Treatment system and method

Information

  • Patent Grant
  • 12114924
  • Patent Number
    12,114,924
  • Date Filed
    Thursday, March 26, 2015
    9 years ago
  • Date Issued
    Tuesday, October 15, 2024
    2 months ago
Abstract
Methods and apparatuses for treating a root canal in a tooth or hard and/or soft tissue within a tooth and surrounding tissues by pulsing a laser light into a reservoir, preferably after introducing liquid fluid into the reservoir, so as to disintegrate, separate, or otherwise neutralize pulp, plaque, calculus, and/or bacteria within and adjacent the fluid reservoir without elevating the temperature of any of the dentin, tooth, bones, gums, other soft tissues, other hard tissues, and any other adjacent tissue more than about 5° C.
Description
FIELD

The present disclosure relates to the use of laser light and other energy sources in the field of dentistry, medicine and veterinary medicine to perform endodontic, periodontic, and other dental and medical procedures.


BACKGROUND

Recent advances in the fields of dentistry, medicine, and veterinary medicine necessitate functional and efficient implementation of therapies during exploratory and restructuring procedures. Of specific interest is the arena of dental root canals and periodontics.


When performing root canal procedures it is desirable to efficiently debride or render harmless all tissue, bacteria, and/or viruses within the root canal system. The root canal system includes the main root canal and all of the accessory or lateral canals that branch off of the main canal. Some of these accessory canals are very small and extremely difficult to reach in order to eliminate any bacteria and/or viruses. Such accessory canals may bend, twist, change cross-section and/or become long and small as they branch off from the main canal, making them very difficult to access or target therapeutically.


An accepted dental procedure is to mechanically pull out the main canal nerve thereby separating it from the accessory canal nerves (which stay in place) then filing out the main canal with a tapered file. This action leaves an undesirable smear layer along the main canal and can plug some of the accessory canal openings, which potentially trap harmful bacteria or other harmful maladies. This is very undesirable. The dentist must chemo-mechanically debride both main and accessory canals, including the smear layer produced by the filing. Often this is done with a sodium hypochlorite solution and various other medicaments that are left in the root canal system for 30 to 45 minutes. This current methodology does not necessarily debride or render harmless all of the accessory root canals because of the difficulty in first cleaning off the smear layer then negotiating some of the smaller twisted lateral canals. As a result many treatments using this method fail over time due to reoccurring pathology. This often requires retreatment and/or sometimes loss of the tooth.


A goal of common root canal procedures is to provide a cavity, which is substantially free of diseased tissue and antiseptically prepared for a permanent embalming or obturation to seal off the area. When done properly, this step enables subsequent substantially complete filling of the canal with biologically inert or restorative material (i.e., obturation) without entrapping noxious tissue in the canal that could lead to failure of the therapy.


In a typical root canal procedure, the sequence is extirpation of diseased tissue and debris from and adjacent the canal followed by obturation. Often there is an intermediate filling of the canal with a calcium hydroxide paste for sterilization and reduction of inflammation prior to obturation and final crowning. In performing the extirpation procedure, the dentist must gain access to the entire canal, shaping it as appropriate. However, root canals often are very small in diameter, and they are sometimes quite curved with irregular dimensions and configurations. It is therefore often very difficult to gain access to the full length of the canal and to properly work all surfaces of the canal wall.


Many tools have been designed to perform the difficult task of cleaning and shaping root canals. Historically, dentists have used elongate, tapered endodontic files with helical cutting edges to remove the soft and hard material from within and adjacent the root canal area. Such root canal dental procedures often result in overly aggressive drilling and filing away of otherwise healthy dentin wall or physical structure of the tooth root, thereby unduly weakening the integrity or strength of the tooth. Additionally, when performing root canal procedures, it is desirable to efficiently debride or render harmless all dead, damaged, or infected tissue and to kill all bacteria, viruses and/or other undesirable biological material within the root canal system. Illustrations of a typical root canal system are shown in FIGS. 1A and 1B. The root canal system includes the main root canal 1 and many lateral or accessory canals 3 that branch off of the main canal 1, all of which can contain diseased or dead tissue, bacteria, etc. It is common during root canal procedure to mechanically strip out the main canal nerve, often tearing it away from the lateral canal nerves, much of which can then stay in place in the canal and become the source of later trouble. Thereafter, the main canal 1 is cleaned and extirpated with a tapered file. While it is desirable to extirpate all of the main and accessory canals in a root canal system, some of the lateral canals 3 are very small and extremely difficult to reach in order to remove tissue. Such lateral canals are often perpendicular to the main canal and may bend, twist, and change cross-section as they branch off from the main canal, making them practically inaccessible to extirpation with any known file or other mechanical device. Accordingly, lateral canals are often not properly extirpated or cleaned. Many times no effort is made in this regard, relying instead on chemical destruction and embalming processes to seal off material remaining in these areas. This approach is sometimes a source of catastrophic failure that can lead to loss of the tooth and other problems. Further, when the main canal is extirpated with a tapered file, this action can leave an undesirable smear layer along the main canal, which can plug some of the lateral canal openings and cause other problems that trap noxious material against later efforts to chemically disinfect the canal.


Dentists can attempt to chemo-mechanically debride and/or sterilize both main and lateral canals using a sodium hypochlorite solution or various other medicaments that are left in the root canal system for 30 to 45 minutes a time following primary mechanical extirpation of nerve and pulp tissue. However, this approach does not necessarily completely debride or render harmless all of the lateral root canals and material trapped therein because of the difficulty in cleaning off the smear layer and/or negotiating and fully wetting the solution into some of the smaller twisted lateral canals. As a result, many treatments using this method fail over time due to reoccurring pathology. This often requires retreatment and sometimes loss of the tooth.


Attempts have been made to reduce or eliminate the use of endodontic files and associated drawbacks by using lasers in the performance of root canal therapy. Some of these approaches involve burning away or carbonizing diseased and other tissue, bacteria, and the like within the canal. In these approaches, laser light is said to be directed or focused into or onto the diseased tissue, producing very high temperatures that intensely burn, carbonize, ablate, and destroy the tissue. These ablative treatments using high thermal energy to remove tissue often result in damage to the underlying collagen fibers and dentin of the root 5, even fusing the hydroxyapatite, which makes up the dentin. In some cases, such treatments can cause substantial heating of the periodontal material and bone 7 surrounding the tooth, potentially causing necrosis of the bone and surrounding tissue. Additionally, the high temperatures in such treatments can melt the walls of the main canal, often sealing off lateral canals, thereby preventing subsequent treatment of lateral canals. Other attempts to use lasers for root canal therapy have focused laser light to a focal point within fluid disposed within a root canal to boil the fluid. The vaporizing fluid creates bubbles, which erode material from the root canal when they implode. Such treatments which must raise the fluid temperature above the latent heat of vaporization significantly elevate the temperature of the fluid which can also melt portions of the main canal and cause thermal damage to the underlying dentin, collagen, and periodontal tissue. The damage caused to the tooth structure by these high-energy ablative laser treatments weakens the integrity or strength of the tooth, similar to endodontic treatment utilizing endodontic files.


In addition to the repair of teeth through endodontic procedures, periodontal conditions such as gingivitis and periodontitis have also been treated using techniques that cause unnecessary damage to gums and tooth structure. For example, scraping techniques using dental instruments that directly remove plaque and calculus from teeth and adjacent sulcus region often remove healthy gum tissue, healthy tooth enamel, and/or cementum which are necessary for strong attachment between tooth and gum.


Therefore, there is a present and continuing need for minimally invasive, biomemetic, dental and medical therapies which remove diseased tissue and bacteria from the main root canal as well as the lateral canals of the root canal system while leaving the biological structures undamaged and substantially intact. There is also a present and continuing need for minimally invasive, biomemetic, dental and medical therapies which remove diseased tissue, plaque (including bacteria), and calculus (including bacteria) from the gums, sulcus regions, and other spaces near or between gums and teeth while leaving adjacent structures and biological cells substantially undamaged and substantially intact.


SUMMARY

It is an object of the present invention to provide new medical, dental and veterinary devices, treatments and procedures.


In accordance with an embodiment of the present invention, a method for treating a treatment zone including one or more teeth, tissue adjacent such tooth or teeth, and a treatment pocket is provided. The method preferably comprises the steps of (A) providing a laser system containing a source of a laser light beam and an elongate optical fiber connected to said source and configured to transmit said laser light beam to a tip thereof, (B) immersing at least a portion of a tip of a light beam producing apparatus into a fluid reservoir located in the treatment pocket, the fluid reservoir holding a first fluid; and (C) pulsing the laser light source at a first setting, wherein at least a substantial portion of any contaminants located in or adjacent the treatment pocket are destroyed or otherwise disintegrated into fragmented material in admixture in and with the first fluid, thereby forming a first fluid mixture, wherein the destruction or disintegration of a substantial portion of any contaminants located in or adjacent the treatment pocket using the laser light source is accomplished without generation of any significant heat in the first fluid or associated mixture so as to avoid elevating the temperature of any gum, tooth, or other adjacent tissue more than about 5° C. In one embodiment, the first setting of step (C) further comprises an energy level of from about 2.0 W to about 4.0 W, a pulse width of from about 50 )..I.S to about 300 )..I.S and a pulse frequency of from about 2 Hz to about 50 Hz. In another embodiment, the first setting of step (C) further comprises a power level of from about 10 mJ to about 100 mJ, a pulse width of from about 50 )..I.S to about 300 )..I.S, and a pulse frequency of from about 2 Hz to about 50 Hz. In yet another embodiment, step (B) further comprises the step of introducing the first fluid into the treatment pocket in an amount sufficient to provide a fluid reservoir and step (C) further comprises removing substantially all of the first fluid mixture from the treatment pocket. Preferably, step (C) further comprises destroying or otherwise disintegrating a substantial portion of any contaminants located in or adjacent the treatment pocket using the laser without generation of any significant heat in the first fluid so as to avoid elevating the temperature of any gum, tooth, or other adjacent tissue more than about 3° C.


In a related embodiment, step (C) further comprises the substeps of (1) removing calculus deposits in or proximate the treatment pocket by pulsing the light source at an energy level of from about 10 mJ to about 100 mJ and at a pulse width of from about 50 )..I.S to about 300 )..I.S, at a pulse frequency of from about 2 Hz to about 50 Hz, and moving an optical fiber used to channel the pulsed light beam in a first pattern, wherein the optical fiber includes a thickness of from about 400 microns to about 1000 microns, and wherein a substantial portion of any calculus deposits located in or proximate the treatment pocket are disintegrated into fragmented material in admixture in and with the first fluid mixture, thereby forming a second fluid mixture; and (2) optionally repeating step (C)(1) up to about six repetitions to remove substantially all calculus deposits from the treatment pocket. Step (C) may further comprise the substep of (3) modifying the surface of dentin proximate the treatment pocket by pulsing the light beam producing apparatus at a energy level of from about 0.2 W to about 4 W, a pulse width of from about 50 )..I.S to about 300 )..I.S, and a pulse frequency of from about 2 Hz to about 50 Hz, and moving the optical fiber in a third pattern, wherein the optical fiber includes a thickness of from about 400 microns to about 1000 microns, and wherein the tip of the laser substantially remains in contact with the tooth during pulsing and wherein the tip of the laser is maintained substantially parallel to a root of an adjacent tooth during pulsing.


In a related embodiment step (C)(3) further comprises removing remaining diseased epithelial lining to a point substantially at the base of the pocket prior to modifying the surface of the dentin by pulsing the light beam producing apparatus at the first setting wherein the first setting comprises settings selected from the group including (a) a power level of from about 10 mJ to about 100 mJ, a pulse width of from about 50 )..I.S to about 300 )..I.S, and a pulse frequency of from about 2 Hz to about 50 Hz; or (b) an energy level of from about 0.2 W to about 4.0 Wand a continuous wave setting; wherein the optical fiber has a thickness ranging from about 400 microns to about 1000 microns. Additionally or alternatively, the method may further include the step of (C)(4) removing substantially all remaining diseased epithelial lining to a point substantially at the base of the pocket by pulsing the light beam producing apparatus at an energy level of from about 2.0 W to about 3.0 W, a pulse width of from about 50 )..I.S to about 150 )..I.S, and a pulse frequency of from about 2 Hz to about 50 Hz, and wherein the optical fiber includes a thickness of from about 300 microns to about 1000 microns.


In one embodiment, the method further comprises the step of (D) inducing a fibrin clot by inserting the optical fiber to about 75% the depth of the pocket, pulsing the light beam producing apparatus at an energy level of from about 3.0 W to about 4.0 W, a pulse width of from about 600 )..I.S to about 700 )..I.S (LP), and a pulse frequency of from about 15 Hz to about 20 Hz, and wherein the optical fiber has a diameter of from about 300 microns to about 600 microns, and, for a period of about 5 seconds to about 60 seconds, moving the optical fiber in a curved motion while slowly drawing out the optical fiber. Alternatively or additionally, the method further includes the step of (E) placing a stabilizing treatment structure substantially on one or more locations treated by the light beam producing apparatus.


In yet another embodiment, step (C)(4) occurs before step (C)(3). In this embodiment, a further step may include, for example, the additional step of (D) dissecting fibrous attachment between bone tissue and periodontal tissue along a bony defect at the base of the pocket by pulsing the light beam producing apparatus at an energy level of from about 0.2 W to about 4.0 W, a pulse width of from about 50 )..I.S to about 600 )..I.S, and a pulse frequency of from about 2 Hz to about 50 Hz, and wherein the optical fiber has a diameter of from about 400 microns to about 1000 microns. This embodiment, for example, may further include the step of (E) penetrating the cortical tissue of the bony defect adjacent the pocket to a depth of about 1 mm into the cortical tissue to form one or more perforations. This embodiment, for example, may further include the step of (F) inducing a fibrin clot by inserting the optical fiber to about 75% the depth of the pocket, pulsing the light beam producing apparatus at an energy level of from about 3.0 W to about 4.0 W, a pulse width of from about 600 )..I.S to about 700 )..I.S (LP), and a pulse frequency of from about 15 Hz to about 20 Hz, and wherein the optical fiber has a diameter of from about 300 microns to about 600 microns, and, for a period of about 5 seconds to about 60 seconds, moving the optical fiber in a curved motion while slowly drawing out the optical fiber. This embodiment, for example, may further include the step of (G) placing a stabilizing treatment structure substantially on one or more locations treated by the light beam producing apparatus.


