Trash cans with variable gearing assemblies

Information

  • Patent Grant
  • 8872459
  • Patent Number
    8,872,459
  • Date Filed
    Friday, March 9, 2012
    12 years ago
  • Date Issued
    Tuesday, October 28, 2014
    10 years ago
Abstract
A trash can with a power operated lid can include a lifting mechanism with a motor, a lifting member, and a variable gear. In some embodiments, the motor is operably connected with the variable gear such that the motor can drive the variable gear and/or the lifting member. In certain implementations, the variable gear includes one or more teeth with varying tooth radii. In some variants, the variable gear and a clutch member are engageable and are configured to allow manual operation of the lid.
Description
BACKGROUND

1. Field


The present disclosure relates to power transfer devices, such as mechanisms for operating lids or doors for refuse receptacles.


2. Description of the Related Art


Receptacles and other devices with mechanisms for transferring power to a subcomponent, such as a lid or a door, are used in a variety of different settings. For example, in both residential and commercial settings, trash cans and other devices often have lids for protecting or preventing the escape of the contents of the receptacle. In the context of trash cans, some trash cans include lids or doors to prevent odors from escaping and to hide the trash within the receptacle from view. Additionally, the lid of a trash can reduce the likelihood of contaminants escaping from the receptacle.


Some commercially available trash cans have power or manually operated lids. Such cans generally include a motor that drives a gear assembly, which in turn drives the lid open and closed. Such trash cans can include a sensor positioned on or near the lid. Such a sensor can be configured to detect movement, such as a user's hand being waived near the sensor, as a signal for opening the lid. When such a sensor is activated, a motor within the trash receptacle opens the lid or door and thus allows a user to place items into the receptacle. Afterwards, the lid can be automatically closed.


However, certain conventional power operated lids present some difficulties. For example, users of current trash cans with power operated lids can experience problems if the trash within the receptacle or can is piled higher than the level of the lid itself. If the trash or other material within the can is higher than the level of the lid itself, the lid will be unable to completely close. This can cause the motor or batteries to wear down, continue running, and/or ultimately fail. It can also force the user to reset the controller, remove trash, or manually compress the trash until the lid can be closed.


Additionally, design of certain conventional lids can result in increased stress on the motor and/or the gear assembly. For example, in the closed position, the lid is generally in a horizontal position (e.g., parallel with the ground), which can result in a relatively large initial moment of force (e.g., the force of gravity acting on the horizontal moment arm of the lid) that must be overcome by a motor or by a user to begin to open the lid. Such an initial moment of force can result in increased wear on the gear assembly and the motor, which can precipitate a failure of the motor, gear assembly, or both, or require can increased amount of opening force in a manual system.


Further, to overcome the moment of force when the lid is in the closed position, the motor of certain conventional receptacles is of a greater size (e.g., in power output) than otherwise would be required. However, increasing the size of the motor generally results in the motor having to consume additional power and/or requires larger exterior dimensions. A motor that consumes additional power may produce more heat and noise and/or require more frequent replacement of a power source (e.g., batteries). A motor having larger exterior dimensions can result in an increase in the overall dimensions of the receptacle or a reduction of the holding capacity of the receptacle. Increasing the overall dimensions of the receptacle can be undesirable because the receptacle occupies additional space (e.g., in already crowded kitchens or other environments). Reducing the capacity of the receptacle can be undesirable because certain items may no longer fit into the receptacle and/or because the receptacle may require more frequent emptying.


Moreover, so as to withstand the initial moment of force, the gears of certain conventional receptacles have a tooth diameter that is relatively small and generally constant. In some instances, this type of gear configuration can result in a reduced operating speed of the lid (e.g., the time for the lid to move from closed to open). Such a delay can be undesirable, for example, when a user is in a hurry.


Furthermore, the motor and/or gear assembly can be damaged when the lid is manually operated (e.g., not opened and/or closed by the motor). For example, when the lid is manually operated, certain of the gears in connection with the lid are encouraged to move (e.g., rotate and/or translate). However, because the motor may be relatively difficult to rotate when not being operated, the motor may inhibit one or more of the gears from moving. Thus, when the lid is manually operated, a stress can result between the gears that the lid is urging to move and the gears that the motor is inhibiting from moving. Such a stress can result in damage to the gears, motor, lid, or other components of the receptacle. For instance, such stress can strip one or more teeth of the gears. Damage to the gears can, for example, result in reduced control over the motion of the lid, cause noise, and even inhibit or prevent the motor from operating the lid.


SUMMARY OF THE DISCLOSURE

Several embodiments of refuse receptacles, such as trash cans, are disclosed. According to some embodiments, a refuse receptacle includes an outer shell component portion and a lid mounted relative to the outer shell component portion and configured to move between an open position and a closed position. Some embodiments also include a power supply and a motor configured to be powered by the power supply. Certain variants have a gear assembly that is configured to move the lid between the opened and closed positions. The gear assembly can include a variable gear rotatably engaged with a lifting gear. Some variants of the variable gear are rotatable by the motor and have a first tooth and a second tooth. The first tooth can have a first tooth radius and the second tooth can have a second tooth radius. The second tooth radius can be greater than the first tooth radius. In some embodiments, rotation of the variable gear facilitates acceleration in the angular velocity of the lid during the movement of the lid between the opened and closed positions.


In some embodiments, the variable gear comprises a plurality of teeth, each with a tooth radius. In certain implementations, a plurality of teeth have a unique tooth radius. The tooth radii generally increase and/or decrease in succession around the circumference of the variable gear. In certain embodiments, the tooth having the longest tooth radius is engaged with the lifting gear when the lid is in the open position. In some embodiments, the tooth having the shortest tooth radius is engaged with the lifting gear when the lid is in the closed position. One or more teeth positioned in between these teeth have radii in between the longest and shortest tooth radii.


In certain variants, the lifting gear comprises a rack gear having a first transverse width and a second transverse width. The first transverse width can be different than the second transverse width. In some embodiments, during movement of the lid between the opened and closed positions, at least one tooth of the variable gear is engaged with at least one tooth of the rack gear. The sum of the tooth radius and the transverse width of the engaged teeth can increase, decrease, or be generally constant.


In some embodiments, a receptacle can comprise a coupling mechanism configured to inhibit vibration from the motor from being transmitted to the variable gear.


Some implementations have a drive shaft that is rotated by the motor. The drive shaft can have a first portion with a first cross-sectional shape (e.g., generally round) and a second portion having a second cross-sectional shape (e.g., generally rectangular). The first and second cross-sectional shapes can be non-complementary.


Some embodiments include a clutch member configured to engage with the variable gear. The variable gear can have a first interface surface, such as an inclined cam surface, and the clutch member can include a corresponding second interface surface, such as an inclined cam surface, configured to nest with the first inclined cam surface. In some embodiments, wherein the lid is disposed generally parallel with the ground on which the receptacle is located in the closed position. In some embodiments, the lid is disposed generally perpendicular to the ground in the open position.


In certain implementations, a trash can, which is configured for manual and/or powered operation, can include an outer shell component and a lid mounted relative to the outer shell component and configured to move between an open position and a closed position. Some embodiments also include a power supply and a motor configured to be powered by the power supply. In some embodiments, a gear assembly is operably connected with the motor and the lid, or between a manually-operated device (e.g., a pedal) and the lid, such that powered operation of the motor can drive the lid between the open and closed positions via the gear assembly. Certain embodiments have a clutch engaged with the gear assembly. The clutch can be configured to transmit torque from the motor to a portion of the gear assembly during powered operation of the lid by the motor. The clutch can be configured to at least partly disengage from the gear assembly during manual operation of the lid to allow the at least part of the gear assembly to rotate relative to the clutch, thereby facilitating manual operation of the lid without damage to the gear assembly.


According to some embodiments, after manual operation of the lid has ceased, the clutch is automatically reengaged with the gear assembly, thereby facilitating subsequent powered operation of the lid. Certain variants have a biasing member configured to bias the clutch into engagement with the gear assembly. Some implementations have a drive shaft and the clutch is configured to translate along a portion of the drive shaft.


In some embodiments, the gear assembly further comprises a first inclined cam surface and the clutch member comprises a corresponding second inclined cam surface configured to nest with the first inclined cam surface. In certain variants, during manual operation of the lid, the first and second inclined cam surfaces slide relative to each other. In some embodiments, during manual operation of the lid, the clutch is urged in a direction generally away from the motor.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features of the trashcans disclosed herein are described below with reference to the drawings of certain embodiments. The illustrated embodiments are intended to illustrate, but not to limit the disclosure. The drawings contain the following Figures:



FIG. 1 illustrates a top, front, and right side perspective view of an embodiment of an enclosed receptacle, with its lid opened.



FIG. 2 illustrates an enlarged top, front, and right side perspective view of the receptacle illustrated in FIG. 1.



FIG. 3 illustrates a top, rear, right side perspective view of the receptacle shown in FIG. 1.



FIG. 4 illustrates an enlarged top, rear, right side perspective view of the receptacle shown in FIG. 1, with a back cover removed.



FIG. 5 illustrates a perspective view of an embodiment of a lifting mechanism, including a housing portion.



FIG. 6 illustrates another perspective view of the lifting mechanism of FIG. 5.



FIG. 7 illustrates a perspective view of the lifting mechanism of FIG. 5 with a portion of the housing portion removed.



FIG. 8 illustrates an enlarged perspective view of the lifting mechanism of FIG. 5 with a portion of the housing portion and the spring mandrel removed.



FIG. 9 illustrates an exploded view of the lifting mechanism of FIG. 5, including a coupling member, coupling spider, drive shaft, variable gear, lifting member, and clutch member.



