006 | FR |
191004921 | Jun 1910 | GB |
2384418 | Jul 2003 | GB |
02 152670 | Jun 1990 | JP |
H06-56011 | Aug 1994 | JP |
06-272888 | Sep 1994 | JP |
D1300450 | May 2007 | JP |
D1300451 | May 2007 | JP |
D1322056 | Feb 2008 | JP |
3003841370000 | Jun 2005 | KR |
3004095430000 | Mar 2006 | KR |
3004095430001 | Jul 2006 | KR |
6908550 | Dec 1970 | NL |
D112733 | Sep 2006 | TW |
D129485 | Jul 2009 | TW |
D133382 | Feb 2010 | TW |
D133678 | Mar 2010 | TW |
D147147 | May 2012 | TW |
D154797 | Jul 2013 | TW |
D158187 | Jan 2014 | TW |
WO 9202430 | Feb 1992 | WO |
WO 9633671 | Oct 1996 | WO |
WO 2005080232 | Sep 2005 | WO |
WO 2006079263 | Aug 2006 | WO |
WO 2007139570 | Dec 2007 | WO |
WO 2009114495 | Sep 2009 | WO |
Entry |
---|
U.S. Appl. No. 29/411,482, filed Jan. 20, 2012, Yang et al. |
U.S. Appl. No. 29/411,491, filed Jan. 20, 2012, Yang et al. |
U.S. Appl. No. 29/411,490, filed Jan. 20, 2012, Yang et al. |
Trento Corner 23 Trash Can, Hailo product brochure, http://www.hailo.de/html/default.asp?site=12—71—107&lang=en, visited May 13, 2008. |
U.S. Appl. No. 13/783,149, filed Mar. 1, 2013, Yang et al. |
U.S. Appl. No. 29/447,313, filed Mar. 1, 2013, Yang et al. |
U.S. Appl. No. 29/484,903, filed Mar. 13, 2014, Yang et al. |
U.S. Appl. No. 29/484,764, filed Mar. 1, 2013, Yang et al. |
U.S. Appl. No. 14/198,460, filed Mar. 5, 2014, Yang et al. |
Number | Date | Country | |
---|---|---|---|
20130233853 A1 | Sep 2013 | US |