In an alternative embodiment, step (C) further comprises the substeps of (1) removing at least a portion of the epithelial layer of a treatment zone by pulsing the light beam producing apparatus at the first setting wherein the first setting comprises settings selected from the group consisting of (a) a power level of from about 10 mJ to about 200 mJ, a pulse width of from about 50 )..I.S to about 300 )..I.S, and a pulse frequency of from about 2 Hz to about 50 Hz, (b) an energy level of from about 0.2 W to about 4.0 W, a pulse width of from about 50 )..I.S to about 150 )..I.S, and a frequency of from about 10 Hz to about 50 Hz, (c) an energy level of from about 0.4 W to about 4.0 W and a continuous wave setting, and moving an optical fiber used to channel the pulsed light beam in a first pattern, wherein the optical fiber has a diameter of from about 300 microns to about 1000 microns, and wherein a substantial portion of any diseased epithelial tissue located in or adjacent the epithelial layer are destroyed or otherwise disintegrated into fragmented material in admixture in and with the first fluid, thereby forming a second fluid mixture; (2) removing calculus deposits in or proximate the treatment pocket by pulsing the light beam producing apparatus at an energy level of from about 10 mJ to about 100 mJ and at a pulse width of from about 50 )..I.S to about 300 )..I.S, at a pulse frequency of from about 2 Hz to about 50 Hz, and moving the optical fiber in a second pattern, wherein the optical fiber has a diameter of from about 400 microns to about 1200 microns, and wherein a substantial portion of any calculus deposits located in or proximate the treatment pocket are disintegrated into fragmented material in admixture in and with the second fluid mixture, thereby forming a third fluid mixture; and (3) optionally repeating step (C)(2) up to about six repetitions to remove substantially all calculus deposits from the treatment pocket.


In accordance with another embodiment of the present invention, a light energy system for treating periodontal tissue is disclosed. In a preferred embodiment, the light energy system comprises a light source for emitting a light beam and an elongate optical fiber connected adjacent the light source configured to transmit the light beam to a tip of the optical fiber, the tip containing a tapered configuration extending to an apex with a surrounding substantially conical wall, substantially the entire surface of which is uncovered so that the light beam is emitted therefrom in a first pattern during activation of the light energy system light beam, wherein the optical fiber contains cladding in the form of a continuous sheath coating extending from a first location along optical fiber to a terminus edge spaced proximally from the apex of the tapered tip toward the light source by a distance of from about 0 mm to about 10 mm so that the surface of the optical fiber is uncovered over substantially the entirety of the tapered tip and over any part of an outer surface of the optical fiber between the terminus edge and a first edge of the tapered tip. In one embodiment, the light energy system comprises a light beam including a substantially omnidirectional pattern. In a related embodiment, the light energy system further comprises a laser beam.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features, aspects, and advantages of the present disclosure will become better understood by reference to the following detailed description, appended claims, and accompanying figures, wherein elements are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:



FIGS. 1a and 1b illustrate a root canal system including a main or primary root canal and lateral and sub-lateral canals that branch off of the main canal. Some of these lateral canals are very small and extremely difficult to reach in order to eliminate any bacteria and/or viruses. Such lateral canals may bend, twist, change cross-section and/or become long and small as they branch off from the main canal, making them very difficult to access or target therapeutically.



FIG. 2 is a Scanning Electron Micrograph (SEM) clearly illustrating internal reticular canal wall surfaces following use of the present invention which, as can be seen, are preserved with no burning, melting, or other alteration of the canal wall structure or loss of its porosity after subtraction of the internal tissue. The surfaces retain high porosity and surface area and are disinfected for subsequent filling and embalming, i.e. using rubber, gutta-percha, latex, resin, etc.



FIG. 3 is a graphical illustration of features of a laser fiber tip configured according to a preferred embodiment of the present invention.



FIG. 4 is a graphical illustration of a laser system according to an embodiment of the present invention.



FIG. 5 is a graphical illustration of an applicator tip of a laser system according to an embodiment of the invention.



FIG. 6 shows a somewhat schematic cutaway view of a tooth and healthy surrounding gum tissue.



FIG. 7 shows a somewhat schematic cutaway view of a tooth and surrounding gum tissue including calculus deposits and partially diseased epithelium.



FIG. 8 shows a somewhat schematic cutaway view of a tooth and surrounding gum tissue including a sulcus filled with a fluid mixture in which an instrument has been inserted for treatment.





DETAILED DESCRIPTION

Certain embodiments of the present invention are useful for treating dental, medical, and veterinary problems; primarily dental surface preparations. The present invention uses enhanced photoacoustic wave generation in dental, medical, and veterinary application during procedures that otherwise face reoccurring infection, inefficient performance and at an increase in expenses. The result of this invention has the potential to increase the effective cleaning of the root canal and accessory canals and the potential to reduce future failures over time.


A preferred embodiment utilizes an energy source which is preferably a pulsed laser energy that is coupled to a solution in such a fashion that it produces an enhanced photoacoustic pressure wave. The laser light is delivered using a commercially available laser source 12 and an optical fiber 14 attached at a proximate end to the laser source 12 and which has an application tip 20 at the distal end. The application tip 20 may be flat or blunt, but is preferably a beveled or tapered tip having a taper angle 22 between 10 and 90 degrees. Preferably any cladding 24 on the optic fiber is stripped from approximately 2-12 mm of the distal end. The taper angle of the fiber tip 20 and removal of the cladding provide wider dispersion of the laser energy over a larger tip area and consequently produces a larger photoacoustic wave. The most preferred embodiment of the application tip includes a texturing 26 or derivatization of the beveled tip, thereby increasing the efficacy of the conversion of the laser energy into photoacoustic wave energy within the solution. It should be noted that this tapered tip, the surface treatment, and the sheath stripping is not for the purpose of diffusing or refracting the laser light so that it laterally transmits radiant optical light energy to the root surface. In the current invention these features are for the sole purpose of increasing the photoacoustic wave.


Herein derivatization means a technique used in chemistry that bonds, either covalently or non-covalently, inorganic or organic chemical functional group to a substrate surface.


It was found that the photoacoustic coupling of the laser energy to the solution provides enhanced penetration of the solution into the root canal and accessory canals, thereby allowing the solution to reach areas of the canal system that are not typically accessible.


The photoacoustic (PA) wave is generated when the laser energy transitions from the tip (usually quartz or similar material) of the laser device into the fluid (such as water, EDTA, or the like). The transmission from one medium to another is not 100% efficient and some of the light energy is turned into heat near the transition that the light makes from one media to the other. This heating is very rapid, locally heating some of the molecules of the fluid very rapidly, resulting in molecule expansion and generating the photoacoustic wave. In a pulsed laser, a wave is generated each time the laser is turned on, which is once per cycle. A 10 Hz pulsed laser then generates 10 waves per second. If the power level remains constant, the lower the pulse rate, the greater the laser energy per pulse and consequently the greater the photoacoustic wave per pulse.


A method and apparatus according to a preferred embodiment of the present invention uses a subablative energy source, preferably a pulsing laser, to produce photoacoustic energy waves in solutions dispensed in a root canal of a tooth and/or sulcus adjacent such tooth to effectively clean the root canal and lateral canals and/or tissue adjacent the tooth and exterior tooth structure. In the context of this application, the term “subablative” is used to refer to a process or mechanism which does not produce or cause thermal energy-induced destruction of nerve or other native tooth structure, material or tissue, namely, that does not carbonize, burn, or thermally melt any tooth material. The pulsing laser in the inventive configuration of a preferred embodiment induces oscillating photoacoustic energy waves which emanate generally omnidirectionally from adjacent the exposed length of an applicator tip where light energy is caused to exit the surface of optical fiber material in many directions/orientations into adjacent fluid medium from a light energy source maintained at a relatively low power setting of from about 0.1 to no more than about 1.5 watts for endodontic treatment and from about 0.4 watts to about 4.0 watts for periodontal treatment in order to avoid any ablative effects.


According to one embodiment of the present invention, a tooth is first prepared for treatment in a conventional manner by drilling a coronal access opening in the crown of the tooth to access the coronal or pulp chamber and associated root canal. This may be performed with a carbide or diamond bur or other standard approaches for preparation of a tooth for root canal treatment known in endodontic practice after which the upper region above the entry of the canal into the chamber is generally emptied of pulp and other tissue. Thereafter, a first solution is slowly dispensed into the chamber, such as by use of a syringe or other appropriate mechanisms, with a small amount seeping and/or injected down into the individual root canals containing the as-yet unremoved nerves and other tissue. The first solution is preferably dispensed in an amount sufficient to fill the chamber to adjacent the top of the chamber. In other embodiments, portions of the nerve and other tissue in the canals may be removed using a broach or other known methods for removing a nerve from a root canal before the first solution is dispensed into the chamber and down into the root canals. In some embodiments, only a single solution may be used, although multiple solutions or mixtures may also be used as explained in more detail below.


The first solution preferably includes a compound containing molecules with at least one hydroxyl functional group and/or other excitable functional groups which are susceptible to excitation by a laser or other energy source in the form of rapidly oscillating photoacoustic waves of energy to assist with destructive subablative disintegration of root canal nerve tissue. It has been observed that certain fluids which do not contain excitable groups, such as xylene, do not appear to produce the desired photoacoustic wave when an energy source has been applied. In one embodiment of the invention, the first solution is a standard dental irrigant mixture, such as a solution of water and ethylenediamine tetraacetic acid (EDTA), containing hydroxyl or other excitable groups. In other embodiments of the invention, the hydroxyl-containing solution may be distilled water alone. In other alternate embodiments, solutions containing fluids other than water may be used, or various pastes, perborates, alcohols, foams, chemistry-based architectures (e.g. nanotubes, hollow spheres) and/or gels or a combination of the like may be used. Additionally, various other additives may be included in the solution. For example, and not by way of limitation, the first solution may include agents energizable by exposure to energy waves propagated through the solution from adjacent the fiber. These include materials selected from the group consisting of hydrogen peroxide, urea hydrogen peroxide, perborates, hypochlorites, or other oxidizing agents and combinations thereof. Additional additives believed to be energizable in the solution include materials selected from the group consisting of reducing agents, silanols, silanating agents, chelating agents, chelating agents coordinated or complexed with metals (such as EDTA-Calcium), anti-oxidants, sources of oxygen, sensitizing agents, catalytic agents, magnetic agents and rapidly expanding chemical, pressure or phase change agents and/or combinations of the like. The solution may also include dispersions or mixtures of particles containing nano- or micro-structures, preferably in the nature of fullerenes, such as nanotubes or bucky balls, or other nanodevices (including micro-sized devices) capable of sensitizing or co-acting with oxygenating, energizable, or activatable components in the solution/mixture, such as oxidative bleaching or other oxygenated agents. Various catalytic agents may be titanium oxide or other similar inorganic agents or metals. The first solution may also include additional effective ingredients such as surfactants or surface active agents to reduce or otherwise modify the surface tension of the solution. Such surface active agents may be used to enhance lubrication between the nerves and other intracanal tissue and the canals wall, as well as antibiotics; stabilizers; antiseptics; anti-virals; germicidals; and polar or non-polar solvents; and the like. It is especially preferred that all materials used in the system be bio-compatible and FDA and otherwise approved, as necessary, for use in dental procedures. The amounts of any of the foregoing and other additives are generally very small in the order of a few percent by weight or only small fractions of percents. The majority of the solution/mixture is preferably water, preferably sterile triple distilled water for avoidance of undesirable or unaccounted for ionic effects.


An activating energy source is applied to the first solution contained in the coronal pulp chamber. In a preferred embodiment, the activating energy source is a pulsing laser 10. The laser light energy 16 is delivered using a laser source 12 and an optical fiber 14 attached at its proximate end to a laser source 12 and having an applicator tip 20 adjacent its distal end. The optical fiber 14 preferably has a diameter of from about 200 microns to about 400 microns. The diameter should be small enough to easily fit into the coronal pulp chamber and, if necessary, into a root canal itself, but large enough to provide sufficient energy via light carried therein to create a photoacoustic effect and to prevent avoidable leakage of light or loss of energy and damage to the tooth or the fiber tip. In a preferred embodiment, the laser source is a solid state laser having a wavelength of from about 700 nm to about 3000 nm, such as NdYAG, ErYAG, HoYag, NdYLF, Ti Sapphire, or ErCrYSGG laser. However, other suitable lasers sources may be used in various embodiments.


An appropriately dimensioned laser applicator tip 20 is preferably placed into the coronal chamber until it is at least fully immersed in the first solution. By “fully immersed” it is meant liquid level is even with the edge of the cladding or other covering on the optical fiber 14. Preferably, the distal most edge of any cladding or covering 18 on the optical fiber 14 adjacent the tip is spaced approximately 2-10 mm from the distal end of the distal end tip or end of the optical fiber, most preferably about 5 mm therefrom. As a result, up to about 10 mm and most preferably about 5 mm of the distal end of the optical fiber is uncovered. In other embodiments, however, the distal most edge of any cladding or covering 18 on the optical fiber adjacent the tip is substantially at the distal end of the distal end tip or end of the optical fiber. Preferably, all or substantially all of the length of this uncovered part of the tip end is immersed. If the uncovered part of the applicator tip is not fully immersed, sufficient energy may not be transferred to the fluid since light will be permitted to escape to the environment above the liquid surface. Accordingly, it is believed that spacing the distal-most or outermost end edge of the cladding more than about 10 mm should be avoided, as that can diminish the effectiveness of the system. In some applications, it may be necessary to provide a dam and reservoir around and above the opening in the tooth in order to increase the volume and level of fluid available for immersion of the uncovered area of the end of the optical fiber. The larger liquid volume and deeper immersion of the uncovered area of the tip end is believed to enable application of sufficient energy levels to produce the desired photoacoustic wave intensity in such instances. Such instances may include, for example, smaller teeth such as upper/lower centrals or teeth that are fractured off. In certain applications where a dam or reservoir is used it may be desirable to use a laser tip with more than 10 mm of space between the tip end and the cladding due to the larger volume of fluid.


It is a feature of the invention in a preferred embodiment that the distal-most end of the applicator tip be tapered to an end point, i.e. that the distal end have a “tapered tip” 22. Most preferably, the tapered tip has an included taper angle of from about 25 to about 40 degrees. The applicator tip 20 is therefore preferably not a focusing lens configured to concentrate light to a point in space away from the tip end. Such a configuration is believed to cause an ablative effect due to the high thermal energy created by the laser light focused to a point. Rather, the taper angle of the tapered fiber tip 22 and rearward spacing of the end of the cladding from the tip end in accordance with preferred embodiments of the invention are believed to enable a relatively wide dispersion of the laser energy for emission from a relatively large surface area of the tip all the way back to the edge of the cladding, not merely from the end of the laser fiber. An objective is to emit laser light generally omnidirectionally from the sides 24 and from the tapered area 22 of the tapered applicator tip, and consequently, to produce a larger or more omnidirectional photoacoustic wave propagating into surrounding liquid and adjacent material from substantially the entire exposed surface of the fiber optic quartz material. Among other things, this avoids and preferably eliminates any ablative effects associated with higher levels of focused or refracted radiant laser energy. The tip design in accordance with the invention is selected to provide a magnitude and direction of the photoacoustic wave in the surrounding fluid medium that exhibits a relatively sharp or high rise time at the leading edge of each pulse and which propagates through the fluid generally omnidirectionally from the exposed area of the end of the fiber. Accordingly, a tapered tip according to the invention has the effect of dispersing the laser energy over the larger uncovered cone surface area and the rearwardly extending cylindrical wall surface (compared to a two dimensional generally flat circular surface area of a standard tip), thereby creating a much larger area through which the leading edges of the successive photoacoustic waves can propagate. In some embodiments, the exposed area of the fiber adjacent the tip end may include a texturing, such as frosting or etching, to increase the surface area and angular diversity of light emission for an even more comprehensive coverage of the photoacoustic wave energy within the solution and adjacent tissue.