FIG. 10 illustrates a perspective view of a shaft-side surface of the coupling member of FIG. 9.



FIG. 11 illustrates a perspective view of the coupling spider of FIG. 9.



FIG. 12 illustrates a perspective view of the drive shaft of FIG. 9.



FIG. 13 illustrates a perspective view of a pinion gear surface of the variable gear of FIG. 9.



FIG. 14 illustrates a top view of the pinion gear surface of the variable gear of FIG. 13.



FIG. 15 illustrates a perspective view of a cam surface of the variable gear of FIG. 9.



FIG. 16 illustrates a side view of the lifting member of FIG. 9.



FIG. 17 illustrates a perspective view of a roller side surface of the lifting member of FIG. 9.



FIG. 18 illustrates a perspective view of a pinion side surface of the lifting member of FIG. 9.



FIG. 19 illustrates a perspective view of a cam surface of the clutch member of FIG. 9.



FIG. 20 illustrates a side view of the lifting member and the variable gear of FIG. 9, when the trash can lid is in a closed position.



FIG. 21 illustrates a side view of the lifting member and the variable gear of FIG. 9, when the trash can lid is in an open position.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Certain embodiments of a system for opening and closing a lid or door of a refuse receptacle (e.g., a trash can) or other device are disclosed. The present disclosure describes certain embodiments in the context of a domestic trash can, due to particular utility in that context. However, the subject matter of the present disclosure can be used in many other contexts as well, such as commercial trash cans, doors, windows, security gates, and other larger doors or lids, as well as doors or lids for smaller devices, such as high precision scales, computer drives, etc. The embodiments and/or components thereof can be implemented in powered or manually-operated systems.


With reference to FIGS. 1 and 2, a trash can assembly 20 can include an outer shell component 22 and lid 24. The lid 24 can include door components 26, such as an air filter. The trash can assembly 20 can be configured to rest on a floor, and can be of varying heights and widths depending on, among other things, consumer need, cost, and ease of manufacture. Additional details and examples of trash can assemblies that can be used with, or instead of, components discussed herein are provided in U.S. Patent Application Publication No. 2011/0220647, filed Mar. 4, 2011, the entirely of which is incorporated herein by reference.


Some embodiments of the outer shell component 22 include an upper shell portion 28 and lower shell portion 30. Some embodiments of the trash can assembly 20 comprise an inner liner 32 configured to be retained within the outer shell component 22. For example, an upper peripheral edge of the outer shell component 22 can be configured to support an upper peripheral edge of inner liner 32, such that the inner liner 32 is suspended by its upper peripheral edge within the outer shell component 22. In some embodiments, the trash can assembly 20 can include a liner support member 34 supported by the shell component 22 and configured to support the liner 32 within the interior of the outer shell component 22. In certain embodiments, the inner liner 32 is positioned near, or seated on, a lower portion of the outer shell component 22.


The outer shell component 22 can have any configuration. As shown in FIG. 1, the outer shell component 22 can have a generally rectangular cross sectional configuration with sidewalls 36, 38, a front wall 40, and a rear wall 42 (FIG. 3). The inner liner 32 can have a shape that generally compliments the shape defined by the outer shell component 22. However, other configurations can also be used. The upper and lower shell portions 28, 30 can be made from plastic, steel, stainless steel, aluminum or any other material.


The trash can assembly 20 can include a base portion 44. The base portion 44 can include screws or other components for attachment to the outer shell component 22, and can have a flat lower portion for resting on a surface, such as a kitchen floor. The base portion 44 of the trash can assembly 20 can be made integrally, monolithically, or separate from the outer shell component 22. Thus, the base portion 44 can be made from any material including plastic, steel, stainless steel, aluminum or any other material. Additionally, in some embodiments, such as those in which the outer shell component 22 is metal (e.g., stainless steel), the base portion 44 can be a plastic material.


The lid 24 can be pivotally attached to the trash can assembly in any manner. For example, in the illustrated embodiment, the lid 24 is pivotally attached to an upper lid support ring 46, which can be securely mounted to the upper periphery of the outer shell component 22. In some embodiments, the lid 24 is connected with hinges 48, 50, which can be constructed in any manner. The trash can assembly can include a lifting mechanism 102, such as a gearing and/or linkage assembly, which can be used to move the lid 24 between open and closed positions, as will be discussed in further detail below.


With reference to FIGS. 3 and 4, and as described above, the trash can 20 can include the rear wall 42. Along the rear wall 42, the trash can 20 can include a back cover 54. The back cover 54 can enclose and/or protect a back side enclosure 56. The back side enclosure 56 can house the power source for the trash can 20. For example, in some embodiments, the back side enclosure 56 can be configured to receive and retain at least one battery. In some embodiments, the battery can be rechargeable type that can be recharged. In some embodiments, the trash can 20 can by powered by plugging into a power source, such as a common household electric outlet. In some embodiments, the back side enclosure 56 houses a motor (e.g., an electric motor). In some embodiments, the portion of the power system (e.g., the battery compartment or motor) that extends beyond the outside of the exterior (e.g., the rear exterior) of the receptacle has a low-profile design. For example, the distance between the adjacent rear portion of the exterior of the receptacle and the rear portion of the power system component can be less than or equal to about 2 inches or about 3 inches, or less than or equal to about the width of the upper lid support surface 46, or less than or equal to about twice the width of the upper support surface 46.


As previously noted, in some embodiments, the trash can assembly includes a lifting mechanism 102, such as is depicted in FIGS. 5-9. The lifting mechanism 102 can include a drive motor 112 that drives a drive shaft 120. In some embodiments, the lifting mechanism 102 includes a coupling mechanism 111, which can transfer power between the motor 112 and the drive shaft 120, as will be discussed in further detail below. In some embodiments, the motor 112 rotates a variable gear 124 (e.g., via the coupling mechanism 111 and the drive shaft 120), which causes a lifting member 106 to pivotably open the lid 24. As shown, certain embodiments of the variable gear 124 and the lifting member 106 are cooperatively engaged, such as in a rack and pinion assembly.


As depicted in FIGS. 5 and 6, a portion of the lifting mechanism 102 can be received in a housing portion 104. The housing portion 104 can comprise plastic, steel, stainless steel, aluminum or any other suitable material. As shown in the exploded view of the lifting mechanism 102 in FIG. 9, the housing portion 104 can comprise two or more components, which can be held together by screws or by any other suitable manner (e.g., ultrasonic or thermal welding, etc.). The housing portion 104 can comprise various shapes and configurations. For example, the housing portion 104 can have a flat surface portion that abuts the rear wall 42 of the trash can assembly 20. In certain variants, the housing portion 104 projects outward from the rear wall 42. In some embodiments, the housing 104 is partially positioned inside the trash can assembly 20, so that the housing 104 does not extrude far from the periphery of the trash can assembly 20. In some implementations, the housing portion 104 is located inside the trash can assembly 20 or on any other position on the trash can assembly 20. In some embodiments, substantially all the moving components of the lifting mechanism 102 are contained within the housing 104. Should there be a failure in operation of the trash can 20 (e.g., a failure of the lifting mechanism 102), the housing 104 can be removed for inspection or replacement.


In some embodiments, the housing portion 104 can be configured to generally enclose the lifting mechanism 102. In some embodiments, the housing portion 104 has one or more openings through which a portion of the lifting mechanism 102 can extend. For example, as shown in FIGS. 5 and 6, a linkage attachment member, such as an eyelet portion 108, of the lifting member 106 can extend through an opening of the housing portion 104. Such a configuration can, for example, allow the eyelet portion 108 to connect with the lid 24 directly or indirectly (e.g., via an intermediate linkage (not shown)). In some embodiments, a pin can be removably inserted through the eyelet portion 108 as a portion of the lid 24 to connect the two. As shown, certain embodiments include one or more protection members, such as doors, which can be opened by the lifting member 106 and closed by force of gravity. The housing portion 104 may include one or more connection members, such as flanges 105, that connect the housing portion 104 to the lid 24, the outer shell component 22, or other portions of the trash can assembly 20.


As shown in FIGS. 7 and 8, a portion of a drive shaft 120 can extend out of the housing portion 104. In some embodiments, a cover portion, such as a mandrel 110, protects the portion of the lifting mechanism 102 extending out of the housing portion 104. The mandrel 110 can comprise plastic, steel, stainless steel, aluminum or any other suitable material.


In some embodiments, the motor 112 directly drives the variable gear 124. In certain implementations, the motor 112 is configured to indirectly drive the variable gear 124. For example, the coupling mechanism 111, drive shaft 120, and/or a clutch member 140 can be positioned so as to transmit driving force to the variable gear 124. In some embodiments, the motor 112 can drive the coupling mechanism 111, which can drive the drive shaft 120, which can drive the clutch member 140, which can drive the variable gear 124. In some embodiments, an output shaft of the motor 112 can connect to the drive shaft 120 directly. In some embodiments, the coupling mechanism 111 is positioned intermediate, and connects, the drive shaft 120 and the motor 112.


In several embodiments, the coupling mechanism 111 includes a first coupling member 114. The first coupling member 114 can include a generally flat first side 146, which can be configured to generally face toward the motor 112. As shown in FIG. 10, certain embodiments of the first coupling member 114 have a second side 148, which can include one or more torque transmission members, such as pegs 116 that extend from the second side 148. Some embodiments of the first coupling member 114 can include an opening 150 (e.g., a generally “D” shaped aperture) through which the output shaft (e.g., a generally “D” shaped shaft) of the motor 112 can be received. As illustrated, the shape of the opening 150 on the first coupling member 114 can correspond to the shape of the output shaft of the motor 112. The first coupling member 114 can comprise glass, plastic, aluminum, stainless steel, hard rubber, or any other suitable material.


