The inventions described below relate the field of cardiology.
Chronic Myocardial Infarction refers to myocardial tissue which has died as the result of myocardial infarct, and has over the course of time become remodeled to scar tissue within the myocardium. Left untreated, myocardial infarction induces global changes in the ventricular architecture in a process called ventricular remodeling. Eventually, the patient experiences ventricular dilation and ventricular dysfunction. This ventricular remodeling is a major cause of heart failure.
While there are several suggested means of ameliorating the effects of acute myocardial infarction (immediately after the event leading to infarct), no significant therapy has been proposed or implemented for the amelioration or reversal of chronic myocardial infarction and the deleterious effects of infracted tissue after substantial transformation or remodeling of the infracted tissue to scar tissue.
The method of treating chronic myocardial infarction described below comprises injection of autologous bone marrow derived mononuclear cells, or cells derived from those mononuclear cells, into the myocardium. These cells are injected near or in the chronic infracted tissue.
Chronic myocardial infarction refers to the condition of infracted tissues after the infracted tissue has been remodeled by natural wound healing responses and comprises, after such remodeling, scar tissue, which is substantially dead. This is distinct from ischemic tissue characteristic of chronic ischemia, which refers to tissue which is chronically hypoxic due to lack of sufficient blood flow, but is still viable even if not fully active in the muscular and electro-physiologically activity of the heart. The method starts with identifying patients afflicted with chronic myocardial infarction. Once patients with chronic myocardial infarction are identified, their suitability for treatment under the method currently requires a low ejection fraction (less that about 40%). In our experiments aimed at determining if the treatment is safe, we included patients with left ventricular dysfunction (less that about 40% but not less than about 30%) that were not candidates for ventricular aneurysm surgery, implantable defibrillators, or valve repair or replacement, while excluding patients with active infections, malignancies, high grade atrioventricular block, sustained ventricular tachyarrythmias, a recent MI (less than 4 weeks old), presence of an artificial aortic valve, recent history of alcohol or drug abuse or evidence of other multi-system disease. However, given the results of our experiments, we expect that the treatment could benefit all patients suffering from chronic myocardial infarction so long as they can tolerate the procedure.
Immediately prior to the catheterization necessary to deliver the autologous bone marrow cells, the cells are collected from suitable sites within the patient, such as the posterior iliac crest, vertebral body and/or sternum. Bone marrow mononuclear cells are isolated by suitable methods such as density gradient on Ficoll-Paque Plus tubes (GE Healthcare, UK) through 100 μm nylon mesh to remove cell aggregates, and re-suspended in Ringers solution at a concentration of 1×108 cells/ml in a total volume of 1.3 ml. These cells are prepared for injection back into the patient within about 4 to 6 hours after harvesting. The bone marrow derived mononuclear cells include CD-34 positive cells, CD-133 positive cells, and CD-90 positive cells (mesenchymal stem cells) which may also be separately isolated for injection to treat chronic myocardial infarction. Preferably at least 40% of the cells isolated comprise CD-34 positive cells, CD-90 positive cells, and CD-133 positive cells or a combination thereof.
Just prior to cell delivery, the doctors performing the cell delivery use various techniques, including ECG's, echocardiography, and baseline orthogonal ventriculography data to define the target infarct tissue zones. Access to the target infarct zone is preferably via catheter, transendocardially (with the catheter tip in the endocardial space) into the myocardium. Intramyocardial delivery may also be accomplished through a trans-coronary venous approach as described in BioCardia's U.S. Pat. No. 6,585,716, through a trans-coronary arterial approach, or a trans-epicardial approach. Any suitable catheter system can be used, though the BioCardia™ helical infusion catheter and steerable guide catheter are particularly well suited to the method. Dosage may range from three injections of 0.1 to 0.2 ml of cell solution at a concentration of 108 (one hundred million) cells/ml (totaling about 5×107 cells) to 11 injections of 0.1 to 0.2 ml of cell solution at a concentration of 1.2×108 cells/ml for a total of 1.2×108 cells spread over numerous injection cites proximate the target infarct tissue. The solution containing the cells is injected near or at the site of an infarct, in several small injections proximate the target infarct. Each injection is performed slowly, and the helical injection catheter is left in the injection site to dwell for a substantial period (about 15 to 30 seconds) to prevent back-leakage of the solution into the endocardial space of the ventricle.
The efficacy of the treatment is reflected in
Peripheral blood derived mononuclear cells (PBMC) and adipose tissue derived mononuclear cells can be also be used in the treatment, as can cells derived from those mononuclear cells harvested from the peripheral blood or adipose tissue. While the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the inventions. Other embodiments of the method, including sources of cells and methods of isolation, and particular constituent cells of the injected cell population may be devised without departing from the spirit of the inventions and the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/630,305, (Attorney Docket No. 29181-708.302), filed Feb. 24, 2015, now U.S. Pat. No. ______, which is a continuation of U.S. patent application Ser. No. 13/953,961, (Attorney Docket No. 29181-708.301), filed Jul. 30, 2013, now U.S. Pat. No. ______, which is a continuation of U.S. patent application Ser. No. 11/735,869, (Attorney Docket No. 29181-708.201), filed Apr. 16, 2007, now U.S. Pat. No. 8,496,926, the entire contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14630305 | Feb 2015 | US |
Child | 15341471 | US | |
Parent | 13953961 | Jul 2013 | US |
Child | 14630305 | US | |
Parent | 11735869 | Apr 2007 | US |
Child | 13953961 | US |