When applying the laser to the first solution, applicants have discovered that it may be important to apply the laser energy to the solution so as to limit the creation of thermal energy. In the present invention, after the applicator tip is immersed in the first solution, laser energy is preferably applied to the first solution using subablative threshold settings, thereby avoiding any thermal-induced carbonization, melting, or other effects caused by a temperature rise above about 5° C. in the dentin walls of the canal, apical portions of the tooth, or surrounding bone or tissue caused by the generation of significant thermal energy in the canal area or wall due to the ablative power settings used in prior attempts to perform root canal therapy with lasers. The practice of the present invention in accordance with its preferred embodiments causes an observable temperature rise in the solution of no more than a few degrees Centigrade and, as a result, no more than a few degrees Centigrade elevation, if any, of the dentin wall and other adjacent tooth structure and tissue. This is far below the standard constraint of avoiding any exposure of such material and tissue to more than 5° C. increase in temperature for any significant period of time to avoid permanent damage in the same.


The inventors have found that relatively low power settings of from about 0.1 watt to about 1.5 watt and with a laser pulse duration of from about 100 nanoseconds to about 1000 microseconds, with a pulse length of about 50 microseconds most preferred, produces the desired photoacoustic effect without heating the fluid or surrounding tissue to produce any ablative or other thermal effect within or adjacent the root canal. A frequency of from about 5 to 25 Hz is preferred and a frequency of about 15 Hz is believed to provide optimal potentiation of harmonic oscillation of pressure waves in the fluid medium to disintegrate nerve and other tissue within the canal.


With regard to periodontal embodiments, the inventors have found that relatively low power settings of from about 0.4 watts (W) to about 4.0 W and with a laser pulse duration of from about 100 nanoseconds to about 1000 microseconds ( )ls), with a pulse length of from about 50 )lS to about 650 )lS most preferred, produces the desired photoacoustic effects without heating fluid located in the sulcus or surrounding tissue to produce any ablative or other thermal effect within or adjacent the sulcus. Typically, a frequency of from about 15 hertz (Hz) to about 25 Hz is preferred and a frequency of about 2 Hz to about 50 Hz is believed to provide optimal potentiation of harmonic oscillation of pressure waves in a fluid medium to destroy plaque and to disintegrate calculus in the sulcus and/or calculus attached adjacent a tooth. Preferred energy input preferably ranges from about 10 millijoules (mJ) to about 300 mJ.


The particular preferred power level found to produce the ideal photoacoustic wave has a relationship to the approximate root volume of a particular tooth. The following chart (Table 1) shows what are believed to be preferred ranges of power levels for treatment of root canals in different types and sizes of teeth in accordance with the invention.









TABLE 1







Preferred Power Levels for Various Tooth Types












Approx. Average
Range of Preferred



Tooth Type
Root Volume (IJL)
Power Levels (watts)















Molar
177
0.5 to 1.5



Pre Molar
88
0.5 to 1.0



Cuspid
67
0.5 to 0.75



Laterals
28
0.25 to 0.5



Centrals
28
0.25 to 0.5



Lower
28
0.1 to 0.25



Centrals










When the laser is immersed in the first solution, the laser is pulsed for a time preferably ranging from about 10 seconds to about 40 seconds, most preferably about 20 seconds. If the laser is pulsed for longer than about 40 seconds, excessive thermal energy can begin to develop in the fluid, potentially leading to deleterious heating effects in and around the tooth as described above. It has been found rather surprisingly that pulsing under the parameters of the invention causes a measurable temperature rise in the fluid medium of no more than a few degrees Celsius, if any, while still utterly destroying and/or disintegrating all nerve, pulp, and other tissue within the canal that also is observed to hydraulically self-eject from the canal during pulsing.


After the laser has been pulsed in the first solution, the first solution is allowed to stabilize and then laser pulsing treatment may be repeated again in the same or a different solution. In certain embodiments, the solution may be removed between repetitions of pulsing cycles of the laser to remove debris more gradually and to avoid any development or transfer of heat energy into the dentin surrounding wall or other adjacent structure. The coronal chamber and canal may be irrigated with a standard dental irrigant and solution may then be reinserted into the coronal chamber to perform an additional laser pulsing treatment. While any number of pulsing phases or cycles can be repeated, it is believed that a fully effective removal of all material within the canal can be achieved in less than about seven cycles.


To assist dentists in performing root canal treatments according to the present invention, a photoacoustic activity index has been developed which provides relationships between the various parameters, machine setting, and the like which have been found to be important in the practice of the inventive procedure. Factors which appear important in the practice of the invention include the power level, laser pulse frequency, the pulse duration, the proportion of average excitable functional groups per molecule in the first solution, the diameter of the laser optical fiber, the number of pulsing cycles repeated in completing an extirpation procedure, the duration of each cycle, the viscosity of the first solution, and the distance between the tip and the end of the cladding. Coefficients have been determined which relate deviations of certain of the above factors from what is believed to be the ideal or the most preferred factor value. Tables of these coefficients are shown below:
















Approx.
Preferred
Power



Average Root
Range of Power
Density Co-


Tooth Type
Volume (uL)
Levels (watts)
efficient (DPD)


















Molar
177
0.5 to 1.5
1


Pre Molar
88
0.5 to 1.0
1


Cuspid
67
0.5 to 0.75
1


Laterals
28
0.25 to 0.5
1


Centrals
28
0.25 to 0.5
1


Lower
28
0.1 to 0.25
1


Centrals























Frequency
Pulses per



Coefficient
Second



C(fq)
(Value in HZ)



















0.4
 2 HZ



0.6
 5 HZ



0.9
10 HZ



1
15 HZ



0.5
20 HZ



0.2
25 HZ
























Pulse Duration




Coefficient
Pulse Duration



C(pw)
Value in micro sec (IJs)



















1
<50



0.9
50



0.7
100



0.3
150



0.2
200



0.1
1000
























Hydroxyl
Average quantity of



Coefficient
excitable groups



C(hy)
per fluid molecule



















1
>2



0.9
2



0.7
1



0.5
Part or Mixture



0
none
























Fiber




Diameter



Coefficient
Fiber Diameter



C(fd)
Value in microns



















0.8
>400



1
400



0.8
320



0.5
200



0.3
<200
























Repetition Cycle




Coefficient
Repetition Cycles



C(rp)
(repetitions)



















0.3
>7



0.5
6



0.7
5



1
4



0.9
3



0.6
2



0.3
1
























Cycle Duration




Coefficient
Cycle Duration



C(sa)
(Value in seconds)



















0.2
>40



0.6
40



0.9
30



1
20



0.5
10



0.2
<10
























Viscosity




Coefficient
Fluid Viscosity



C(vs)
(Centipoise)



















1
<1



0.9
1



0.1
>500



0.05
>1000
























Cladding
Distance Between



Separation
Terminus of Cladding



Length
and Apex of Tip



Coefficient
Value in millimeters



C(sl)
(mm)



















0.4
2



0.6
3



0.9
4



1
5



0.9
>5



0.3
>10










A practitioner may input coefficients from the above tables correlating to equipment, setting, and material parameters into the following equation:

Photoacoustic Activity Index (“PA” Index)=DPD×C(fqC(pwC(hyC(fdC(rpC(saC(vsC(sl)


If the resulting PA Index value is greater than about 0.1, more preferably above about 0.3, then the equipment and materials may generally be acceptable to produce an effective photoacoustic wave for disintegration and substantially complete and facile removal of all root canal nerve, pulp, and other tissue from within the canal. If the PA Index is below about 0.1, it may indicate a need to modify one's equipment setup, setting, and method parameters in order to more closely approach the desired PA index of 1 or unity.


Using the invention parameters and procedures, root canal tissue and other material to be removed or destroyed is not believed to be removed or destroyed via thermal vaporization, carbonization, or other thermal effect due primarily to exposure to high temperatures, but rather through a photoacoustic streaming of and other activities within liquids in the canal which are laser activated via photon initiated photoacoustic streaming (PIPS™). A photoacoustic wave with a relatively high leading edge is generated when the laser light transitions from the exposed surface of the fiber optic material into the solution. The laser light is believed to create very rapid and relatively intense oscillations of waves through the solution emanating from the interface of the exposed surface of the fiber optic and the surrounding liquid. The rapid, intense microfluctuations in the light energy emitted is believed to cause rapid excitation and/or expansion and de-excitation and/or expansion of hydroxyl-containing molecules adjacent the exposed surface of the fiber generating, among other things, photoacoustic waves of energy which propagates through and into the root canal system and oscillates within the system. These intense photoacoustic waves are believed to provide substantial vibrational energy, which expedites the breaking loose of and/or cell lysis and other effects to bring about a rapid and facile degradation/disintegration of substantially all tissue in the root canal and lateral canal systems immersed in the solution. The pulsing photoacoustic energy waves in combination with the chemistry of the fluid also is believed to cause intense physically disruptive cycling of expanding and contracting of nerve and other tissue which porositizes, expands, and ultimately disintegrates the nerve and other tissue in the canal without any significant thermally induced carbonization or other thermal effects of the same so that the resulting solution/mixture containing nerve and other tissue remains is observed to be self-ejected or basically “pumped” by a hydraulic effect out of the canal.


The photoacoustic effect creates energy waves that propagate throughout the fluid media in the main root canal and into the lateral canals, thereby cleaning the entire root system. These energy waves provide vibrational energy, which expedites the breaking loose of and/or causing cell lysis of the biotics and inorganics in the root canal and lateral canal systems. In addition these vibrational waves help the propagation of the fluids into and throughout the main and lateral canal systems. Radiant light energy can fuse the root canal wall surface making it impossible to clean and debride the small passages behind the fused areas. The use of a substantially incompressible fluid medium, on the other hand, causes the waves produced by the photoacoustic effect to be instantly transmitted through the lateral canals. Also, since the canals are tapered in a concave fashion, the photoacoustic wave is believed to be amplified as it transverses toward the end of the lateral canals for further intensification of the destruction towards apical or cul de sac areas.


In general, light travels in a straight line. However, in a fluid light can be bent and transmitted around corners, but this transmission is minimal compared to the straight-line transmissibility of light. A sonic or shock wave on the other hand is easily transmitted around corners and through passages in a fluid. For example, air is a fluid. If you stood in one room and shined a bright light from that room into a hallway that was at right angles to that room, the intensity of the light would decrease the farther you go down the hallway. If you then went into a room at the end of the hallway and went to a back corner of the room, the light might be very dim. However, if while standing at the same location as the light source, you yelled vocally at the hallway, you could most likely hear the sound in the back corner of the back room. This is because sound is propagated multidirectionally by the vibration of molecules instead of primarily in a straight line like light.


In certain embodiments of the invention, a second dissolution solution may be added to the canal after treatment with the energy source/first solution. This dissolution solution chemically dissolves and/or disintegrates any remaining nerve structure or other debris that may remain in the main canal or in any lateral canals. Preferred dissolution solutions include hypochlorite, sodium hypochlorite, perborate, calcium hydroxide, acetic acid/lubricant/doxycycline and other like nerve tissue or matrix dissolving substances such as chelating agents (EDTA) and inorganic agents such as titanium oxides.


Finally, after desired tissue has been removed from the tooth interior, the canal may be irrigated to remove any remaining debris and remaining solution, and then obturated with a material of choice, such as gutta percha, root canal resin, etc., according to standard practices in the industry.


In certain embodiments, various fluids may be used in conjunction with each other for various endodontic and root canal procedures. The following fluids are energetically activated by photoacoustic wave generation technology (PIPS) during their use throughout these examples. In a preferred embodiment, a first fluid including water and about 0.1% to about 20%, most preferably about 20%, urea hydrogen peroxide (weight/volume) containing about 0.01% to about 1% hexadecyl-trimethyl-ammonium bromide (cetrimide) is introduced into a tooth canal through an opening formed in the crown of a tooth. The first fluid is used to cause rapid nerve expansion so that any nerve tissue remaining in and adjacent the pulp chamber expands and is more easily removed from the pulp chamber. Preferably, a second fluid including water and about 0.1% to about 10%, most preferably about 5% hypochlorite (volume/volume) containing from about 0.0 1% to about 1% cetrimide is introduced into the tooth canal through the opening formed in the crown of the tooth. The second fluid is used to dissolve any remaining nerve tissue so that any nerve tissue remaining in and adjacent the pulp chamber is more easily removed by a fluid. Preferably, a third fluid including water and from about 0.1% to about 20%, more preferably from about 15% to about 17% EDTA 15 (weight/volume) containing from about 0.01% to about 1% cetrimide is introduced into the tooth canal through the opening formed in the crown of the tooth. The third fluid is used to help remove any remaining smear layer which typically contains, for example, organic material, odontoblastic processes, bacteria, and blood cells.


In a related embodiment, the first fluid, the second fluid, and the third fluid are used as described above, and then a fourth fluid is introduced into the sulcus near the tooth that has been treated followed serially by a fifth fluid. The fourth fluid includes water and from about 0.01% to 1% cetrimide and the fifth solution includes water and from about 0.01% to about 2%, most preferably about 0.2% chlorhexidine (weight/volume).


In another related embodiment, the first fluid, the second fluid, and the third fluid are used as described above, and then a mixture of a fourth fluid and a fifth fluid is introduced into the sulcus near the tooth that has been treated. The fourth fluid includes water and from about 1% to about 20%, most preferably about 20% urea peroxide (weight/volume) containing 0.01% to 1% cetrimide (wt/vol). The fifth fluid includes water and from about 0.1% to about 10%, most preferably about 1% hypochlorite (weight/volume). When the fourth fluid and the fifth fluid are mixed together and introduced into the sulcus near a treated tooth, a rapid expansive bubbling and bactericidal fluid mixture forms that is capable of destroying plaque and useful as a liquid defining a reservoir for a laser tip as described herein to be inserted and used as described herein.


In yet a further related embodiment, the first fluid, the second fluid, and the third fluid are used as described above, and then a mixture of a fourth fluid, a fifth fluid and a sixth fluid is introduced into the sulcus near the tooth that has been treated. The fourth fluid includes water and from about 1% to about 20%, most preferably about 20% urea peroxide (weight/volume) containing 0.01 to 1% cetrimide (wt/vol). The fifth fluid includes water and from about 0.1% to about 10%, most preferably about 1% hypochlorite (volume/volume). The sixth fluid includes water and from 0.01% to about 2%, most preferably about 0.2% chlorhexidine (weight/volume). When the fourth fluid, the fifth fluid and the sixth fluid are mixed together and introduced into the sulcus near a treated tooth, a rapid expansive bubbling and bactericidal fluid mixture forms that is capable of destroying plaque and useful as a liquid defining a reservoir for a laser tip as described herein to be inserted and used as described herein.