In some embodiments, the coupling mechanism 111 includes a second coupling member 118. In some implementations of the coupling mechanism 111, the second coupling member 118 is positioned between the first coupling member 114 and the drive shaft 120. The second coupling member 118, as depicted in FIG. 11, can include one or more torque transmission elements, such as arms 152, generally around the circumference of the second coupling member 118 and an opening 154 (e.g., for at least some of the output shaft of the motor 112 to extend at least partly through). In certain implementations, the second coupling member 118 can be positioned near or against the shaft side surface 148 of first coupling member 114. Some embodiments have at least one of the pegs 116 of the first coupling member 114 located generally between at least two adjacent arms 152 of the second coupling member 118.


In some embodiments, the first coupling member 114 is operably connected with the motor 112 and the second coupling member 118. For example, in some variants, the motor 112 can rotate the first coupling member 114, which in turn can rotate the second coupling member 118. The second coupling member 118 can be configured to dampen undesirable transmissions (e.g., noise, vibration, and/or harshness) produced by the motor 112 that are transmitted to the second coupling member 118 via the first coupling member 114. For example, the second coupling member 118 can be made of rubber, plastic, or other generally damping, pliable, or resilient materials.



FIG. 12 depicts an embodiment of a drive shaft 120. A first side 121 of the drive shaft 120 can include one or more torque transmitting elements, such as protrusions 122. In some variants, one or more of the protrusions 122 can be configured to fit generally between at least two of the arms 152. In some configurations, the first side 121 is positioned near or abutting the second coupling member 118.


The first coupling member 114, second coupling member 118, and drive shaft 120 can be axially aligned and fit together to form a generally cylindrical structure (see FIGS. 7 and 8). In certain embodiments, when the motor 112 turns the first coupling member 114, the first coupling member 114 turns the second coupling member 118, which in turn drives the drive shaft 120. As shown, certain embodiments have at least one of the arms 152 of the second coupling member 118 between each of the protrusions 122 of the drive shaft 120 and/or the pegs 116 of the first coupling member 114. Further, in some embodiments, the first coupling member 114 and the driving member 120 are axially spaced apart (e.g., by the second coupling member 118). As previously noted, the second coupling member 118 can be configured to reduce, or dampen, the transmission of vibration and the like produced by the motor 112. Thus, in certain embodiments, the second coupling member 118 can dampen, or at least reduce, the transmission of such vibrations and the like into the drive shaft 120 and/or variable gear 124, and consequently to the lid 24, to reduce rocking of the lid 24, or otherwise.


Certain embodiments of the drive shaft 120 include an extension portion 155 extending in a generally opposite direction from the protrusions 122. In some embodiments, the extension portion 155 can include a first shaft region 156 and a second shaft region 158. In some embodiments, the regions 156, 158 have a different transverse cross-section. For example, the transverse cross-section of the first shaft region 156 can be circular and the transverse cross-section of second shaft region 158 can be generally square-shaped. The transverse cross-section of the shaft regions 156, 158 can have other shapes, such as generally elliptical, pentagonal, hexagonal, star-shaped, or otherwise. The drive shaft 120 can comprise glass, plastic, aluminum, stainless steel, or any other suitable material.


In some embodiments, a portion of the drive shaft 120 is received in an opening 164 in the variable gear 124. As shown in FIGS. 13-15, some embodiments of the opening 164 in the variable gear 124 is generally circular in shape. In certain embodiments, the diameter of the opening 164 is larger than the diameter of the drive shaft 120. Thus, in such embodiments, the drive shaft 120 does not directly drive the variable gear 124. Rather, in certain configurations, the variable gear 124 and the drive shaft 120 can rotate relative to each other (e.g., at different speeds). In other configurations, the variable gear 124 and the drive shaft 120 rotate at the same speed. For example, in certain arrangements, the drive shaft 120 can rotate the clutch member 140, which in turn rotates the variable gear 124 (e.g., by friction between the clutch member 140 and the variable gear 124).


In certain embodiments, a portion of the drive shaft 120 is received by a receiving feature, such as an opening 170, in the clutch member 140, such as is shown in FIG. 19. Some embodiments of the opening 170 are configured to receive a portion of the drive shaft 120. In certain implementations, the opening 170 and the second shaft region 158 of the drive shaft 120 have generally corresponding shapes For example, certain embodiments of the opening 170 and the second region 158 of the drive shaft 120 are generally square in cross-sectional shape (see FIGS. 12 and 19). Thus, certain variants of the clutch member 140 are configured to be engaged with, and directly driven (e.g., rotated) by, the drive shaft 120.


In some embodiments, the clutch member 140 is able to move (e.g., translate) longitudinally along a portion of the length of the drive shaft 120 (e.g., away from the variable gear 124 and/or the motor 112). As will be discussed in more detail below, in some embodiments, the ability of the clutch member 140 to move along the drive shaft 120 can facilitate manual operation of the lid 24 in certain circumstances. In certain variants, a biasing member 142, such as a spring, biases the clutch member 140 generally toward the variable gear 124.


With regard to FIGS. 13-15, an embodiment of the variable gear 124 is illustrated. The variable gear 124 can have one or more torque transmission features, such as teeth 126, and the opening 164 through which the drive shaft 120 can extend. Some embodiments of the variable gear 124 have a pinion gear side 134, as shown in FIGS. 13 and 14, and a cam surface side 136, as shown in FIG. 15. Certain variants include one or more additional voids 168, which can facilitate manufacturing, lessen material costs, and/or reduce weight of the variable gear 124.


In some embodiments, one or more of the teeth 126 includes an apex 127 and a base region 129. Each apex 127 can be pointed or blunt. Each tooth can have a tooth radius, which is the distance from the radial center of the opening 164 (about which the variable gear 124 rotates) to the apex of the tooth. In some embodiments, the variable gear 124 includes an outer diameter, which is the distance from the apex of a tooth to the apex of a generally diametrically opposite tooth.


As illustrated, one or more of the teeth 126 can have valleys (e.g., a radiused regions) on each side and which can connect adjacent teeth. The radially innermost portions of valleys of on either side of a tooth can define a root radius of the tooth. Each of the teeth 126 can have a depth h, which is measured from the apex 127 to the root radius of the tooth. In some embodiments, the depth h is generally constant from tooth to tooth. In some embodiments, the depth h is variable. For example, in some variants, the depth h is proportional to the tooth radius of the tooth.


In some embodiments, the teeth 126 include a tooth pitch p, which is the distance between leading or trailing edges of adjacent teeth. The tooth pitch p can be configured to achieve desired loads, speed, etc. In certain embodiments, the tooth pitch p is generally constant around the entire variable gear 124. In some embodiments, the tooth pitch p is variable. For example, the tooth pitch p can be related to the tooth radius (e.g., the tooth pitch p increases as the tooth radius increases).


In certain implementations, the teeth 126 include a tooth thickness t, which is the circumferential thickness at about the midpoint between the apex and the root diameter of the tooth. The tooth thickness t can be constant or varied. For example, in some embodiments, the tooth thickness is a function of the tooth radius (e.g., the tooth thickness t decreases as the tooth radius increases). Certain configurations of the variable gear 124 have thicker teeth 126 that engage with the lifting member 106 during periods of increased load (e.g., when the lid is closed and thus generally horizontally disposed). Some variants have thinner teeth 126 that engage with the lifting member 106 during periods of reduced load (e.g., when the lid is positioned at an angle that is at least about 45° and/or less than or equal to about 90° relative to the ground).


In some embodiments, as shown in FIGS. 13 and 14, the tooth radii vary about the circumference of the gear 124. For example, a first tooth radius r1, measured from the center of the shaft opening 164 to a first tooth apex, is different from a second tooth radius r2, measured from the center of shaft opening 164 to a second tooth apex. In certain embodiments, some or all of the tooth radii generally increase as a function of distance from the tooth with the shortest tooth radius (e.g., around the circumference of the gear 124). In some embodiments, the difference between the tooth radii of adjacent teeth is generally constant (aside from the difference between the shortest and longest tooth r1, r2 as shown).


In some embodiments, the radii of the variable gear 124 can vary such that the radius gradually increases from tooth to tooth around the circumference of the gear 124. In certain embodiments, the increase in tooth radius is rapid and/or discontinuous. For example, the radius of a tooth may be double, triple, or more, the radius of an adjacent tooth. In some embodiments, the radius can increase and decrease from tooth to tooth around the variable gear 124.


In some embodiments, the shortest tooth radius of the variable gear 124 is greater than about 1 mm and/or less than or equal to about 10 mm. In certain variants, the shortest tooth radius is greater than about 2.5 mm and/or less than or equal to about 7.5 mm. The shortest tooth radius of some implementations is greater than about 4 mm and/or less than or equal to about 5 mm. In some embodiments, the shortest radius is about 4.5 mm.


In some embodiments, the longest tooth radius of the variable gear 124 is greater than about 5 mm and/or less than or equal to about 15 mm. In some embodiments, the longest tooth radius is greater than about 7.5 mm and/or less than or equal to about 12.5 mm. The longest tooth radius of certain variants is greater than about 9 mm and/or less than or equal to about 10 mm. In some embodiments, longest radius is about 9 mm. In some embodiments, the ratio of the tooth radius of the longest tooth to the tooth radius of the shortest tooth is greater than or equal to about: 1.25:1, 1.5:1, 2:1, 3:1, values in between, or otherwise.