In yet another related embodiment, the first fluid, the second fluid, and the third fluid are used as described above, and then a mixture of a fourth fluid and a fifth fluid is introduced into the sulcus near the tooth that has been treated. The fourth fluid includes water and from about 0.1% to about 10%, most preferably about 1% sodium bicarbonate (weight/volume) buffered with sodium hydroxide to pH 9.6 to pH 11 containing 0.01% to 1% cetrimide, most preferably about pH 10. The fifth fluid includes water and from about 0.1% to about 10%, most preferably about 0.5% hypochlorite (weight/volume). When the fourth fluid and the fifth fluid are mixed together and introduced into the sulcus near a treated tooth, a rapid expansive bubbling and bactericidal fluid mixture forms that is capable of destroying plaque and useful as a liquid defining a reservoir for a laser tip as described herein to be inserted and used as described herein.


In yet a further related embodiment, the first fluid, the second fluid, and the third fluid are used as described above, and then a mixture of a fourth fluid, a fifth fluid and a sixth fluid is introduced into the sulcus near the tooth that has been treated. The fourth fluid includes water and from about 0.1% to about 10%, most preferably about 1% sodium bicarbonate (weight/volume) buffered with sodium hydroxide to pH 9.6 to pH 11 containing 0.01 to 1% cetrimide, most preferably about pH 10. The fifth fluid includes water and from about 0.1% to about 10%, most preferably about 1% hypochlorite (weight/volume). The sixth fluid includes water and from 0.01% to about 2%, most preferably about 0.2% chlorhexidine (weight/volume). When the fourth fluid, the fifth fluid and the sixth fluid are mixed together and introduced into the sulcus near a treated tooth, a rapid expansive bubbling and bactericidal fluid mixture forms that is capable of destroying plaque and useful as a liquid defining a reservoir for a laser tip as described herein to be inserted and used as described herein.


Preferably, after one or more treatment steps including use of a mixture of the fourth fluid and the fifth fluid, a mixture including EDTA to remove oxygen that may interfere with subsequent endodontic and/or periodontal treatment steps is rinsed in a tooth and/or a sulcus adjacent a tooth.


Qualitative experimentation was performed placing a fluid into a Dampen dish located on a Formica surface. The laser applicator tip was placed into the fluid and fired repetitively. The photoacoustic wave vibrated the Dampen dish on the Formica surface making an audible sound. For a specific tip this audible sound increased with an increasing power level of the laser. This was verified by placing a sound level meter one inch away from the Dampen dish and recording the dB level. This implies that the power level is proportional to the amplitude of the photoacoustic wave. Next, the laser power level was held constant and the tip was changed. The tapered tip and a tip with a stripped sheath produced a greater photoacoustic wave than the standard flat tip. A tapered, stripped tip was then frosted or etched. This tip was tested and showed a greater photoacoustic wave generated than the non-frosted version. This was verified to be true at three different power levels. It would appear that since the power level was held constant, the photoacoustic wave amplitude would also be proportional to the exposed area and the surface treatment.


In a quantitative investigation of the applicator tip a MEMS Pressure sensor was utilized to measure the photoacoustic wave amplitude. This testing has shown a dramatic increase in the photoacoustic wave propagation caused by changes in the geometry and texturing of the tip. The inventors have also discovered that stripping of the cladding from the end of the applicator tip results in increases in the photoacoustic wave effect. In this regard, a small plastic vial was fitted with a fluid connection that was close coupled hydraulically to a miniature MEMS piezo-resistive pressure sensor (Honeywell Model 24PCCFA6D). The sensor output was run through a differential amplifier and coupled to a digital Oscilloscope (Tektronics Model TDS 220). The vial and sensor were filled with water. Laser tips having varying applicator tip configurations were fully submerged below the fluid level in the vial and fired at a frequency of 10 HZ. The magnitude of the photoacoustic pressure waves was recorded by the pressure sensor.


A 170% increase in pressure measured from generation of the photoacoustic waves was observed for the tapered tip versus the standard blunt-ended tip. A 580% increase in pressure measured from generation of the photoacoustic wave was observed for textured (frosted) tapered tips versus the standard blunt-ended tip. Rather than emitting in a substantially linear direction, the frosting disperses the light omnidirectionally causing excitation and expansion of more fluid molecules.


An increase in photoacoustic wave generation was seen by stripping the polyamide sheath away from about 2 mm to about 10 mm from the tapered end. Although laser light is coherent and typically travels substantially in a straight line, some light bounces off of the polyamide sheath at an angle. As this light travels down the light path it continues bouncing off of the inside of the polyamide sheath and will eventually exit at an angle to the sheath once the sheath stops and exposes a non sheathed section. Therefore, some of the laser light would also exit where the polyamide sheath has been removed, upstream of the tapered tip end. A tip with the sheath removed for 2 to 10 mm directly upstream of the tapered section was placed in the above-mentioned test set up and showed markedly better production of photoacoustic waves.


In various other embodiments of the invention, energy sources other than lasers may be used to produce the photoacoustic waves including, but not limited to, other sources of light energy, sonic, ultrasonic, photo-acoustic, thermo-acoustic, micromechanical stirring, magnetic fields, electric fields, radio-frequency, and other exciter mechanisms or other similar forms that can impart energy to a solution. Some of these sources penetrate the tooth structure externally. Additional subablative energy sources may be used to create other types of pressure waves in a solution, such as chemoacoustic waves (shock waves created by rapid chemical expansion creating shock and pressure waves). Such waves can be created for example by loading the nanoparticles with a chemical that expands rapidly upon excitation, coating nanoparticles with a hard shell (e.g. polyvinyl alcohol), and activating the chemistry with an energy source such as optical, ultrasonic, radio-frequency, etc. As the activating chemical expands, pressure builds up in the hard shell, when the shell bursts it creates a shock wave that can propagate throughout the fluid similar to a photoacoustic wave. Additionally, a photoacoustic wave can be the activating energy source for producing the chemoacoustic wave.


Further, embodiments of the present invention may be used for various procedures other than root canal treatment, such as for treatment of dental caries, cavities or tooth decay. Additionally, the present invention may be usable for treatments of bone and other highly networked material where infection is problematic, e.g. dental implants, bone infection, periodontal disease, vascular clotting, organ stones, scar tissues, etc. Adding a tube structure around the tip which might be perforated and will allow introduction of a fluid around the tip that will allow the photoacoustic waves to be directed into more difficult areas that do not contain fluid volume such as periodontal and gum tissue. This would be considered a type of photoacoustic transmission tube.


Certain periodontal treatment embodiments are contemplated including a method and apparatus for treating gingival and periodontal regions near a tooth structure. FIG. 6 shows a cutaway view of a tooth and gum interface region 30 including a portion of a tooth 32 including tooth pulp 34, tooth dentin 36, and tooth enamel 38; a portion of gum tissue 40 including a portion of an alveolar bone 42, cementum 44, oral epithelium 46, sulcular epithelium 48, dentogingival fibers 50, and dentoalveolar fibers 52; and a sulcus 54 defining the open region or “pocket” between the tooth 32 and a free dental gingival margin 56 of the gum tissue 40 located above the dashed line A-A. The term “sulcus” and “pocket” refer to the volume between one or more teeth and gingival tissue.


The sulcus 54 and surrounding area is a notorious place for plaque to develop. The sulcus 54 and surrounding area is also notorious area for calculus deposits to form. FIG. 7 shows a cutaway view of a tooth and gum interface region 58 including calculus deposits 60 and a diseased portion of a sulcular epithelium 62. Although plaque is relatively soft and may often be removed by routine brushing, calculus deposits often require significantly more force to remove, especially when such calculus deposits have attached to the cementum 44. A calculus deposit—commonly referred to as tartar—is a cement-like material that is often scraped off of teeth during a routine dental visit and followed up with some degree of chemical treatment including, for example, fluoride rinsing. Often, such scraping causes undesirable swelling of the teeth and gums, and healthy tissue including much needed cementum 44 is inadvertently removed along with the calculus deposits. The inadvertent removal of cementum 44 often results in less adhesion between teeth and gums, causing sagging of the gums. When the gum tissue 40 sags, additional surfaces of the tooth 32 are exposed, some of which may not be protected by enamel 38. This is undesirable and can lead to deteriorating tooth and gum health.


Applicants have surprisingly found that the endodontic laser techniques including apparatuses and methods described herein are also applicable with respect to gingival and periodontal treatment. Such laser treatment is capable of disengaging and disintegrating plaque, destroying undesirable bacterial cells, and disengaging and disintegrating calculus deposits. It is believed that the photoacoustic waves emitted from the laser 10 cause, among other things, the lysing of bacterial cells.


In a first embodiment, an apparatus and method of treatment for treating mild to moderate periodontal disease is disclosed wherein mild to moderate periodontal disease is indicated by pockets having a depth of from about 4 mm to about 5 mm. The pulsing laser 10 including the optical fiber 14 with the applicator tip 20 is preferably used. The tip 20 preferably consists essentially of quartz.


The associated method includes the steps of (A) optionally and gently pulling the free dental gingival margin 56 from adjacent teeth to widen the sulcus 54, (B) introducing a fluid to the sulcus 54 to create a reservoir of fluid within the sulcus 54 (C) removing the diseased epithelial lining from the pocket using the laser 10 of a first type with the optical fiber 14 of a first size wherein the laser 10 is adjusted to a first setting, (D) removing calculus deposits from one or more teeth using the laser 10 of a second type with the optical fiber 14 of a second size wherein the laser 10 is adjusted to a second setting, (E) optionally removing any remaining calculus deposits using a piezo scalar, (F) modifying the dentin surface using the laser 10 with the optical fiber 14 of a third size wherein the laser 10 of a third type is adjusted to a third setting, and (G) inducing fibrin clotting at areas where treatment has occurred. If the treated tissue still looks diseased after treatment, follow-up treatment is to be commenced preferably about one week later using the laser with the optical fiber 14 of the first size wherein the laser 10 is adjusted to the first setting. Treatment is preferably initiated on the most diseased area of a mouth (i.e., the quadrant of a mouth having the deepest and most pockets).


In one preferred embodiment, steps (C) and (E) are not included. In other embodiments other steps may be left out or otherwise altered depending on a particular patient's needs or other reasons. In certain embodiments in the above or any other method disclosed herein, a single type of laser may be used for multiple or even all of the steps, although, as disclosed, different types of lasers may be preferable for certain steps.


If the first laser type is Nd doped (e.g., Nd:YAG), the first size preferably ranges from about 300 microns to about 600 microns in diameter and the first setting includes a pulse width of from about 100 )..I.S to about 700 )..I.S (preferably about 100 )..I.S) and a power setting of about 2.0 to about 4.0 watts (W). If the first laser type is a Diode laser (about 810 to about 1064 nanometers (nm)), the first size preferably ranges from about 300 microns to about 1000 microns in diameter and the first setting includes a continuous wave setting and a power setting of from about 0.2 W to about 4.0 W.


If the second laser type is Er doped, the second size preferably ranges from about 400 microns to about 1000 microns in diameter, and the second setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S, an energy setting of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 25 Hz. If the second laser type is Er, Cr doped, the second size preferably ranges from about 600 microns to about 1000 microns in diameter, the second setting preferably includes a pulse width of from about 50 )..I.S to about 100 )..I.S, an energy amount of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz.


If the third laser type is Er doped, the third size preferably ranges from about 400 microns to about 1000 microns in diameter, and the third setting preferably includes a pulsewidth of from about 50 )..I.S to about 300 )..I.S, an energy setting of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz.


In its simplest form step (B) uses water. FIG. 8 shows a sulcus 54′ filled with a fluid, defining a reservoir 64 for periodontal treatment using photoacoustic technology. Step (C) preferably includes removing the epithelial lining by moving the applicator tip 20 in a side to side sweeping motion starting at or near the top of the sulcus 54 and slowly moving to a location of about 1 mm from the base of the sulcus 54 where the sulcular epithelium 48 and the cementum 44 attach (assuming these structures are still attached) as shown in FIG. 8. Step (C) should preferably take from about 10 seconds to about 15 seconds to perform. In step (C), if the laser type is Nd doped, the first size of the light fiber 14 is preferably about 320 microns and the first setting of the laser 10 preferably includes a pulse width of about 100 )..I.S VSP, a frequency of about 20 Hz, and a power setting of from about 2.0 W to about 3.0 W.


Step (B) preferably includes using the fourth fluid and the fifth fluid described above (i.e., the fourth fluid including water and from about 0.5% to about 20%, most preferably about 2% urea peroxide containing 0.01 to 1% hexadecyl-trimethyl-ammonium bromide (cetrimide), and the fifth fluid including water and from about 0.0125% to about 5.0%, most preferably about 0.25% hypochlorite). These fluids are added serially, whereby the fourth solution is added first and activated individually by photoacoustic wave generation technology, followed shortly by addition of the second solution which is then itself activated by photoacoustic wave generation technology. Alternatively, these fluids are mixed together just prior to use and are then activated by photoacoustic wave generation technology.


In a related embodiment, step (B) preferably includes using the fourth fluid and the fifth fluid described above (i.e., the fourth fluid including water and from about 0.5% to about 20%, most preferably about 2% urea peroxide containing 0.01 to 1% hexadecyl-trimethyl-ammonium bromide (cetrimide), and the fifth fluid including water and from about 0.0125% to about 5.0%, most preferably about 0.25% hypochlorite), followed by a sixth fluid including water and from about 0.01% to about 2%, most preferably about 0.2% chlorhexidine (weight/volume).


In another related embodiment, step (B) includes using the a fourth and fifth fluid that includes water and from about 0.1% to about 10%, most preferably about 1% sodium bicarbonate (weight/volume) buffered with sodium hydroxide to pH 9.6 to pH 11 containing 0.01 to 1% cetrimide, most preferably about pH 10. The fifth fluid includes water and from about 0.1% to about 10%, most preferably about 1% hypochlorite (weight/volume).


In yet a further related embodiment, step (B) includes using a mixture including a seventh fluid, an eighth fluid and a ninth fluid. The fluid mixture is introduced into the sulcus near the tooth that has been treated. The seventh fluid preferably includes water and from about 0.1% to about 10% and most preferably about 1% sodium bicarbonate (weight/volume) buffered with sodium hydroxide to a pH value ranging from about 9.6 to about 11 (preferably about 10) wherein the sodium hydroxide preferably includes from about 0.01% to about 1% cetrimide. The eighth fluid includes water and from about 0.1% to about 10% (most preferably about 1%) hypochlorite (weight/volume). The ninth fluid includes water and from about 0.01% to about 2% (most preferably about 0.2%) chlorhexidine (weight/volume).


Preferably, for step (D) and other steps described herein wherein the applicator tip is inserted into a sulcus and photoacoustic wave generation technology is used to create photoacoustic waves, an appropriately dimensioned laser applicator tip 20 is preferably placed into the sulcus until it is at least fully immersed in the solution therein. By “fully immersed” it is meant liquid level is even with the edge of the cladding or other covering on the optical fiber 18. Preferably, the distal most edge of any cladding or covering 18 on the optical fiber 18 adjacent the tip is spaced from about 1 mm to about 10 mm from the distal end of the distal end tip or end of the optical fiber, most preferably about 3 mm therefrom. As a result, up to about 10 mm and most preferably about 3 mm of the distal end of the optical fiber is uncovered. In other embodiments, however, the distal most edge of any cladding or covering 18 on the optical fiber adjacent the tip is substantially at the distal end of the distal end tip or end of the optical fiber. Preferably, all or substantially all of the length of this uncovered part of the tip end is immersed. If the uncovered part of the applicator tip is not fully immersed, sufficient energy may not be transferred to the fluid in the sulcus since light will be permitted to escape to the environment above the liquid surface. Accordingly, it is believed that spacing the distal-most or outermost end edge of the cladding more than about 10 mm should be avoided, as that can diminish the effectiveness of the system.


In some applications, it may be necessary to provide a dam and reservoir around and above the opening in the tooth in order to increase the volume and level of fluid available for immersion of the uncovered area of the end of the optical fiber. The larger liquid volume and deeper immersion of the uncovered area of the tip end is believed to enable application of sufficient energy levels to produce the desired photoacoustic wave intensity in such instances. Such instances may include, for example, smaller pockets where treatment is desired. In certain applications where a dam or reservoir is used, particularly in veterinary applications for larger animals, it may be desirable to use a laser tip with more than 20 mm of space between the tip end and the cladding due to the larger volume of fluid.


Preferably, for step (D) and other steps described herein wherein the applicator tip is inserted into a sulcus and photoacoustic wave generation technology is used, the various embodiments of fluids described with respect to Step (B) are also preferably used in Step (D).


Step (D) preferably includes removing calculus deposits by moving the applicator tip 20 in a substantially side to side sweeping motion starting at or near the top of the sulcus 54 and slowly moving down the tooth 32 in contact therewith (preferably using a light touch), pausing on any calculus deposits to allow the laser 10 to remove the deposit(s). Step (D) may include multiple repetitions, often from about 3 to about 6, to ensure most of the calculus deposits have been removed from the tooth 32 or cementum 44 surfaces. In step (D), the second size of the optical fiber 14 is preferably about 600 microns in diameter. The second setting of the laser 10 preferably includes a pulse width of about 100 )..I.S VSP and a frequency of about 15 Hz.


Hand tools should only be used in step (E) as a last resort because such tools often remove much needed cementum 44 from the tooth 32. In some embodiments, Step (F) uses substantially the same techniques, sizes, and settings as step (C). During Step (F), the applicator tip 20 is preferably held substantially parallel to the length of the tooth 32 while being in contact with the tooth 32. Step (F) should take from about 5 to about 15 seconds depending on the depth of the sulcus 54. During any follow-up treatment, pressure should be placed on all lased areas for about 3 minutes to better ensure fibrin clotting.


Step (G) preferably includes treating all pockets having a depth of 5 mm or more if, for example, tissue inflammation or bleeding persists. Treatment during Step (G) is similar to the technique used during Step (C). However, for typical adult human patients, the treatment depth is restricted to moving no more than about 3 mm into a sulcus so as to avoid disturbing healing tissues below such depth. The treatment action occurring in Step (G) has the effect of removing remaining diseased tissue while biostimulating surrounding sulcular tissue.


In a second embodiment, an apparatus and method of treatment for advanced periodontal disease is disclosed wherein advanced periodontal disease for typical adult human patients is indicated by pockets having a depth of from about 6 mm to about 10 mm or more. The pulsing laser 10 including the optical fiber 14 with the applicator tip 20 is preferably used. The associated method preferably includes the steps of (A)′ gross scaling a treatment site (e.g., a quadrant of teeth and surrounding tissue) with a plezo scaler, avoiding the use of hand instruments in the cementum if possible; (B)′ introducing a fluid to a sulcus to create a reservoir of fluid within the sulcus; (C)′ removing the diseased epithelial lining located in an upper portion of the pocket using the laser 10 of a fourth type with the optical fiber 14 of a fourth size wherein the laser 10 is adjusted to a fourth setting; (D)′ removing calculus deposits from one or more teeth using the laser 10 of a fifth type with the optical fiber 14 of a fifth size wherein the laser 10 is adjusted to a fifth setting; (E)′ removing any remaining calculus deposits using a piezo scaler; (F)′ remove diseased epithelial lining to the bottom of the sulcus using the laser of a sixth type with the optical fiber of a sixth size wherein the laser 10 is adjusted to a sixth setting; (G)′ modifying the dentin surface including removal of calculus using the laser 10 of a seventh type with the optical fiber 14 of a seventh size wherein the laser 10 is adjusted to a seventh setting; (H)′ removing the diseased epithelial lining located in a lower portion of the sulcus using the laser 10 of an eighth type with the optical fiber 14 of an eighth size wherein the laser 10 is adjusted to an eighth setting; (I)′ dissecting proximal periodontal attachment with bone using the laser 10 of a ninth type with the optical fiber 14 of a ninth size wherein the laser 10 is adjusted to a ninth setting; (J)′ penetrating the cortical plate of adjacent bone tissue with an endodontic explorer to accomplish cortication of any bony defect; (K)′ inducing fibrin clotting using the laser 10 of a tenth type with the optical fiber 14 of a tenth size wherein the laser 10 is adjusted to a tenth setting; and (L)′ placing one or more barricades or periacryl on all treated areas to prevent fibrin clots from washing out. Optionally, an enzyme inhibition mixture may be added to any collagen plug resulting from fibrin clotting in this or any other similar embodiment described herein. This optional step would extend the life of any applicable fibrin clot which, in turn, would promote decreased epithelial movement into the sulcus which would enhance tissue regeneration.


Treatment is preferably initiated on the most diseased area of a mouth (i.e., the quadrant of a mouth having the deepest and most pockets). If more than two quadrants of a mouth require treatment, the most diseased two quadrants should be treated first, followed up by treatment of the remaining quadrant(s) about one week later.


In one preferred embodiment, steps (C)′, (H)′ and (K)′ are not included. In another preferred embodiment, steps (F)′, (I)′ and (J)′ are not included. In another embodiment, steps (G)′ and (H)′ a performed in reverse order. In yet another embodiment, steps (K)′ and (L)′ are performed in reverse order. In other embodiments other steps may be left out, added, or otherwise altered depending on many factors including without limitation a particular patient's needs, availability of supplies, availability of laser technology, and other reasons.


If the fourth laser type is Nd doped (e.g., Nd:YAG), the fourth size preferably ranges from about 300 microns to about 600 microns in diameter and the fourth setting includes a pulse width of from about 100 )..I.S (VSP) and a power setting of about 0.2 to about 4.0 W. If the fourth laser type is Er or Er,Cr doped, the fourth size preferably ranges from about 400 microns to about 1000 microns in diameter, the fourth setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S an energy amount of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz. If the fourth laser type is a Diode laser (about 810 nm to about 1064 nm), the fourth size preferably ranges from about 300 microns to about 1000 microns in diameter and the fourth setting preferably includes a continuous wave setting and a power setting of from about 0.4 W to about 4.0 W.


If the fifth laser type is Er doped, the fifth size preferably ranges from about 400 microns to about 1000 microns in diameter, the fifth setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S (SSP), an energy amount of from about 10 mJ to about 100 mJ (more preferably from about 20 mJ to about 40 mJ), and a frequency of from about 2 Hz to about 50 Hz (more preferably about 15 Hz to about 50 Hz). If the fifth laser type is Er or Er,Cr doped, the fifth size preferably ranges from about 400 microns to about 1200 microns in diameter, the fifth setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S, an energy amount of from about 10 mJ to about 200 mJ, and a frequency of from about 2 Hz to about 50 Hz.


If the sixth laser type is Er or Er,Cr doped, the sixth size preferably ranges from about 400 microns to about 1000 microns in diameter, the sixth setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S, an energy amount of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz. If the sixth laser type is a Diode laser (about 810 nm to about 1064 nm), the sixth size preferably ranges from about 300 microns to about 1000 microns in diameter and the sixth setting preferably includes a continuous wave setting and a power setting of from about 0.4 W to about 4.0 W.


If the seventh laser type is Er doped, the seventh size preferably ranges from about 600 microns to about 1000 microns in diameter, the seventh setting preferably includes a pulse width of from about 50 )..I.S to about 100 )..I.S, an energy amount of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz. If the seventh laser type is Er or Er,Cr doped, the seventh size preferably ranges from about 400 microns to about 1000 microns in diameter, the seventh setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S, an energy amount of from about 10 mJ to about 200 mJ, and a frequency of from about 2 Hz to about 50 Hz. If the eighth laser type is Er doped, the eighth size preferably ranges from about 600 microns to about 1000 microns in diameter, the eighth setting preferably includes a pulse width of from about 50 )..I.S to about 100 )..I.S, an energy amount of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz. If the eighth laser type is Er or Er,Cr doped, the eighth size preferably ranges from about 400 microns to about 1000 microns in diameter, the eighth setting preferably includes a pulse width of from about 50 )..I.S to about 300 )..I.S, an energy amount of from about 10 mJ to about 200 mJ, and a frequency of from about 2 Hz to about 50 Hz.


If the ninth laser type is Er doped, the ninth size preferably ranges from about 600 microns to about 1000 microns in diameter, the ninth setting preferably includes a pulse width of from about 50 )..I.S to about 100 )..I.S an energy amount of from about 10 mJ to about 100 mJ, and a frequency of from about 2 Hz to about 50 Hz. If the ninth laser type is Er or Er,Cr doped, the ninth size preferably ranges from about 400 microns to about 1000 microns in diameter, the ninth setting preferably includes a pulse width of from about 50 )..I.S to about 600 )..I.S, an energy amount of from about 10 mJ to about 200 mJ, and a frequency of from about 2 Hz to about 50 Hz.


If the tenth laser type is Nd doped (e.g., Nd:YAG), the tenth size preferably ranges from about 300 microns to about 350 microns in diameter (more preferably about 320 microns) and the tenth setting includes a pulse width of from about 600 )..I.S to 700 )..I.S (LP) (more preferably about 650 )..I.S, a frequency of from about 15 Hz to about 20 Hz, and a power setting of about 3.0 to about 4.0 W. Clotting may also be induced by use of an Er-YAG laser by decreasing the power of the laser by increasing the pulse width to a range of from about 100 )..I.S to about 600 )..I.S to increase interaction with tooth root surfaces. Alternatively, laser power may be decreased by using an adapter (e.g., a filter) between a laser source and the zone where the laser is applied to a patient or other subject in order to attenuate laser signal. The option of using an Er doped laser is also available for fibrin clotting steps described in other embodiments herein.


Step (B)′ preferably includes using the fourth fluid and the fifth fluid described above (i.e., the fourth fluid including water and from about 0.1% to about 20%, most preferably about 10% urea peroxide, and the fifth fluid including water and from about 0.1% to about 10%, most preferably about 0.5% hypochlorite).


Step (C)′ preferably includes removing some of the epithelial lining by moving the applicator tip 20 in a side to side sweeping motion starting at or near the top of the sulcus and slowly moving down about 3 mm to about 5 mm. Step (C)′ should preferably take from about 10 to about 15 seconds to perform.


Step (D)′ preferably includes removing calculus deposits by moving the applicator tip 20 in a substantially side to side sweeping motion starting at or near the top of the sulcus and slowly moving down a tooth adjacent the sulcus, the tip preferably remaining in substantially continuous contact with the tooth, pausing proximate any calculus deposits to allow the laser 10 to remove the deposit(s). Such pauses may last from about 5 seconds to about 30 seconds. The method described herein is particularly well-suited for periodontic treatment because it leaves cementum substantially intact. Step (D)′ may include multiple repetitions, often from about 3 to about 6, to ensure most of the calculus deposits have been removed from the tooth or cementum surfaces. This technique should remove most calculus, bacteria, and endotoxins leaving the cementum mostly undamaged resulting in a desirable surface for reattachment of soft tissue to cementum.


Hand tools should only be used in step (E)′ as a last resort because such tools often remove much needed cementum from the tooth.


In a first embodiment, during Step (F)′, the applicator tip 20 is kept in substantially continuous contact with soft tissue surrounding the sulcus, starting at or near the top of the sulcus. The applicator tip 20 is moved in a sweeping motion (preferably a substantially side-by-side motion) toward the bottom of the sulcus. This step should take from about 10 to about 20 seconds to complete. The applicator tip 20 should not be kept at or near the bottom of the sulcus for more than about 3 to about 5 seconds to avoid compromising periodontal attachment. In a related embodiment of Step (F)′ in which the laser 10 is of the Diode type and the same general motion described above is used, the applicator tip 20 is extended to about 1 mm short of the sulcus depth because the laser 10 in this embodiment includes an end cutting fiber that cuts approximately 1 mm from the tip of the applicator tip 20.


In one embodiment of Step (G)′, the applicator tip 20 is preferably held substantially parallel to the length of a tooth while preferably remaining substantially in contact with such tooth. Step (G)′ should take from about 5 to about 15 seconds to complete depending on the depth of the sulcus. As an example, the same general motion as described with respect to Step (C)′ may be used in Step (G)′. In one embodiment, Step (G)′ further includes placing a stripped radial applicator tip into the sulcus to use photoacoustic wave generation technology for a period of from about 15 to about 25 seconds to accomplish substantially complete bacterial ablation prior to modifying the dentin surface.


Step (H)′ preferably includes removing some of the epithelial lining near the base of the sulcus by moving the applicator tip 20 in a side to side sweeping motion starting at or near the top of the sulcus. Step (H)′ should preferably take from about 10 to about 20 seconds to perform. A user should not spend more than about 5 seconds (and preferably no more than 3 seconds) at the base of the sulcus where the sulcular epithelium and the cementum attach (assuming these structures are still attached) in order to avoid compromising periodontal attachment.


Step (I)′ includes using photoacoustic wave generating technology as used in the previous step, starting at or near the bottom of the sulcus, to dissect fibrous periodontal attachment to a bony defect structure. Care should be taken to avoid disturbing the attachment of such fibers to bone on either side of a bony defect structure.


Step (J)′ includes using an endodontic explorer such as, for example, a double ended explorer available from DENTSPLY Tulsa Dental Specialties of Tulsa, Oklahoma, to penetrate about 1 mm or more into an adjacent cortical plate. This penetration is preferably repeated from about 5 to about 15 times. This action allows for regenerative factors from the adjacent bone to be released which is necessary for bone regeneration. These penetrations also allow for angiogenesis which brings blood to the site quicker, giving a subsequent blood clot the nutrients needed to produce bone at a quicker rate.