In some embodiments, the radius generally constantly increases between adjacent teeth of the variable gear 124. For example, the increase can be greater than about 0.1 mm and/or less than or equal to about 1.0 mm. In some implementations, the increase is greater than about 0.25 mm and/or less than or equal to about 0.75 mm. In some embodiments, the increase is greater than about 0.4 mm and/or less than or equal to about 0.5 mm. In some embodiments, the increase of the tooth radius between adjacent teeth is about 0.45 mm. In certain variants, the radius generally between adjacent teeth of the variable gear 124 changes non-linearly. For example, in some embodiments, the difference between the tooth radius of adjacent teeth changes in a non-linear manner.


A variable, or non-constant, tooth radius may be desirable at least in part because a smaller tooth radius can be advantageous in certain instances, and a larger tooth radius can be advantageous in other instances. For example, a smaller tooth radius may be desirable when an increased level of torque is to be transmitted, as the moment arm between the center of the gear and the tooth is reduced and thus the stress on the gear can be reduced. In some embodiments, this increase in torque is helpful in overcoming the moment of inertia of the resting lid 24 in the closed position. This mechanically induced increase in torque can require less power to be produced by the motor 112 to lift the lid 24. This can help prolong the power stored in the battery to operate the trash can 20 and/or can reduce the size and/or capacity of the motor 112, which can provide for cost and space savings. However, a larger tooth radius can increase the angular velocity of the gear, which can allow for more rapid movement (e.g., opening of the lid 24).


As previously noted, the variable gear 124 can have teeth 126 with variable radii. Such a configuration can, for example, allow for the lid 24 to be moved (e.g., opened) more efficiently, smoothly, rapidly, or otherwise. For example, the gear 124 can be configured to engage one or more of the teeth 126 that have a smaller tooth radius with the lifting member 106 in order to drive a lid 24 from the closed (e.g., generally horizontal) position, which generally presents the longest moment of force on the lid 24 and can impose higher stress on the motor and gear assembly.


In some embodiments, as the lid 24 rotates open, the horizontal moment arm of the lid 24 decreases, which decreases the moment of force from gravity and may decrease the stress on the motor and gear assembly. Thus, some embodiments are configured to engage the teeth 126 having a progressively larger tooth radius with the lifting member 106 as a function of the rotation of the lid 24. For example, the tooth radius can increase as the percentage of open (e.g., the rotational distance that the lid 24 has rotated from closed to open, divided by the total rotational distance that the lid 24 rotates from closed to open) of the lid 24 increases. In certain variants, the progressively increasing tooth radius of the teeth engaged with the lifting member 106 results in the lid 24 being progressively driven open more quickly.


In some embodiments, the tooth depth h remains substantially the same around the generally entire variable gear 124. In certain variants, the tooth depth h varies from tooth to tooth. In some embodiments, the tooth depth h increases (e.g., gradually) from tooth to tooth. In certain embodiments, the change in tooth depth h is rapid or discontinuous. For example, a first tooth depth can be at least about double or triple a second tooth depth. In some embodiments, the tooth depth increases and decreases from tooth to tooth around the variable gear 124.


In some arrangements, an increase in the tooth depth h can increase the strength of the tooth (e.g., by providing more area over which to distribute a load). In some embodiments, the tooth depth h increases as the tooth radius increases. In certain variants, the tooth depth h increases as the radius tooth radius decreases.


As previously noted, in some scenarios, it may be desirable to have a variable gear 124 having varied tooth radii. In certain implementation, a rack (e.g., the lifting member 106) and pinion (e.g., the variable gear 124) mechanism with larger teeth radii can drive the lid 24 open more quickly. However, in certain scenarios, engagement of teeth with larger radii may be less capable of withstanding some types of stress than a configuration in which teeth with shorter radii are engaged. Thus, some embodiments of the variable gear 124 are configured to drive the lid 24 open with a portion of a variable gear 124 having shorter teeth when the lid 24 in or near the closed position (e.g., when additional force is necessary to open). Some embodiments of the variable gear 124 are configured to drive the lid 24 open with progressively larger teeth as the level of force to open the lid decreases. In some embodiments, the variable gear 124 is configured to accelerate the rate at which the lid 24 is opened. For example, the variable gear 124 can engage teeth 126 having a progressively increasing tooth radius as the lid moves from open to closed.


In several embodiments, the variable gear 124 can engage or interact with the lifting member 106, such as to open the lid 24. For example, the lifting member 106 and variable gear 124 can be configured as a rack and pinion. In certain implementations, the lifting member 106 is positioned generally perpendicular to the longitudinal axis of the motor 112. As shown in FIGS. 7 and 8, the teeth 128 of the lifting member 106 can interact with the teeth 126 of variable gear 124.



FIGS. 16-18 depict an embodiment of a lifting member 106. In several embodiments, the lifting member 106 comprises a substantially elongate member, which can be configured to act as a rack gear. As illustrated, in some embodiments, lifting member 106 has a pinion side surface 160 having one or more teeth 128. The teeth 128 can be configured to interact with the teeth 126 of the variable gear 124. In some embodiments, the lifting member 106 acts as a pivoting rack gear. In some embodiments, lifting member 106 can include the linkage attachment member, such as the eyelet 108, that connects to the lid 24 directly or indirectly (e.g., via an intermediate linkage (not shown)). In certain variants, the eyelet 108 is positioned at an end of the lifting member 106.


In some embodiments, lifting member 106 includes a guide surface 162. As shown in FIGS. 20 and 21, in certain implementations, a guide, such as a guide roller 172, engages the guide surface 162. Certain embodiments of the guide roller 172 provide support for the lifting member 106. Some embodiments of the guide roller 172 reduce the likelihood of misalignment of the lifting member 106 (e.g., kinking or becoming disengaged with the variable gear 124).


The lifting member 106 can have a recessed portion 174 on the guide surface 162. The recessed portion 174 can facilitate manufacturability of the lifting member 106. The recessed portion is generally configured to not inhibit movement of the guide roller 172 along the guide surface 162 (e.g., the recessed portion 174 is configured such that the guide roller 172 does not enter the recessed portion 174).


In some embodiments, the lifting member 106 can include a stopping member 130, which can inhibit the lifting member 106 from moving past a predetermined position. For example, the stopping member 130 can inhibit the lifting member 106 from moving toward the base portion 44 of the trash can assembly 20 to such an extent that the lifting member 106 disengages with the teeth 126 of the variable gear 124. In certain variants, the stopping member 130 can be positioned along the guide surface 162. Some embodiments have the stopping member 130 located at, near, or adjacent to an end generally opposite the eyelet 108.


In some embodiments, the lifting member 106 can include a flagging member 132. As shown, in certain variants, the flagging member 132 is positioned along a side of the lifting member 106. Some embodiments have the flagging member 132 positioned at, near, or adjacent to an end generally opposite the eyelet 108. The flagging member 132 can be used to indicate the position of the lifting member 106, in cooperation with one or more position sensors, which can be positioned on a circuit board in the housing 104 (not shown). In certain embodiments, based on the detected position of the lifting member 106, the position of the lid 24 can be determined (e.g., by a processor implementing an algorithm).


In some embodiments, the lifting member 106 has a plurality of teeth 128 along the pinion side surface 160. In certain implementations, one or more of the teeth 128 have an apex 133 and a base region 135. The apex 133 can be pointed or blunt. Similar to the discussion above in connection with the variable gear 124, the teeth 128 of the lifting member 106 can include a tooth pitch p, tooth depth h, and tooth thickness t. As shown, the tooth pitch p, tooth depth h, and tooth thickness t of the teeth 128 are generally constant. In certain embodiments, the tooth pitch p, tooth depth h, and/or tooth thickness t of one or more of the teeth 128 change along the a portion of the length of the lifting member 106.


In some embodiments, the teeth 128 of the lifting member 106 have a transverse width w, which can be the distance from the guide surface 162 to the apex 133 of one or more of the teeth 128. In certain variants, the transverse width w of the teeth 126 is generally constant. In certain embodiments, the transverse width w varies from tooth to tooth. For example, as illustrated in FIG. 16, the teeth 128 transverse width w can increase (e.g., generally linearly) toward the end of the lifting member 106 with the eyelet 108.


In some embodiments, as the lifting member 106 and the variable gear 124 engage, the sum of the transverse width w of the engaged tooth 128 of the lifting member 106 and the tooth radius (e.g., r1, r2, etc.) of the engaged tooth 126 of the variable gear 124 is generally constant. For example, in some embodiments, as the tooth radius of the variable gear 124 increases (e.g., during opening of the lid 24), the transverse width w of the tooth 128 of that is engaged with the tooth 126 decreases. In certain embodiments, the distance (e.g., generally transverse to the guide surface) between the guide surface 162 of the lifting member 106 and about the center of the opening 164 of the variable gear 124 is substantially constant. For example, in some implementations, throughout the normal operation of the lifting member 106 and the variable gear 124, the distance between the guide surface 162 and about the center of the opening 164 is greater than or equal to about 4.0 mm and/or less than or equal to about 13.0 mm.


In some embodiments, the teeth 128 extend along a portion of the lifting member 106. In certain embodiments, the linear distance between the outermost of the teeth 128 is about equal to the circumference of the variable gear 124. Thus, in some embodiments, the teeth 128 at or near a first end of the teeth 128 are engaged with the variable gear 124 when the lid 24 is at or near a first position (e.g., closed). In certain variants, the teeth 128 at or near a second end of the teeth 128 are engaged with the variable gear 124 when the lid 24 is at or near a second position (e.g., open).