Step (K)′ includes inducing fibrin clotting for bone generation by inserting the fiber 14 to a location about 75% of the depth of the sulcus and moving the applicator tip 20 in a substantially circular or oval-like motion throughout the sulcus, slowly drawing out gingiva-dental fibers. This will initiate fibrin clotting at or near the base of the sulcus. Step (K)′ may take from about 15 seconds to about 30 seconds to complete. The pocket being treated is preferably filled with blood prior to beginning Step (K)′; otherwise, it will be more difficult to obtain a good gelatinous clot. In a related embodiment, Step (K)′ includes inserting the applicator tip 20 to the depth of the sulcus that is along one side of the bony defect; activating the laser 10; moving the applicator tip 20 in a “J” shaped motion to draw out the fiber for a period of about 2 seconds; and proceeding through the defect for about 2 mm to about 3 mm in order to initiate a fibrin clot.


In one embodiment, Step (L)′ preferably includes placing one or more barricades and/or periacryl on one or more (preferably all) area treated using the laser 10 in order to prevent clots from washing out. Surgical dressings are preferably placed around one or more teeth and interproximal, and such dressings are preferably kept in place for about 10 days to prevent clots from washing out and to aid maturation of the treated bone and tissue. In a related embodiment, Step (L)′ includes placing an absorbable collagen sponge matrix in most and preferably all surgical sites to initiate clotting. This step protects the defect from, for example, bacterial invasion and provides a matrix for both hard and soft tissue regeneration. Blood platelets will aggregate near the collagen and the platelets will degranulate resulting in the release of coagulation factors which will combine with plasma to form a stable fibrin clot. This will step will, in certain embodiments, provide a matrix for bone regeneration and pocket elimination.


In addition to the steps listed above, an additional step preferably includes using chlorohexidine after the above-listed steps are completed. Preferably, the chlorohexidine is used no sooner than 48 hours after completion of the above-listed procedure, after which point the chlorohexidine is preferably used twice daily.


In addition to the periodontal embodiments described above, this application process may also be used in other soft tissue applications where it is necessary to expand the diseased tissue or material to allow more rapid access and penetration to healing agents, chemicals or biologicals; i.e. antibiotics, peptides, proteins, enzymes, catalysts, genetics (DNA, mRNA or RNA or derivatives) or antibody based therapeutics or combinations thereof. In some cases, the present methodology may be used to rapidly dissolve or destroy diseased tissue areas. Additionally, the present invention may be used to expand diseased tissue in an abscess, allowing for extremely rapid and efficient penetration of healing or biological agents. The porosity created in the tissue by photoacoustic waves may allow for rapid infusion with the subsequent chemical species that can impose destruction, healing or cleaning or a combination of these events. The speed of this healing action may allow medical procedures that currently are not viable because of extensive time required for standard healing processes, i.e., sometimes adjacent tissue is infected because the original infection cannot be controlled more rapidly than the infection propagates. In this case, expanding the diseased tissue to enhance porosity may allow near instantaneous access for the medication, e.g., antibiotic or other agents.


Furthermore, the present invention may be applied to begin, construct or stage the activation of cells and/or tissues, including the area of transplantation and use in stem or primordial cells accentuation, their attachment and/or stimulation for growth and differentiation. The present invention is also believed to be usable to activate cells, e.g., progenitor, primordial or stem cells, to promote inherent nascent bone or tissue growth and differentiation, as well as in transplantation where stem or primordial cells are accentuated in their attachment and stimulated for growth and differentiation.


In one of the alternate embodiments of this invention, nanotubes or other micro-structures can be moved around in a therapeutic fluid by applying a magnetic field. An alternating or pulsed magnetic field could impart significant motion and stirring of the therapeutic fluid. Since the field would penetrate the entire tooth, the stirring action would also occur throughout the lateral or accessory canal system. These moving micro-particles would also act as an abrasive on any bacteria, virus, nerve material, or debris within the canal system. The effect would be a more thorough circulation of the fluid throughout the canal system to provide superior cleaning and debridement of the canal system. Magnetic material can also be inserted into, adsorbed onto, or absorbed into the nanotube or other microstructure increasing its magnetic moment.


Ti02 or other similar compounds can be activated and made bactericidal by exposing them to UV light or by inserting them in an electric field. Once excited these can destroy bacteria and other organic compounds such as remaining nerve tissue. Such compounds can be part of a therapeutic and can be activated by a UV light source pointed toward the therapeutic fluid, a UV source dipped into the fluid, or a UV laser source. These Ti02 or other similar compounds can also be activated by an alternating or pulsed electric field. One means to supply such an electric field could be by an external device that would bridge the tooth. Since the field propagates throughout the entire tooth it would also react Ti02 or other similar compounds within the accessory or lateral canals. This action could also be combined with the micro-particle based motion action mentioned above. This combination would more thoroughly clean and debride the canals. Since electric fields are generated externally and penetrate the entire root structure they could be used several months or on a yearly basis after the tooth is sealed to reactivate the titanium oxide and its bactericidal properties.


The foregoing description of preferred embodiments for this disclosure has been 20 presented for purposes of illustration and description. The disclosure is not intended to be exhaustive or to limit the various embodiments to the precise form disclosed. Other modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the underlying concepts and their practical application, and to thereby enable one of ordinary skill in the art to utilize the various embodiments with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the disclosure as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.









TABLE 2





Additional Medical Uses for Photoacoustics According to the Invention


























Millijoules
Photoacoustic


Description
Benefits
Actions
Method
Phase
Range
Energy Density (PED)





Disinfect Sinus
Removes
Photoacoustics according
Fill sinus cavity with
Phase I:
7 to 33
PED range: 7 to 100 watt-


Cavities
infections and
to the invention shock
therapeutic, insert
with
mjoules per
sec/cc, preferably 9 to 20



bacteria that
waves propagate
special photoacoustics
therapeutic
cc, preferably
watt-sec/cc, most



might be
throughout the cavity
according to the
Phase II:
7 to 20
preferably 12 watt-



difficult to
expanding the cavity and
invention tip for that
with water
mjoules, most
sec/cc. PED is the total



treat by other
forcing the therapeutic into
type and size of cavity.
or rinse
preferably 10
shock wave energy put



conventional
the crevices and folds. The
Note: patient may be

mjoules (tbd)
into the volume during



methods
photoacoustics according
anestized.

of liquid.
the application. Not to




to the invention shock


Total value
be confused with the




wave lyses the bacteria,


depends on
energy per pulse or the




virus, and fungi cell walls


the volume of
input power of the power




destroying them while not


the cavity and
delivered to the tip.




harming the cells of the


PED.





cavity.






Cancer
Stops or
Several doctors have
Flood the area with a
Phase I:
7 to 1000
PED range: 7 to 1000 watt-



deters cancer
published that cancer is a
therapeutic if possible.
photoacoustics
mjoules per
sec/cc, preferably 9 to




fungal infection.
Place a photoacoustics
according to
cc, preferably
500 watt-sec/cc, most




photoacoustics according
according to the
the invention
20 to 200
preferably 20 watt-




to the invention has
invention tip in the
with or
mjoules, and
sec/cc. PED is the total




shown to significantly wipe
fluid and apply
without a
most
shock wave energy put




out fungi.
photoacoustics
therapeutic
preferably 50
into the volume during





according to the
Phase II:
mjoules (tbd)
the application. Not to be





invention protocol. If
Optional
of liquid. Total
confused with the energy





area can not be
rinse only if
value depends
per pulse or the





flooded. Place
appropriate.
on the volume
input power of the power





photoacoustics

of
delivered to the tip.





according to the

the cavity and






invention tip into the

PED.






area (most all bodily








parts are a high








percentage water) and








apply photoacoustics








according to the








invention protocol.








Revaluate condition.





Treating
Improves
Improves dermatological
Build dam around
Phase I:
7 to 100
PED range: 7 to 100 watt-


dermato-
dermatology
treatments by driving the
treatment area, fill
with
mjoules per
sec/cc, preferably 9 to 20


logical
problem
therapeutic into the
cavity with therapeutic,
therapeutic
cc, preferably
watt-sec/cc, most


conditions
areas.
crevices of the skin or
insert photoacoustics
Phase II:
10 to 30
preferably 12 watt-




driving the therapeutic
according to the
with water
mjoules, and
sec/cc. PED is the total




under the top layers of the
invention tip below
or rinse
most
shock wave energy put




skin.
surface of fluid.

preferably 15
into the volume during







mjoules (tbd)
the application. Not to







of liquid.
be confused with the







Total value
energy per pulse or the







depends on
input power of the power







the volume of
delivered to the tip.







the cavity and








PED.



Focused
Directs and
The photoacoustics
Place photoacoustics
Phase I:
7 to 500
PED range: 7 to 500 watt-


photoacoustics
amplifies
according to the invention
according to the
with
mjoules per
sec/cc, preferably 9 to 20


according to
photoacoustics
tip is integrated with a
invention focused tip
therapeutic
cc of liquid.
watt-sec/cc, most


the invention
according to
parabolic cone with the
onto treatment area.
Phase II:
Value
preferably 12 watt-


tip system
the invention
photoacoustics according
The parabolic cup with
with water
depends on
sec/cc. PED is the total



shock wave in
to the invention tip in the
the photoacoustics
or rinse if
the volume of
shock wave energy put



one direction
center. The
according to the
appropriate.
the cavity.
into the volume during




photoacoustics according
invention tip inside can


the application. Not to




to the invention shock
be held against the


be confused with the




waves are then refocused
treatment area. The


energy per pulse or the




in one direction. This
cup could be


input power of the power




would make an intensified
continuously filled with


delivered to the tip.




wave in one direction.
a therapeutic through a








tube with a check valve.





Disinfecting
Kills any
photoacoustics according
Place photoacoustics
Phase I:
7 to 33
PED range: 7 to 500 watt-


blood during
bacteria or
to the invention could be
according to the
with
mjoules per
sec/cc, preferably 9 to 20


surgeries
virus that
used in the blood pool
invention tip into blood
therapeutic
cc of liquid.
watt-sec/cc, most



might get into
several different times
pool or into
Phase II:
Total value
preferably 12 watt-



open incision
during surgeries keeping
surrounding area,
with water
depends on
sec/cc. PED is the total



during
the blood and the
photoacoustics
or rinse if
the volume of
shock wave energy put



surgeries
surrounding tissue free
according to the
appropriate.
the cavity and
into the volume during




from infections.
invention shock wave

PED.
the application. Not to





will propagate through


be confused with the





the surrounding area to


energy per pulse or the





make sure incision area


input power of the power





stays clean.


delivered to the tip.


Perio with
Softens and
A gel therapeutic is placed
Place gel therapeutic on
Phase I:
Set the
n/a


ultrasonics
removes
on the calculus and softens
the calculus and use an
with
ultrasonic on




calculus
and dissolves it for easier
ultrasonic tip to
therapeutic
a medium




during
removal
acceleration the
Phase II:
setting.




cleanings.

softening action. After
with water
Mjoule






calculus is softened use
or rinse
settings not






the ultrasonic tip to

appropriate






remove the calculus.

on








ultrasonics.








Power dial








settings are








20% to 70%.








Operating








point is








around 50%








setting.



Using
Prepares
In caries photoacoustics
Fill cavity with fluid or
Phase I:
7 to 33
PED range: 7 to 150 watt-


photoacoustics
dental
according to the invention
build dam around area
with
mjoules per
sec/cc. preferably 9 to


according to
surfaces in
cleans the surface and
and fill with fluid.
therapeutic
cc, preferably
20 watt-sec/cc, most


the invention
caries and in
gives filling agents a
Insert photoacoustics
Phase II:
7 to 10
preferably 12 watt-


to prepare
restorative
superior surface on which
according to the
with water
mjoules, and
sec/cc. PED is the total


dental surfaces
dentistry for
to bond. In restorative
invention tip below
or rinse if
most
shock wave energy put


for adhesives
superior
dentistry photoacoustics
fluid surface and apply
appropriate.
preferably 8
into the volume during



adhesion.
according to the invention
photoacoustics

mjoules of
the application. Not to




cleans the surface and
according to the

liquid. Total
be confused with the




provides a superior surface
invention protocol.

value
energy per pulse or the




for the adhesives to bond.


depends on
input power of the power







the volume of
delivered to the tip.







the cavity and








PED.



Using
Softens and
Therapeutic softens
Apply gel therapeutic
Phase I:
10 to 300
See note to left


photoacoustics
removes
calculus and in
and let sit on calculus
with
mjoules,



according to
calculus from
combination with
to soften calculus. Use
therapeutic
preferably 15



the invention
tooth surfaces
photoacoustics according
photoacoustics
Phase II:
to 100



to remove
without heavy
to the invention action
according to the
with water
mjoules and



calculus above
scraping with
removal is accomplished
invention Perio Probe
or rinse
most



and below
manual probe
with far less scraping of the
and photoacoustics

preferably 30



gums during
or ultrasonic
area resulting in less time
according to the

mjoules for



dental
scaler.
and less damage to the
invention action to

calculus



cleanings and

tooth surface.
easily knock calculus off

removal (not



perio


of the tooth surface.

per cc) and 5



treatments.




to 25 mjoules,








preferably 10








to 20, and








most








preferably 15








mjoules for








root








polishing.



Using
Makes wine
The photoacoustics
Before the wine is
Only one
7 to 33
PED range: 7 to 500 watt-


photoacoustics
sulfite free or
according to the invention
transferred into the
phase.
mjoules per
sec/cc, preferably 9 to 20


according to
sulfite
shock wave would destroy
barrels the wine would

cc, preferably
watt-sec/cc, most


the invention
reduced.
the bacteria and yeast cells
first be transferred into

10 to 100
preferably 12 watt-


to remove
Many people
which is the reason sulfites
an intermediate

mjoules, most
sec/cc. PED is the total


bacteria and
are allergic to
are usually added.
photoacoustics

preferably 25
shock wave energy put


yeast from
sulfites and

according to the

mjoules (tbd)
into the volume during


wine to
get side

invention holding tank.

of liquid.
the application. Not to


eliminate or
effects after

The photoacoustics

Total value
be confused with the


reduce the
drinking wine.

according to the

depends on
energy per pulse or the


amount of


invention protocol

the volume of
input power of the power


sulfites used.


would be applied to the

the cavity and
delivered to the tip.





liquid in the holding

PED.






tank then the tank








contents would be








transferred into the








barrel. This process








would be repeated until








the barrel was full.





Using
Removing
The photoacoustics
A catheter containing
Only one
7 to 85
PED range: 7 to 500 watt-


photoacoustics
plaque and
according to the invention
photoacoustics
phase at
mjoules per
sec/cc, preferably 20 to


according to
reducing
shock wave can dislodge
according to the
this time.
cc, preferably
300 watt-sec/cc. PED is


the invention
blockages and
and break up items
invention tip on the

10 to 50
the total shock wave


to break up
increasing
attached to walls of
end of a flexible fiber

mjoules and
energy put into the


plaque in
blood flow has
vessels. The shock wave
optic along with a down

most
volume during the


arteries and
a multitude of
can expand the vessel as
stream filter. The tip is

preferably 25
application. Not to be


veins.
medical
well as dislodge the
inserted to the area of

mjoules (tbd)
confused with the energy



advantages.
plaque.
plaque with the filter

of liquid.
per pulse or the input





being downstream to

Total value
power of the power





catch the plaque. The

depends on
delivered to the tip.





laser is fired per

the volume of






protocol and the plaque

the cavity and






is collected by the filter.

PED.






The catheter is then








removed and the filter








cleaned.





Using
Breaking up
The photoacoustics
An radiograph table is
Only one
7 to 100
PED range: 7 to 1000 watt-


photoacoustics
kidney stones
according to the invention
used to guide the
phase at
mjoules per
sec/cc, preferably 9 to


according to
seems to be a
shock wave has significant
catheter to an area
this time.
cc of liquid.
500 watt-sec/cc. PED is


the invention
difficult task.
percussion forces and can
close to the stone. The

Total value
the total shock wave


to break up
The
be placed fairly close to the
laser is fired and the

depends on
energy put into the


kidney stones
photoacoustics
stone. If the stone can be
stone size is monitored

the volume of
volume during the


and other
according to
broken into smaller pieces
on the radiograph.

the cavity and
application. Not to be


blockages in
the invention
it can pass mush easier
Once the stone is of

PED.
confused with the energy


the body.
tip on a
with less pain.
appropriate size to pass


per pulse or the input



flexible fiber

through the urethra, the


power of the power



optic could be

catheter is removed.


delivered to the tip.



fished up the








urethra and








placed








adjacent to








the stone. It








might have a








special








application of








being able to








break up a








stone that has








already








started down








the urethra.







Using
Bacteria, virus,
The photoacoustics
A shunt pulls blood from
Only one
7 to 85
PED range: 7 to 1000 watt-


photoacoustics
and fungus
according to the invention
the body an places it in
phase at
mjoules per
sec/cc, preferably 9 to


according to
could be
shock wave can vibrate and
an external
this time.
cc of liquid.
500 watt-sec/cc. PED


the invention
removed from
lyse the cell walls of the
chamber then returns it

Total value
is the total shock wave


in an external
the blood in
pathogens destroying
to the body. This is a

depends on
energy put into the


shunt to purify
the external
them.
closed loop system.

the volume of
volume during the


blood then
shunt and

While the blood is in the

the cavity and
application. Not to be


return it back
returned back

chamber a laser applies

PED.
confused with the energy


to the body.
to the body

the photoacoustics


per pulse or the input



reducing the

according to the


power of the power



concentration

invention protocol to


delivered to the tip.



of those

the blood then the






pathogens in

blood is returned to the






the body.

body. The chamber








could be a fill and empty








cyclic chamber or with








more research could be








a continuous flow








chamber.





Photoacoustics
Removes
Water or therapeutic is
Place the Perio
Phase I:
10 to 300
N/A


according to
calculus and
dispensed around the
photoacoustics
with
mjoules,



the invention
treats
enclosed photoacoustics
according to the
therapeutic
preferably 15



Perio Probe
infections and
according to the invention
invention Probe into
Phase II:
to 25 mjoules,




bacteria that
tip and keeps the tip and
the sulcus between the
with water
and most




might be
perio pocket immersed in
tooth and the gingiva.
or rinse
preferably 20




difficult to
fluid. The photoacoustics
Start the flow of water

mjoules for




treat by other
according to the invention
or therapeutic and

calculus




conventional
shock wave will emanate
move the tip in an

removal.




methods
from the open end of the
elliptical motion

5 to 25





tip directly down deeper
parallel to the long axis

mjoules, and





into the perio pocket and
of the tooth from

preferably 10





will also evolve radially
mesial to distal both

to 20 mjoules





through the slots in the
facially and lingually.

and most





side of the Perio


preferably 15





photoacoustics according


mjoules for





to the invention Probe.


root





The shock wave will


polishing.





expand the cavity walls and


(Not per cc)





disperse therapeutic into








crevasses. The shock wave








is effective a lysing








both bacterial and viral cell








walls and destructing








biofilm.



















HZ
Pulse
Pulse
Pulse




HZ Sub
Operating
width
Sub
Operating


Description
HZ Range
Range
Point
duration
Range
Point





Disinfect
8 to 20 HZ,
10-15 HZ -
15 HZ
2 micro
2-100
50


Sinus
preferably
provides
provides
seconds to
micro second-
microseconds -


Cavities
10-15 HZ,
some
maximum
300 micro
shock
(shock



most
internal flow
flow inside
seconds,
wave
wave



preferably
inside liquid -
the liquid -
preferably
decreases as
increases



15 HZ
learned
learned
2-100
pulse width
as pulse




from
from
micro
increases
width




experience-
experience
seconds,

decreases)




not sure

most

50 is the




why

preferably

lowest






50

setting






microseconds

available








on most








current








laser








models


Cancer
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50



preferably
provides
provides
seconds to
micro seconds-
microseconds -



10-15 HZ,
some
maximum
300 micro
shock
(shock



most
internal flow
flow inside
seconds,
wave
wave



preferably
inside liquid
the liquid -
preferably
decreases as
increases



15 HZ
learned
learned
2-100
pulse width
as pulse




from
from
micro
increases
width




experience -
experience
seconds,

decreases)




not sure

most

50 is the




why

preferably

lowest






50

setting






microseconds

available








on most








current








laser








models


Treating
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


dermato-
preferably
provides
provides
seconds to
micro
microseconds -


logical
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


conditions
most
internal
flow inside
seconds,
shock wave
wave



preferably
flow inside
the liquid -
preferably
decreases
increases



15 HZ
liquid -
learned
2-100
as pulse
as pulse




learned
from
micro
width
width




from
experience
seconds,
increases
decreases)




experience -

most

50 is the




not sure

preferably

lowest




why

50

setting






microseconds

available








on most








current








laser








models


Focused
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


tip system
15 HZ
liquid -
learned
2-100
as pulse
as pulse




learned
from
micro
width
width




from
experience
seconds,
increases
decreases)




experience -

most

50 is the




not sure

preferably

lowest




why

50

setting






microseconds

available








on most








current








laser








models


Disinfecting
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


blood
preferably
provides
provides
seconds to
micro
microseconds -


during
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


surgeries
most
internal
flow inside
seconds,
shock wave
wave



preferably
flow inside
the liquid -
preferably
decreases
increases



15 HZ
liquid -
learned
2-100
as pulse
as pulse




learned
from
micro
width
width




from
experience
seconds,
increases
decreases)




experience -

most

50 is the




not sure

preferably

lowest




why

50

setting






microseconds

available








on most








current








laser








models


Perio with
About 20-
A fixed
A fixed
N/a
N/a
N/a


ultrasonics
40 kc
function of
function of







the
the







ultrasonic
ultrasonic







equipment
equipment







being used
being used





Using
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


to prepare
15 HZ
liquid -
learned
2-100
as pulse
as pulse


dental

learned
from
micro
width
width


surfaces for

from
experience
seconds,
increases
decreases)


adhesives

experience -

most

50 is the




not sure

preferably

lowest




why

50

setting


Using
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


to remove
15 HZ
liquid -
learned
2-100
as pulse
as pulse


calculus

learned
from
micro
width
width


above and

from
experience
seconds,
increases
decreases)


below

experience -

most

50 is the


gums

not sure

preferably

lowest


during

why

50

setting


dental



microseconds

available


cleanings





on most


and perio





current


treatments.





laser








models


Using
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


to remove
15 HZ
liquid -
learned
2-100
as pulse
as pulse


bacteria

learned
from
micro
width
width


and yeast

from
experience
seconds,
increases
decreases)


from wine

experience -

most

50 is the


to

not sure

preferably

lowest


eliminate

why

50

setting


or reduce



microseconds

available


the amount





on most


of sulfites





current


used.





laser








models


Using
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


to break up
15 HZ
liquid -
learned
2-100
as pulse
as pulse


plaque in

learned
from
micro
width
width


arteries and

from
experience
seconds,
increases
decreases)


veins.

experience -

most

50 is the




not sure

preferably

lowest




why

50

setting


Using
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


to break up
15 HZ
liquid -
learned
2-100
as pulse
as pulse


kidney

learned
from
micro
width
width


stones and

from
experience
seconds,
increases
decreases)


other

experience -

most

50 is the


blockages

not sure

preferably

lowest


in the body.

why

50

setting






microseconds

available








on most








current








laser








models


Using
8 to 20 HZ,
10-15 HZ -
15 HZ -
2 micro
2-100
50


photoacoustics
preferably
provides
provides
seconds to
micro
microseconds -


according
10-15 HZ,
some
maximum
300 micro
seconds -
(shock


to the
most
internal
flow inside
seconds,
shock wave
wave


invention
preferably
flow inside
the liquid -
preferably
decreases
increases


in an
15 HZ
liquid -
learned
2-100
as pulse
as pulse


external

learned
from
micro
width
width


shunt to

from
experience
seconds,
increases
decreases)


purify

experience -

most

50 is the


blood then

not sure

preferably

lowest


return it

why

50

setting


back to the



microseconds

available


body.





on most








current








laser








models


Photoacoustics
2 to 40 HZ,
10 to 20 HZ
15 HZ
2 micro
2 micro
50 micro


according to
preferably
for calculus
(better
seconds to
seconds to
seconds or


the
10-20 HZ,
removal.
flow), 40 HZ
300 micro
150 micro
less


invention
most
35 to 45 HZ
for
seconds,
seconds.
(currently


Perio Probe
preferably
for root
polishing.
preferably

most lasers



15 HZ for
polishing.

2-100

will only go



calculus


micro

to 50



removal.


seconds,

microseconds)



30 to 45


most





HZ,


preferably





preferably


50





35-45,


microseconds





most








preferably








40 for root








polishing.





















Sub





Power


Range





Range -
Application

operating




Description
Watts
Period
Tip Sizes
point
Therapeutic






Disinfect
Depends on
30 seconds
400
Depends
H2O2,



Sinus
volume of
on, 30
microns to
on
Chlorhexidine,



Cavities
liquid, PED,
seconds off,
2500
application
betadine, water




and other
repeat
microns
and
and other




parameters
three times.

cavity size
solutions





Same for


containing





both phase I


hydroxyl





and II.


groups.








Chlorine








Dioxide,








Calcium








Hypochlorite,








Sodium








Hypochlorite,








Oregano, Garlic








Zinc, Clove,








nano solutions,








etc.



Cancer
Depends on
30 seconds
400
Depends
Sodium




volume of
on, 30
microns to
on
Bicarbonate,




liquid, PED,
seconds off,
2500
application
chemo




and other
repeat ten
microns
and
therapeutics




parameters.
times.

cavity size
used in




You do not
Same for


Oncology,




want to
both phase I


H2O2,




significantly
and II.


Chlorhexidine,




burn the



betadine,




area.



water, and








other solutions








containing








hydroxyl








groups.








Chlorine








Dioxide,








Calcium








Hypochlorite,








Sodium








Hypochlorite,








Oregano,








Garlic, Zinc,








Clove, nano








solutions, etc.



Treating
Depends on
30 seconds
400
Depends
H2O2,



dermato-
volume of
on, 30
microns to
on
Chlorhexidine,



logical
liquid, PED,
seconds
2500
application
betadine,



conditions
and other
off, repeat
microns
and
water, and




parameters.
three

cavity
other solutions





times.

size. 600
containing





Same for

to 800
hydroxyl





both phase

typical.
groups.





I and II.






Focused
Depends on
Phase I: 30
400
Depends
Depends on



photoacoustics
volume of
seconds
microns to
on
condition



according
liquid, PED,
per cup
2500
application
being treated.



to the
and other
stationary
microns
and
H2O2,



invention
parameters.
position,

cavity
Chlorhexidine,



tip system

then index

size. 400
betadine,





cup one

to 800
water, and





cup

typical.
other solutions





diameter


containing





and repeat


hydroxyl





30 second


groups,





cycle.


hypochlorite,





Repeat


HCL, Chlorine





over the


Dioxide,





area up to


Calcium





six times.


Hypochlorite,





Phase II: If


Aloe Vera,





needed,


Oregano, Clove,





repeat


etc.





Phase I








protocol








with water








or a rinse








fluid






Disinfecting
Depends on
30 secs on,
400
Depends
Depends on



blood
volume of
30 seconds
microns to
on
condition



during
liquid, PED,
off, repeat
2500
method
being treated.



surgeries
and other
three
microns
and
H2O2,




parameters.
times.

equipment
Chlorhexidine,





Same for

used.
betadine,





both phase


water, and





I and II.


other solutions








containing








hydroxyl








groups,








hypochlorite,








HCL, Chlorine








Dioxide,








Calcium








Hypochlorite,








Aloe Vera,








Oregano, Clove,








etc.



Perio with
Depends on
30 sec per
Ultrasonic

H2O2,



ultrasonics
hardware.
tooth
standard

Chlorhexidine,




Ultrasonics
average
probes.

betadine,




are usually



water, and




set at



other solutions




between



containing




30% and



hydroxyl




70% power.



groups.








Alcohol,








Chlorine








Dioxide,








Calcium








Hypochlorite,








Sodium








Hypochlorite,








Oregano,








Garlic, Zinc,








Clove, nano








solutions, etc.



Using
Depends on
30 secs on,
400
Depends
H2O2, water,



photoacoustics
volume of
30 seconds
microns to
on
Calcium



according
liquid, PED,
off, repeat
800
application
Hypochlorite,



to the
and other
three
microns
and
Sodium



invention
parameters.
times.

cavity size
Hypochlorite,



to prepare

Same for


Acetic acid,



dental

both phase


other acidic



surfaces for

I and II.


fluids



adhesives








Using
Depends on
20-30
400
Depends
H2O2,



photoacoustics
volume of
seconds
microns to
on
Chlorhexidine,



according
liquid, PED,
per side of
1200
application
betadine,



to the
and other
each tooth
microns.
and
water, and



invention
parameters.

Preferred is
cavity size
other solutions



to remove


a

containing



calculus


photoacoustics

hydroxyl



above and


according

groups.



below


to the

Chlorine



gums


invention

Dioxide,



during


Perio Probe

Calcium



dental


with 400 to

Hypochlorite,



cleanings


600 tip.

Sodium



and perio




Hypochlorite,



treatments.




Oregano,








Garlic, Zinc,








Clove, nano








solutions, etc.



Using
Depends on
Could be
400
Depends
Bacteria is



photoacoustics
volume of
continuous
microns to
on
killed by the



according
liquid, PED,
unless
2400
application
photoacoustics



to the
and other
some off
microns
and
according to



invention
parameters.
time was
(could be
cavity size
the invention



to remove

needed for
larger).

shock wave



bacteria

laser


lysing the cell



and yeast

cooling.


walls of the



from wine




bacteria and



to




yeast. In this



eliminate




case



or reduce




therapeutics



the amount




may not be



of sulfites




needed. Small



used.




amount of








sulfite or other








therapeutic








could be used








to enhance the








process.