In some embodiments, the transverse width w varies along the lifting member 106. In some embodiments, the tooth depth h and thickness t remain substantially the same from tooth to tooth. Certain variants have the teeth 128 positioned at a gradual incline, as depicted in FIG. 16, such that the transverse width t decreases from tooth to tooth, moving from the tooth 128 closest to the eyelet 108 end to the tooth 128 closest to the stopping member 130.


In some embodiments, the transverse width w of lifting member 106 gradually increases or decreases (e.g., linearly, exponentially, or otherwise) from tooth to tooth. In certain embodiments, the increase or decrease may be rapid or discontinuous. For example, a first transverse width w across a first tooth can be greater than or equal to approximately double or approximately triple the distance of a second transverse width w across a second tooth.


In some embodiments, the distance from the guide surface 162 to the base region of each tooth 128 is generally the same as the portion (e.g., the extent of the teeth 128) of the lifting member 106. In certain embodiments, the tooth depth h varies from tooth to tooth. In some embodiments, the tooth depth h gradually increases (e.g., linearly, exponentially, or otherwise) from tooth to tooth. In certain embodiments, the change in tooth depth h is rapid or discontinuous. For example, a first tooth depth can be greater than or equal to approximately double or approximately triple a second tooth depth.


As shown in FIGS. 20 and 21, the lifting member 106 and the variable gear 124 can be configured such that the variable gear teeth 126 interact with the lifting member teeth 128. As also shown, certain embodiments of the teeth 128 are oriented at a slope S compared to the generally flat guide surface 162. At least in part because of the slope S, certain of the teeth 128 have a greater transverse width w than other of the teeth 128. In some embodiments, the slope S of the teeth 128 can be configured such that portions of the variable gear 124 having shorter tooth radii interact with portions of the lifting member 106 having a longer transverse width w (FIG. 20). In some embodiments, portions of the variable gear 124 with longer tooth radii interact with portions of the lifting member 106 having shorter transverse width w (FIG. 21). In certain variants, the teeth 128 of the lifting member 106 generally remain in engagement with the variable gear teeth 126 throughout the movement of the lid 24 between open and closed positions.


In some embodiments, when the trash can is at or near the closed position, the variable gear 124 is positioned on the tooth 128 near or closest to eyelet 108, as shown in FIG. 20. As the variable gear 124 rotates (e.g., in a clock-wise direction), the lifting member 106 translates upward, thereby driving the lid 24 open. As the lifting member moves upward, it moves in relation to the guide roller 172. For example, the guide roller 172 can roll along a portion of the guide surface 162. In some embodiments, when the trash can is at or near the closed position, the variable gear 124 is positioned on the tooth 128 near or closest to the end of the lifting member 106 generally opposite the eyelet 108, as depicted in FIG. 21.


Several embodiments of the lifting member 106 and the variable gear 124 can be configured to efficiently open the lid 24. In some embodiments, the variable gear 124 is configured to balance strength (e.g., the capability of the gears 124 to withstand the force incurred during the initial stage of opening the lid 24) and speed (e.g., the rate at which the lid 24 is moved). As discussed above, certain embodiments of the variable gear 124 can be modified to provide additional strength or additional speed by modifying the extent and/or rate of change of the tooth radii generally around the circumference of the gear 124. For example, if increased velocity of the lid 24 is desired, the tooth radii of the teeth 126 can be increased (e.g., from about a 2 mm radius difference between adjacent teeth, to about 4 mm radius difference between adjacent teeth).


In the embodiment depicted in FIG. 20, when the trash can lid 24 is in the closed (e.g., generally horizontal) position, the variable gear 124 is positioned such that the teeth 126 with the shortest tooth radii interact with the lifting member 106. Such a configuration can facilitate applying the necessary force to open the lid 24 when the moment arm is the longest. In certain embodiments, as the amount of force necessary to open the lid 24 decreases, the radius of the variable gear 124 increases, which in turn can accelerate the movement of the lid 24. Thus, certain embodiments of the trash can assembly 20 can be configured to open the lid 24 more rapidly and/or with a less power demand or stress on the motor 112 and/or other components than devices without the variable gear 124.


In some embodiments, the lifting mechanism 102 is configured to permit manual operation of the lid (e.g., operation without the motor). For example, some embodiments allow the lid 24 to be opened and/or closed without, or against, the rotation of the motor 112. In some embodiments, the lifting mechanism 102 is configured to permit the variable gear 124 to rotate relative to the drive shaft 120 and/or the motor 112. For example, in certain variants, manual opening or closing of the lid 24 moves the lifting member 106, which rotates the variable gear 124, and the drive shaft 120 remains generally stationary.


In some embodiments, the variable gear 124 includes a first cam surface 180 and a first return surface 182. As shown in FIG. 15, the first cam surface 180 can be inclined from a first level to a second level, in relation to a plane extending generally transverse to the centerline of the opening 164 in the gear 124. The first return surface 182 can intersect the first cam surface 180 and can be disposed between the first and second levels.


In some embodiments, the clutch member 140 includes a second cam surface 184 and a second return surface 186. As illustrated in FIG. 19, the second cam surface 184 can be inclined from a first level to a second level, in relation to a plane extending generally transverse to the centerline of the opening 170 in the clutch member 140. The second return surface 186 can intersect the first cam surface 184 and can be disposed between the first and second levels.


As shown in FIG. 8, the cam surface 184 and the second return surface 186 can be shaped to correspond with the first cam surface 180 and the first return surface 182 of the variable gear 124, thereby allowing mating engagement of the variable gear 124 and the clutch member 140. For example, summits 180a of the inclined cam surface 180 can be nested in the valleys 184b of the inclined cam surface 184, and summits 184a of the inclined cam surface 184 can be nested in the valleys 180b of the inclined cam surface 180.


In certain variants, when the lid 24 is moved manually, the lifting member 106 is moved, which in turn rotates the variable gear 124. As previously discussed, the opening 164 in the variable gear 124 is configured so that the gear 124 can rotate in relation to the drive shaft 120. For example, the opening 164 is generally round and has a diameter larger than the diameter of the drive shaft 120. In some embodiments, the variable gear 124 is positioned on the first shaft region 156 (e.g., the round region of the shaft 120). In certain variants, the variable gear 124 is positioned on the second shaft region 158 (e.g., the generally square region of the shaft 120). Typically, the diameter of the opening 164 can be larger than the largest transverse dimension (e.g., the diameter or the distance between generally opposite corners) of the shaft 120. Thus, in certain embodiments, rotation of the variable gear 124 during manual operation of the lid 24 may not be transmitted to the drive shaft 120, coupling mechanism 11, and/or motor 112. Rather, certain embodiments are configured to permit the variable gear 124 to rotationally “slip” relative to the drive shaft 120, coupling mechanism 11, and/or motor 112.


As previously discussed, in some embodiments, torque from the motor 112 can be transmitted through the coupling mechanism 111 and the drive shaft 120. In some embodiments, the motor torque is transmitted to the clutch member 140 via the generally square second region 158 of the drive shaft 120, which engages the generally square aperture 170 in the clutch member 140. Thus, in certain variants, the clutch member 140 is inhibited or prevented from rotating relative to the shaft 120. In certain implementations, the clutch member 140 is configured to transmit torque from the motor 112 to the variable gear 124, such as by friction between the first and second cam surfaces 180, 184 and/or between the first and second return surfaces 182, 186.


In some embodiments, the clutch member 140 can translate along a portion of the longitudinal length of the drive shaft 120. As shown, a retaining member 141 (e.g., a nut and washer assembly) can retain the biasing member 142, which can bias the clutch member 140 into engagement with the variable gear 124. In some embodiments, translation of the clutch member 140 (e.g., in a direction away from the motor 112) along a portion of the drive shaft 120 is generally against the bias of the biasing member.


In some embodiments, when the lid 24 is manually operated, the variable gear 124 rotates. In certain implementations, when the lid 24 is manually operated, the clutch member 140 remains stationary. Some embodiments of the clutch member 140 remain stationary because, as noted above, the variable gear 124 can rotate without rotating the drive shaft 120, which can drive the clutch member 140. Thus, in certain configurations, the variable gear 124 rotates relative to the clutch member 140.


In some embodiments, rotation of the variable gear 124 relative to the clutch member 140 results in relative movement between the first and second inclined cam surfaces 180, 184. In certain configurations, the inclined cam surfaces 180, 184 slide relative to each other, which results in the inclined cams climbing each other. For example, as the inclined cam surfaces 180, 184 slide relative to each other, the summits 180a, 184a of the inclined cam surfaces 180, 184 circumferentially approach each other.


In certain embodiments, the relative movement between the first and second inclined cam surfaces 180, 184 (e.g., by the interaction of the inclines) urges the variable gear 124 and the clutch member 140 apart. For example, the variable gear 124 and the clutch member 140 can be urged in generally opposite directions along the longitudinal axis of the drive shaft 120. In some embodiments, the variable gear 124 is generally restrained from moving away from the clutch member 140 (e.g., by abutting with the coupling mechanism 111). However, certain embodiments of the clutch member 140 are able to move away from variable gear 124 by translating along the drive shaft 120 (e.g., against the bias of the biasing member 142). Thus, in certain implementations, relative rotation of the inclined cam surfaces 180, 184 results in the clutch member 140 translating along a portion of the longitudinal length of the drive shaft 120 (e.g., in a direction away from the motor 112), against the bias of the biasing member 142. Thus, some embodiments facilitate relative rotation of the variable gear 124 and the clutch member 140 without imposing undue stress on, or damage to, the variable gear 124, clutch member 140, drive shaft 120, and/or motor 112. Accordingly, manual operation of the lid 24 can be performed without imposing undue stress on, or damage to, components of the trash can assembly 20.


In some implementations, when manual operation of the lid 24 ceases, the bias of the biasing member 142 can return the clutch member 140 into generally full engagement with the variable gear 124. For example, after manual operation of the lid 24 ceases, the bias of the biasing member 142 can facilitate re-engagement of the inclined cam surfaces 180, 184. In some embodiments, re-engaging the clutch member 140 and the variable gear 124 allows the transmission of torque from the motor 112 to the variable gear 124, which can provide powered operation of the lid. Thus, some embodiments provide automatic and/or passive engagement and/or disengagement of the motor 112 and/or drive shaft 120 from the variable gear 124 and/or the lid 24.


Although the trash cans have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the trash cans and obvious modifications and equivalents thereof. In addition, while several variations of the trash cans have been shown and described in detail, other modifications, which are within the scope of the present disclosure, will be readily apparent to those of skill in the art. For example, additional and/or alternate gearing and/or torque transmission components can be included in the lifting mechanism 102. For instance, in some embodiments, the lifting mechanism 102 includes a gear reduction (e.g., greater than or equal to about 1:5, 1:10, 1:50, values in between, or any other gear reduction that would provide the desired characteristics), which can modify the rotational speed applied to the drive shaft 120, clutch member 140, variable gear 124, lifting member 106 and/or other components.


It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the present disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the trashcans. Thus, it is intended that the scope of the present disclosure should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. A refuse receptacle comprising: an outer shell component;a lid mounted relative to the outer shell component portion and configured to move between an open position and a closed position;a power supply;a motor configured to be powered by the power supply; anda gear assembly configured to move the lid between the opened and closed positions, the gear assembly comprising a variable gear rotatably engaged with a lifting gear, the variable gear rotatable by the motor and including a first tooth and a second tooth, the first tooth having a first tooth radius and the second tooth having a second tooth radius that is greater than the first tooth radius, the rotation of the variable gear facilitating acceleration in the angular velocity of the lid during the movement of the lid between the opened and closed positions.
  • 2. The receptacle of claim 1, wherein the variable gear comprises a plurality of teeth, each with a tooth radius.
  • 3. The receptacle of claim 2, wherein each tooth has a unique tooth radius.
  • 4. The receptacle of claim 2, wherein the tooth radii generally increase around the circumference of the variable gear.
  • 5. The receptacle of claim 4, wherein the tooth having the longest tooth radius is engaged with the lifting gear when the lid is in the open position.
  • 6. The receptacle of claim 4, wherein the tooth having the shortest tooth radius is engaged with the lifting gear when the lid is in the closed position.
  • 7. The receptacle of claim 1, wherein the lifting gear comprises a rack gear having a first transverse width and a second transverse width, the first transverse width being different than the second transverse width.
  • 8. The receptacle of claim 7, wherein, during movement of the lid between the opened and closed positions, at least one tooth of the variable gear is engaged with at least one tooth of the rack gear, and the sum of the tooth radius and the transverse width of the engaged teeth is generally constant.
  • 9. The receptacle of claim 1, further comprising a coupling mechanism configured to inhibit vibration from the motor from being transmitted to the variable gear.
  • 10. The receptacle of claim 1, further comprising a drive shaft rotated by the motor, the drive shaft comprising a first portion having a generally round cross-section and a second portion having a generally rectangular cross-section.
  • 11. The receptacle of claim 1, further comprising a clutch member configured to engage with the variable gear.
  • 12. The receptacle of claim 11, wherein the variable gear further comprises a first inclined cam surface and the clutch member comprises a corresponding second inclined cam surface configured to nest with the first inclined cam surface.
  • 13. The receptacle of claim 1, wherein the lid is disposed generally parallel with the ground on which the receptacle is located in the closed position, and the lid is disposed generally perpendicular to the ground in the open position.
  • 14. A trash can configured for manual and powered operation, the trash can comprising: an outer shell component;a lid mounted relative to the outer shell component and configured to move between an open position and a closed position;a power supply;a motor configured to be powered by the power supply;a lifting mechanism operably connected with the motor and the lid such that powered operation of the motor can drive the lid between the open and closed positions via the lifting mechanism; anda clutch engaged with the lifting mechanism and configured to transmit torque from the motor to a portion of the lifting mechanism during powered operation of the lid by the motor, the clutch configured to at least partly disengage from the lifting mechanism during manual operation of the lid to allow the portion of the lifting mechanism to rotate relative to the clutch, thereby facilitating manual operation of the lid without damage to the lifting mechanism;wherein, after manual operation of the lid has ceased, the clutch is automatically reengaged with the lifting mechanism, thereby facilitating subsequent powered operation of the lid.
  • 15. A trash can configured for manual and powered operation, the trash can comprising: an outer shell component;a lid mounted relative to the outer shell component and configured to move between an open position and a closed position;a power supply;a motor configured to be powered by the power supply;a lifting mechanism operably connected with the motor and the lid such that powered operation of the motor can drive the lid between the open and closed positions via the lifting mechanism;a clutch engaged with the lifting mechanism and configured to transmit torque from the motor to a portion of the lifting mechanism during powered operation of the lid by the motor, the clutch configured to at least partly disengage from the lifting mechanism during manual operation of the lid to allow the portion of the lifting mechanism to rotate relative to the clutch, thereby facilitating manual operation of the lid without damage to the lifting mechanism; anda biasing member configured to bias the clutch into engagement with the lifting mechanism.
  • 16. A trash can configured for manual and powered operation, the trash can comprising: an outer shell component;a lid mounted relative to the outer shell component and configured to move between an open position and a closed position;a power supply;a motor configured to be powered by the power supply;a torque transmission component operably connected with the motor and the lid such that powered operation of the motor can drive the lid between the open and closed positions via the torque transmission component;a clutch engaged with the torque transmission component and configured to transmit torque from the motor to a portion of the torque transmission component during powered operation of the lid by the motor, the clutch configured to at least partly disengage from the torque transmission component during manual operation of the lid to allow the portion of the torque transmission component to rotate relative to the clutch, thereby facilitating manual operation of the lid without damage to the torque transmission component; anda drive shaft, the clutch being configured to translate along a portion of the drive shaft.
  • 17. A trash can configured for manual and powered operation, the trash can comprising: an outer shell component;a lid mounted relative to the outer shell component and configured to move between an open position and a closed position;a power supply;a motor configured to be powered by the power supply;a torque transmission component operably connected with the motor and the lid such that powered operation of the motor can drive the lid between the open and closed positions via the torque transmission component; anda clutch engaged with the torque transmission component and configured to transmit torque from the motor to a portion of the torque transmission component during powered operation of the lid by the motor, the clutch configured to at least partly disengage from the torque transmission component during manual operation of the lid to allow the portion of the torque transmission component to rotate relative to the clutch, thereby facilitating manual operation of the lid without damage to the torque transmission component;wherein the torque transmission component comprises a first inclined cam surface and the clutch member comprises a corresponding second inclined cam surface configured to nest with the first inclined cam surface.
  • 18. The trash can of claim 17, wherein, during manual operation of the lid, the first and second inclined cam surfaces slide relative to each other.
  • 19. The trash can of claim 18, wherein, during manual operation of the lid, the clutch is urged in a direction generally away from the motor.
  • 20. The trash can of claim 17, wherein the torque transmission component further comprises a gear assembly.
  • 21. The trash can of claim 14, wherein the lifting mechanism comprises a gear assembly.
  • 22. The trash can of claim 15, wherein the lifting mechanism comprises a gear assembly.
  • 23. The trash can of claim 16, wherein the torque transmission component comprises a gear assembly.
US Referenced Citations (373)
Number Name Date Kind
1426211 Pausin Aug 1922 A
1461253 Obadiah Jul 1923 A
1754802 Raster Apr 1930 A
1820555 Buschman Aug 1931 A
1891651 Padelford et al. Dec 1932 A
1922729 Giebel Aug 1933 A
1980938 Geibel Nov 1934 A
2308326 Calcagno Jan 1943 A
D148825 Snider Feb 1948 S
2457274 Rifken Dec 1948 A
2759625 Ritter Aug 1956 A
2888307 Graves et al. May 1959 A
2946474 Knapp Jul 1960 A
3008604 Garner Nov 1961 A
3023922 Arrington et al. Mar 1962 A
3137408 Taylor Jun 1964 A
3654534 Fischer Apr 1972 A
3820200 Myers Jun 1974 A
3825150 Taylor Jul 1974 A
3825215 Borglum Jul 1974 A
3886425 Weiss May 1975 A
3891115 Ono Jun 1975 A
4014457 Hodge Mar 1977 A
4027774 Cote Jun 1977 A
4081105 Dagonnet et al. Mar 1978 A
4189808 Brown Feb 1980 A
4200197 Meyer et al. Apr 1980 A
4217616 Jessup Aug 1980 A
4303174 Anderson Dec 1981 A
4320851 Montoya Mar 1982 A
4357740 Brown Nov 1982 A
4416197 Kehl Nov 1983 A
4457483 Gagne Jul 1984 A
4535911 Goulter Aug 1985 A
4570304 Montreuil et al. Feb 1986 A
4576310 Isgar et al. Mar 1986 A
D284320 Kubic et al. Jun 1986 S
4609117 Pamment Sep 1986 A
4630332 Bisbing Dec 1986 A
4630752 DeMars Dec 1986 A
4664347 Brown et al. May 1987 A
4697312 Freyer Oct 1987 A
4711161 Swin et al. Dec 1987 A
4729490 Ziegenbein Mar 1988 A
4753367 Miller et al. Jun 1988 A
4763808 Guhl et al. Aug 1988 A
4765548 Sing Aug 1988 A
4765579 Robbins et al. Aug 1988 A
4792039 Dayton Dec 1988 A
4794973 Perisic Jan 1989 A
4834260 Auten May 1989 A
4863053 Oberg Sep 1989 A
4867339 Hahn Sep 1989 A
4884717 Bussard et al. Dec 1989 A
4892223 DeMent Jan 1990 A
4892224 Graham Jan 1990 A
4913308 Culbertson Apr 1990 A
4915347 Iqbal et al. Apr 1990 A
4918568 Stone et al. Apr 1990 A
D308272 Koepsell May 1990 S
4923087 Burrows May 1990 A
4948004 Chich Aug 1990 A
4964523 Bieltvedt et al. Oct 1990 A
4972966 Craft, Jr. Nov 1990 A
4996467 Day Feb 1991 A
5031793 Chen et al. Jul 1991 A
5048903 Loblein Sep 1991 A
5054724 Hutcheson Oct 1991 A
5065272 Owen et al. Nov 1991 A
5065891 Casey Nov 1991 A
D323573 Schneider Jan 1992 S
5090785 Stamp Feb 1992 A
5100087 Ashby Mar 1992 A
5111958 Witthoeft May 1992 A
D327760 Donnelly Jul 1992 S
D329929 Knoedler et al. Sep 1992 S
5147055 Sampson et al. Sep 1992 A
5156290 Rodrigues Oct 1992 A
5170904 Neuhaus Dec 1992 A
5174462 Hames Dec 1992 A
5213272 Gallagher et al. May 1993 A
5222704 Light Jun 1993 A
D337181 Warman Jul 1993 S
5226558 Whitney et al. Jul 1993 A
5230525 Delmerico et al. Jul 1993 A
5242074 Conaway et al. Sep 1993 A
D340333 Duran et al. Oct 1993 S
5249693 Gillispie et al. Oct 1993 A
5261553 Mueller et al. Nov 1993 A
5305916 Suzuki et al. Apr 1994 A
5314151 Carter-Mann May 1994 A
5322179 Ting Jun 1994 A
5329212 Feigleson Jul 1994 A
5348222 Patey Sep 1994 A
5381588 Nelson Jan 1995 A
5385258 Sutherlin Jan 1995 A
5390818 LaBuda Feb 1995 A
5404621 Heinke Apr 1995 A
5407089 Bird et al. Apr 1995 A
5419452 Mueller et al. May 1995 A
5471708 Lynch Dec 1995 A
5474201 Liu Dec 1995 A
5501358 Hobday Mar 1996 A
5520067 Gabas May 1996 A
5520303 Bernstein et al. May 1996 A
5531348 Baker et al. Jul 1996 A
5535913 Asbach et al. Jul 1996 A
5558254 Anderson et al. Sep 1996 A
D377554 Adriaansen Jan 1997 S
5611507 Smith Mar 1997 A
5628424 Gola May 1997 A
5632401 Hurd May 1997 A
5636416 Anderson Jun 1997 A
5644111 Cerny et al. Jul 1997 A
5645186 Powers et al. Jul 1997 A
5650680 Chula Jul 1997 A
D383277 Peters Sep 1997 S
5662235 Nieto Sep 1997 A
5690247 Boover Nov 1997 A
5695088 Kasbohm Dec 1997 A
5699929 Ouno Dec 1997 A
D388922 Peters Jan 1998 S
D389631 Peters Jan 1998 S
5704511 Kellams Jan 1998 A
5724837 Shin Mar 1998 A
5730312 Hung Mar 1998 A
5732845 Armaly, Jr. Mar 1998 A
5735495 Kubota Apr 1998 A
5738239 Triglia Apr 1998 A
5799909 Ziegler Sep 1998 A
5816431 Giannopoulos Oct 1998 A
5816640 Nishimura Oct 1998 A
D401383 Gish Nov 1998 S
D401719 Van Leeuwen et al. Nov 1998 S
5873643 Burgess, Jr. et al. Feb 1999 A
5881896 Presnell et al. Mar 1999 A
5881901 Hampton Mar 1999 A
5884237 Kanki et al. Mar 1999 A
5887748 Nguyen Mar 1999 A
5967392 Niemi et al. Oct 1999 A
5987708 Newton Nov 1999 A
6000569 Liu Dec 1999 A
6010024 Wang Jan 2000 A
6024238 Jaros Feb 2000 A
6036050 Ruane Mar 2000 A
6102239 Wien Aug 2000 A
6123215 Windle Sep 2000 A
D431700 Roudebush Oct 2000 S
6126031 Reason Oct 2000 A
6129233 Schiller Oct 2000 A
D435951 Yang et al. Jan 2001 S
6209744 Gill Apr 2001 B1
6211637 Studer Apr 2001 B1
6234339 Thomasd May 2001 B1
6250492 Verbeek Jun 2001 B1
D445980 Tjugum Jul 2001 S
6286706 Tucker Sep 2001 B1
6328320 Walski et al. Dec 2001 B1
6345725 Lin Feb 2002 B1
6364147 Meinzinger et al. Apr 2002 B1
6386386 George May 2002 B1
6390321 Wang May 2002 B1
6401958 Foss et al. Jun 2002 B1
6519130 Breslow Feb 2003 B1
6557716 Chan May 2003 B1
6596983 Brent Jul 2003 B2
6626316 Yang Sep 2003 B2
6626317 Pfiefer et al. Sep 2003 B2
D482169 Lin Nov 2003 S
6659407 Asaro Dec 2003 B2
6681950 Miller, Jr. et al. Jan 2004 B2
D488604 Yang et al. Apr 2004 S
D488903 Yang et al. Apr 2004 S
D489503 Lin May 2004 S
D489857 Yang et al. May 2004 S
D490583 Yang et al. May 2004 S
D490954 Brand Jun 2004 S
D491706 Yang et al. Jun 2004 S
6758366 Bourgund et al. Jul 2004 B2
D493930 Wang Aug 2004 S
D494723 Lin Aug 2004 S
6812655 Wang et al. Nov 2004 B1
6814249 Lin Nov 2004 B2
D499450 Goodman et al. Dec 2004 S
6837393 Kuo Jan 2005 B1
6857538 Lin Feb 2005 B2
6859005 Boliver Feb 2005 B2
D503021 Yang et al. Mar 2005 S
6866826 Moore et al. Mar 2005 B2
6883676 Lin Apr 2005 B2
D507090 Yang et al. Jul 2005 S
6920994 Lin Jul 2005 B2
6974948 Brent Dec 2005 B1
D513445 Lin Jan 2006 S
6981606 Yang et al. Jan 2006 B2
D517764 Wang Mar 2006 S
D517767 Yang et al. Mar 2006 S
D518266 Yang et al. Mar 2006 S
7017773 Gruber et al. Mar 2006 B2
7044323 Yang et al. May 2006 B2
D525756 Yang et al. Jul 2006 S
7073677 Richardson et al. Jul 2006 B2
7077283 Yang et al. Jul 2006 B2
7080750 Wein et al. Jul 2006 B2
7086550 Yang et al. Aug 2006 B2
D528726 Lin Sep 2006 S
7121421 Yang et al. Oct 2006 B2
D531499 Zaidman Nov 2006 S
D535799 Epps Jan 2007 S
D535800 Yang et al. Jan 2007 S
D537223 Lin Feb 2007 S
D537599 Lin Feb 2007 S
D537601 Lin Feb 2007 S
D537999 Lin Mar 2007 S
D538995 Lin Mar 2007 S
D539498 Yang et al. Mar 2007 S
D539499 Yang et al. Mar 2007 S
D540001 Zimmerman Apr 2007 S
D542001 Yang et al May 2007 S
D542995 Lin May 2007 S
D544170 Lin Jun 2007 S
D544171 Lin Jun 2007 S
D544671 Saunders et al. Jun 2007 S
D545024 Liao Jun 2007 S
7225943 Yang et al. Jun 2007 B2
D547020 Chen Jul 2007 S
7243811 Ramsey Jul 2007 B1
D550918 Wang et al. Sep 2007 S
D552319 Gusdorf Oct 2007 S
D552321 Yang et al. Oct 2007 S
D552823 Yang et al. Oct 2007 S
D552824 Zimmerman Oct 2007 S
D552825 Yang et al. Oct 2007 S
D559494 Yang et al. Jan 2008 S
D559495 Yang et al. Jan 2008 S
7328842 Wagner et al. Feb 2008 B2
D564169 Wang Mar 2008 S
D566367 Lin Apr 2008 S
D566369 Shek Apr 2008 S
D566923 Lin Apr 2008 S
D568572 Yang et al. May 2008 S
7374060 Yang et al. May 2008 B2
D571520 Lin Jun 2008 S
7398913 McClure Jul 2008 B2
7404499 Ramsey Jul 2008 B1
D576371 Zimmerman Sep 2008 S
D578265 Presnell Oct 2008 S
D578266 Yang et al. Oct 2008 S
D578722 Yang et al. Oct 2008 S
7438199 Tidrick Oct 2008 B1
D580120 Lin Nov 2008 S
D580613 Yang et al. Nov 2008 S
D580615 Yang et al. Nov 2008 S
D584470 Bizzell et al. Jan 2009 S
D585171 Bizzell et al. Jan 2009 S
D585618 Yang et al. Jan 2009 S
7494021 Yang et al. Feb 2009 B2
7540396 Yang et al. Jun 2009 B2
7543716 Lin Jun 2009 B2
7559433 Yang et al. Jul 2009 B2
D599074 Bizzell et al. Aug 2009 S
D603119 Yang et al. Oct 2009 S
7607552 Efstathiou Oct 2009 B2
7621420 Bandoh et al. Nov 2009 B2
7656109 Yang et al. Feb 2010 B2
D611216 Yang et al. Mar 2010 S
D611217 Bizzell et al. Mar 2010 S
D611671 Yang et al. Mar 2010 S
7694838 Yang et al. Apr 2010 B2
7703622 Bynoe Apr 2010 B1
D615722 Yang et al. May 2010 S
7712285 Stravitz et al. May 2010 B2
7741801 Fukuizumi Jun 2010 B2
7748556 Yang et al. Jul 2010 B2
7781995 Yang et al. Aug 2010 B2
7806285 Yang et al. Oct 2010 B2
D631221 Yang et al. Jan 2011 S
D632864 Yang et al. Feb 2011 S
D634911 Yang et al. Mar 2011 S
7896187 Haibel Mar 2011 B2
7922024 Yang et al. Apr 2011 B2
7950543 Yang et al. May 2011 B2
D644390 Smeets et al. Aug 2011 S
7992742 Kim Aug 2011 B1
8006857 Lin Aug 2011 B2
D649728 Campbell Nov 2011 S
8074833 Yang et al. Dec 2011 B2
8096445 Yang et al. Jan 2012 B2
8136688 Lee et al. Mar 2012 B2
D657108 Yang et al. Apr 2012 S
D657109 Liao Apr 2012 S
D672520 Yang et al. Dec 2012 S
D675802 Yang et al. Feb 2013 S
D675803 Yang et al. Feb 2013 S
8418869 Yang et al. Apr 2013 B2
8567630 Yang et al. Oct 2013 B2
8569980 Yang et al. Oct 2013 B2
8672171 Wynn et al. Mar 2014 B2
8686676 Yang et al. Apr 2014 B2
8716969 Yang et al. May 2014 B2
8720728 Yang et al. May 2014 B2
20010002690 Rosky Jun 2001 A1
20010020619 Pfeifer et al. Sep 2001 A1
20020092853 Wang Jul 2002 A1
20020096524 Hardesty Jul 2002 A1
20020104266 Ranaudo Aug 2002 A1
20030089719 Berger May 2003 A1
20030201265 Lin Oct 2003 A1
20030230576 Lin Dec 2003 A1
20040016756 Lin Jan 2004 A1
20040134924 Hansen et al. Jul 2004 A1
20040140782 Okabe et al. Jul 2004 A1
20040164077 Kuo Aug 2004 A1
20040174268 Scott et al. Sep 2004 A1
20040175303 Lin Sep 2004 A1
20040199401 Wagner Oct 2004 A1
20040200938 Forlivio Oct 2004 A1
20040206758 Lin Oct 2004 A1
20040206760 Gagnebin Oct 2004 A1
20040251746 Ichimaru et al. Dec 2004 A1
20050017006 Kuo Jan 2005 A1
20050017010 Siegel et al. Jan 2005 A1
20050133506 Yang et al. Jun 2005 A1
20050258794 Fukuizumi Nov 2005 A1
20060027579 Yang et al. Feb 2006 A1
20060103086 Niemeyer et al. May 2006 A1
20060175336 Wang Aug 2006 A1
20060186121 Yang et al. Aug 2006 A1
20060196874 Yang Sep 2006 A1
20060249510 Lin Nov 2006 A1
20060278643 Chiou Dec 2006 A1
20070112699 Yang et al. Jan 2007 A1
20070034334 Ramsey et al. Feb 2007 A1
20070090112 Kalman et al. Apr 2007 A1
20070114847 Ichimaru et al. May 2007 A1
20070181579 Kuo et al. Aug 2007 A1
20070209846 Wilson Sep 2007 A1
20070241109 Lin Oct 2007 A1
20070266637 McGowan Nov 2007 A1
20070272691 Wang et al. Nov 2007 A1
20070289972 Wynn et al. Dec 2007 A1
20080011754 Ramsey Jan 2008 A1
20080011910 Ramsey Jan 2008 A1
20080083756 Daniels Apr 2008 A1
20080164257 Boll et al. Jul 2008 A1
20080236275 Breed et al. Oct 2008 A1
20080237234 Yang et al. Oct 2008 A1
20080257889 Kovacevich et al. Oct 2008 A1
20080257890 Kovacevich et al. Oct 2008 A1
20080257891 Kovacevich et al. Oct 2008 A1
20080264948 Kovacevich et al. Oct 2008 A1
20080264950 Kovacevich et al. Oct 2008 A1
20080272119 Efstathiou Nov 2008 A1
20080272127 Kovacevich et al. Nov 2008 A1
20090084788 Yang et al. Apr 2009 A1
20090194532 Yang et al. Aug 2009 A1
20090230131 McDuffie et al. Sep 2009 A1
20090261105 Cunningham et al. Oct 2009 A1
20090266836 Mobley Oct 2009 A1
20100006572 Chiou Jan 2010 A1
20100170904 Kalman et al. Jul 2010 A1
20100224627 Yang et al. Sep 2010 A1
20100237074 Yang et al. Sep 2010 A1
20100252557 Clements Oct 2010 A1
20100294769 Lee et al. Nov 2010 A1
20110139781 Jin et al. Jun 2011 A1
20110220646 Yang et al. Sep 2011 A1
20110220647 Yang et al. Sep 2011 A1
20110220648 Yang et al. Sep 2011 A1
20110220655 Yang et al. Sep 2011 A1
20110272409 Kasbohm Nov 2011 A1
20130233857 Yang et al. Sep 2013 A1
20130248532 Yang et al. Sep 2013 A1
Foreign Referenced Citations (73)
Number Date Country
622536 Apr 1992 AU
2519295 Mar 2007 CA
132181 Jun 2010 CA
136938 May 2011 CA
141819 Apr 2012 CA
146601 Feb 2013 CA
152797 Apr 2014 CA
102190144 Sep 2011 CN
301947175 Jun 2012 CN
201130284559.9 Jun 2012 CN
103300590 Sep 2013 CN
201330418089.X Mar 2014 CN
1610087 Jun 1950 DE
1283741 Jul 1966 DE
8436939 Mar 1985 DE
9108341 Oct 1991 DE
4225936 Feb 1994 DE
19525885 Mar 1997 DE
19617823 Nov 1997 DE
19809331 May 1999 DE
29918687 Mar 2000 DE
19933180 Jan 2001 DE
10148997 Apr 2003 DE
20217561 Mar 2004 DE
0582240 Jul 1993 EP
0903305 Mar 1999 EP
0906876 Apr 1999 EP
1094017 Apr 2001 EP
1361176 Nov 2003 EP
1136393 Apr 2004 EP
1447342 Aug 2004 EP
1600373 Nov 2005 EP
1647503 Apr 2006 EP
1686073 Aug 2006 EP
1918223 May 2008 EP
1700799 Aug 2009 EP
001164826-0001 Sep 2009 EP
001232904-0001 Oct 2010 EP
001908575-0001 Aug 2011 EP
001317416-0001 Apr 2012 EP
001317416-0002 Apr 2012 EP
001335285-0001 Jul 2012 EP
001335293-0001 Jul 2012 EP
001381636-001 Aug 2013 EP
001381792-0001 Aug 2013 EP
2636611 Sep 2013 EP
2636613 Sep 2013 EP
2887152 Dec 2006 FR
191004921 Jun 1910 GB
2384418 Jul 2003 GB
02 152670 Jun 1990 JP
H06-56011 Aug 1994 JP
06-272888 Sep 1994 JP
D1300450 May 2007 JP
D1300451 May 2007 JP
D1322056 Feb 2008 JP
3003841370000 Jun 2005 KR
3004095430000 Mar 2006 KR
3004095430001 Jul 2006 KR
6908550 Dec 1970 NL
D112733 Sep 2006 TW
D129485 Jul 2009 TW
D133382 Feb 2010 TW
D133678 Mar 2010 TW
D147147 May 2012 TW
D154797 Jul 2013 TW
D158187 Jan 2014 TW
WO 9202430 Feb 1992 WO
WO 9633671 Oct 1996 WO
WO 2005080232 Sep 2005 WO
WO 2006079263 Aug 2006 WO
WO 2007139570 Dec 2007 WO
WO 2009114495 Sep 2009 WO
Non-Patent Literature Citations (9)
Entry
U.S. Appl. No. 29/411,482, filed Jan. 20, 2012, Yang et al.
U.S. Appl. No. 29/411,491, filed Jan. 20, 2012, Yang et al.
U.S. Appl. No. 29/411,490, filed Jan. 20, 2012, Yang et al.
Trento Corner 23 Trash Can, Hailo product brochure, http://www.hailo.de/html/default.asp?site=12—71—107&lang=en, visited May 13, 2008.
U.S. Appl. No. 13/783,149, filed Mar. 1, 2013, Yang et al.
U.S. Appl. No. 29/447,313, filed Mar. 1, 2013, Yang et al.
U.S. Appl. No. 29/484,903, filed Mar. 13, 2014, Yang et al.
U.S. Appl. No. 29/484,764, filed Mar. 1, 2013, Yang et al.
U.S. Appl. No. 14/198,460, filed Mar. 5, 2014, Yang et al.
Related Publications (1)
Number Date Country
20130233853 A1 Sep 2013 US