Using
Depends on
30 secs on,
200 to 1200
Depends
EDTA or other



photoacoustics
volume of
30 seconds
microns
on
therapeutics



according
liquid, PED,
off, repeat

application
could be used



to the
and other
three

and
in conjunction



invention
parameters.
times.

location.
with the



to break up

Could also

200 to
photoacoustics



plaque in

run

500
according to



arteries and

constantly

typical.
the invention



veins.

for 90


action.





seconds.






Using
Depends on
30 secs on,
200 to 1200
Depends
EDTA or other



photoacoustics
volume of
30 seconds
microns
on
therapeutics



according
liquid, PED,
off, repeat

application
could be used



to the
and other
three

and
in conjunction



invention
parameters.
times.

pathway
with the



to break up

Could also

in.
photoacoustics



kidney

run


according to



stones and

constantly


the invention



other

for 90


action.



blockages

seconds.






in the body.

Continue








until stones








are of








desired size.






Using
Depends on
30 secs on,
200
Depends
A mild



photoacoustics
volume of
30 seconds
microns to
on
antibacterial



according
liquid, PED,
off, repeat
2400
application
therapeutic



to the
and other
three
microns
and
could be



invention
parameters.
times.
(could be
cavity size
added at the



in an

Could also
larger).

chamber to be



external

run


used in



shunt to

constantly


conjunction



purify

for 90


with the



blood then

seconds.


photoacoustics



return it




according to



back to the




the invention



body.




action.



Photoacoustics
Power is
20 to 60
200

H2O2,



according to
from 0.02
sec
microns to

Chlorhexidine,



the
to 12 watts.
applications
800

betadine,



invention
Power is
per side
microns.

water, and



Perio Probe
higher
of the
Prefer 600

other solutions




because it
tooth,
but may

containing




may require
repeat four
have to use

hydroxyl




more power
to six times
400 to fit

groups.




since the tip
with at
into

Alcohol,




is
least 30
photoacoustics

Chlorine




encased in
seconds
according

Dioxide,




a metal
between
to the

Calcium




shroud.
applications.
invention

Hypochlorite,





Same for
Perio Probe

Sodium





both phase
sheath.

Hypochlorite,





I and II.


Oregano,








Garlic, Zinc,








Clove, nano








solutions, etc.








Claims
  • 1. A method for treating a root canal of a tooth, the method comprising the steps of: A. providing a laser system containing a source of a laser light beam and an elongate optical fiber connected to said source and configured to transmit said laser light beam to a tip thereof, wherein the tip comprises a conical outer surface which tapers to an apex, wherein the optical fiber comprises cladding on an outer surface of the optical fiber extending to a terminus edge spaced proximally from a distal end of the tip towards a proximal end of the elongate optical fiber, the optical fiber extending along a fiber axis;B. immersing the conical outer surface of the tip into a fluid reservoir located in the root canal;C. operating the laser system to generate the laser light beam; andD. pulsing the laser light source so that at least a portion of laser light is emitted laterally outwardly from the tip relative to the fiber axis into the fluid reservoir, the laser light emanating from the tip having sufficient power to create photoacoustic waves in the fluid reservoir of sufficient vibrational energy to remove at least organic material from a portion of a wall of the root canal.
  • 2. The method of claim 1, wherein pulsing the laser light comprises causing fluid within the fluid reservoir to expand.
  • 3. The method of claim 1, wherein pulsing the laser light source does not damage healthy tissue.
  • 4. The method of claim 1, wherein pulsing the laser light source comprises irradiating the fluid reservoir at a power of at least 0.5 W.
  • 5. The method of claim 1, wherein pulsing the laser light source comprises irradiating the root canal to remove at least organic material from one or more accessory canals.
CROSS-REFERENCE(S) TO RELATED APPLICATION(S)

This application is a continuation of application Ser. No. 13/842,261 entitled “Periodontal Treatment System and Method,” filed Mar. 15, 2013; which is a continuation in part of application Ser. No. 13/633,096 entitled “Periodontal Treatment System and Method,” filed Oct. 1, 2012; which is a continuation of application Ser. No. 12/875,565 entitled “Periodontal Treatment System and Method,” filed Sep. 3, 2010; which is a continuation in part of application Ser. No. 12/395,643, filed Feb. 28, 2009, issued Jul. 19, 2011 as U.S. Pat. No. 7,980,854 entitled “Dental and Medical Treatments and Procedures” and is a continuation in part of application Ser. No. 11/895,404 entitled “Energetically Activated Biomedical Nano-therapeutics Integrating Dental and Medical Treatments and Procedures,” filed on Aug. 24, 2007. Application No. 12/395,643 is a continuation in part of Application No. 11/895,404 entitled “Energetically Activated Biomedical Nano-therapeutics Integrating Dental and Medical Treatments and Procedures,” filed on August 24, 2007 and is a continuation in part of Application Ser. No. 11/704,655, filed Feb. 9, 2007, issued Jun. 14, 2011 as U.S. Pat. No. 7,959,441, entitled “Laser Based Enhanced Generation of Photoacoustic Pressure Waves in Dental and Medical Treatments and Procedures”. Application Ser. No. 11/895,404 is a continuation in part of application Ser. No. 11/704,655, filed Feb. 9, 2007, issued Jun. 14, 2011 as U.S. Pat. No. 7,959,441 entitled “Laser Based Enhanced Generation of Photoacoustic Pressure Waves in Dental and Medical Treatments and Procedures” and claims priority to Provisional Application No. 60/840,282 entitled “Biomedically Active Nanotherapeutics Integrating Dental and Medical Treatments and Procedures,” filed on Aug. 24, 2006. Application Ser. No. 11/704,655 claims priority to Provisional Application No. 60/840,282 entitled “Biomedically Active Nanotherapeutics Integrating Dental and Medical Treatments and Procedures,” filed on Aug. 24, 2006. All of the above-listed applications are incorporated herein by reference in their entireties.

US Referenced Citations (939)
Number Name Date Kind
1500107 Chandler Jul 1924 A
2108558 Jackman Feb 1938 A
3023306 Kester Feb 1962 A
3225759 Drapen et al. Dec 1965 A
3401690 Martin Sep 1968 A
3460255 Hutson Aug 1969 A
3514328 Malin May 1970 A
3521359 Harris Jul 1970 A
3522801 Seymour Aug 1970 A
3547110 Balamuth Dec 1970 A
3561433 Kovach Feb 1971 A
3590813 Roszyk Jul 1971 A
3593423 Jones et al. Jul 1971 A
3624907 Brass et al. Dec 1971 A
3703170 Ryckman, Jr. Nov 1972 A
3731675 Kelly May 1973 A
3739983 Jousson Jun 1973 A
3745655 Malmin Jul 1973 A
3747216 Bassi et al. Jul 1973 A
3756225 Moret et al. Sep 1973 A
3828770 Kuris et al. Aug 1974 A
3871099 Kahn Mar 1975 A
3921296 Harris Nov 1975 A
3930505 Wallach Jan 1976 A
3962790 Riitano et al. Jun 1976 A
4021921 Detaille May 1977 A
4060600 Vit Nov 1977 A
4071956 Andress Feb 1978 A
4215476 Armstrong Aug 1980 A
4247288 Yoshii et al. Jan 1981 A
4274555 Sneider Jun 1981 A
4276880 Malmin Jul 1981 A
4293188 McMahon Oct 1981 A
4330278 Martin May 1982 A
4376835 Schmitt et al. Mar 1983 A
4386911 Maloney et al. Jun 1983 A
4424036 Lokken Jan 1984 A
4474251 Johnson, Jr. Feb 1984 A
4462803 Landgraf et al. Jul 1984 A
4492575 Mabille Jan 1985 A
4522597 Gallant Jun 1985 A
4534542 Russo Aug 1985 A
4539987 Nath et al. Sep 1985 A
4554088 Whitehead et al. Nov 1985 A
4595365 Edel et al. Jun 1986 A
4608017 Sadohara Aug 1986 A
4659218 de Lasa et al. Apr 1987 A
4661070 Friedman Apr 1987 A
4671259 Kirchner Jun 1987 A
4676586 Jones et al. Jun 1987 A
4676749 Mabille Jun 1987 A
4684781 Frish et al. Aug 1987 A
4732193 Gibbs Mar 1988 A
4789335 Geller et al. Dec 1988 A
4818230 Myers et al. Apr 1989 A
4872837 Issalene et al. Oct 1989 A
4917603 Haack Apr 1990 A
4935635 O'Harra Jun 1990 A
4941459 Mathur Jul 1990 A
4957436 Ryder Sep 1990 A
4973246 Black et al. Nov 1990 A
4985027 Dressel Jan 1991 A
4992048 Goof Feb 1991 A
4993947 Grosrey Feb 1991 A
5013300 Williams May 1991 A
5020995 Levy Jun 1991 A
5029576 Evans, Sr. Jul 1991 A
5037431 Summers et al. Aug 1991 A
5046950 Favonio Sep 1991 A
5055048 Vassiliadis et al. Oct 1991 A
5066232 Negri et al. Nov 1991 A
5094256 Barth Mar 1992 A
5112224 Shirota May 1992 A
5116227 Levy May 1992 A
5118293 Levy Jun 1992 A
5122060 Vassiliadis et al. Jun 1992 A
5123845 Vassiliadis et al. Jun 1992 A
5151029 Levy Sep 1992 A
5151031 Levy Sep 1992 A
5169318 Levy Dec 1992 A
5171150 Levy Dec 1992 A
5173049 Levy Dec 1992 A
5173050 Dillon Dec 1992 A
5180304 Vassiliadis et al. Jan 1993 A
5188532 Levy Feb 1993 A
5188634 Hussein et al. Feb 1993 A
5194005 Levy Mar 1993 A
5194723 Cates et al. Mar 1993 A
5195952 Solnit et al. Mar 1993 A
5224942 Beuchat et al. Jul 1993 A
5228852 Goldsmith et al. Jul 1993 A
5232366 Levy Aug 1993 A
5232367 Vassiliadis et al. Aug 1993 A
5236360 Levy Aug 1993 A
5249964 Levy Oct 1993 A
5257935 Vassiliadis et al. Nov 1993 A
5267856 Wolbarsht Dec 1993 A
5267995 Doiron et al. Dec 1993 A
5269777 Doiron et al. Dec 1993 A
5273713 Levy Dec 1993 A
5275564 Vassiliadis et al. Jan 1994 A
5281141 Kowalyk Jan 1994 A
5290274 Levy et al. Mar 1994 A
5292253 Levy Mar 1994 A
5295828 Grosrey Mar 1994 A
5304167 Freiberg Apr 1994 A
5306143 Levy Apr 1994 A
5307839 Loebker et al. May 1994 A
5310344 Vassiliadis et al. May 1994 A
5318562 Levy et al. Jun 1994 A
5322504 Doherty et al. Jun 1994 A
5324200 Vassiliadis et al. Jun 1994 A
5326263 Weissman Jul 1994 A
5326264 Al Kasem Jul 1994 A
5334016 Goldsmith et al. Aug 1994 A
5334019 Goldsmith et al. Aug 1994 A
5342196 Van Hale Aug 1994 A
5342198 Vassiliadis et al. Aug 1994 A
5374266 Kataoka et al. Dec 1994 A
5380201 Kawata Jan 1995 A
5387376 Gasser Feb 1995 A
5390204 Yessik et al. Feb 1995 A
D356866 Meller Mar 1995 S
5399089 Eichman et al. Mar 1995 A
5409376 Murphy Apr 1995 A
5415652 Mueller et al. May 1995 A
5422899 Freiberg et al. Jun 1995 A
5428699 Pon Jun 1995 A
5435724 Goodman et al. Jul 1995 A
5474451 Dalrymple et al. Dec 1995 A
5484283 Franetzki Jan 1996 A
5490779 Malmin Feb 1996 A
5503559 Vari Apr 1996 A
5507739 Vassiliadis et al. Apr 1996 A
5540587 Malmin Jul 1996 A
5545039 Mushabac Aug 1996 A
5547376 Harrel Aug 1996 A
5554896 Hogan Sep 1996 A
5562692 Bair Oct 1996 A
5564929 Alpert Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5591184 McDonnell et al. Jan 1997 A
5601430 Kutsch et al. Feb 1997 A
5611797 George Mar 1997 A
5620414 Campbell, Jr. Apr 1997 A
5621745 Yessik et al. Apr 1997 A
5622501 Levy Apr 1997 A
5639239 Earle Jun 1997 A
5642997 Gregg, II Jul 1997 A
5643299 Bair Jul 1997 A
5660817 Masterman et al. Aug 1997 A
5662501 Levy Sep 1997 A
5674226 Doherty et al. Oct 1997 A
5688486 Watson et al. Nov 1997 A
5720894 Neev et al. Feb 1998 A
5730727 Russo Mar 1998 A
5735815 Bair Apr 1998 A
5740291 De Lasa et al. Apr 1998 A
5741247 Rizoiu et al. Apr 1998 A
5748655 Yessik et al. May 1998 A
5755752 Segal May 1998 A
5759031 Goldsmith et al. Jun 1998 A
5759159 Masreliez Jun 1998 A
5762501 Levy Jun 1998 A
5785521 Rizoiu et al. Jul 1998 A
5795153 Rechmann Aug 1998 A
5797745 Ruddle Aug 1998 A
5810037 Sasaki et al. Sep 1998 A
5816807 Matsutani et al. Oct 1998 A
5820373 Okano et al. Oct 1998 A
5825958 Gollihar et al. Oct 1998 A
5832013 Yessik et al. Nov 1998 A
5839896 Hickok et al. Nov 1998 A
5842863 Bruns et al. Dec 1998 A
5846080 Schneider Dec 1998 A
5853384 Bair Dec 1998 A
5865790 Bair Feb 1999 A
5868570 Hickok et al. Feb 1999 A
5874677 Bab et al. Feb 1999 A
5879160 Ruddle Mar 1999 A
5885082 Levy Mar 1999 A
5897314 Hack et al. Apr 1999 A
5911711 Pelkey Jun 1999 A
5915965 Ohlsson et al. Jun 1999 A
5921775 Buchanan Jul 1999 A
5968037 Rizoiu et al. Oct 1999 A
5968039 Deutsch Oct 1999 A
5971755 Liebermann et al. Oct 1999 A
5975897 Propp et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6004319 Goble et al. Dec 1999 A
6019605 Myers Feb 2000 A
6022309 Celliers et al. Feb 2000 A
6030221 Jones et al. Feb 2000 A
6033431 Segal Mar 2000 A
6045516 Phelan Apr 2000 A
6053735 Buchanan Apr 2000 A
6079979 Riitano Jun 2000 A
6086367 Levy Jul 2000 A
6096029 O'Donnell, Jr. Aug 2000 A
6104853 Miyagi et al. Aug 2000 A
6106514 O'Donnell, Jr. Aug 2000 A
6122300 Frieberg et al. Sep 2000 A
6129721 Kataoka et al. Oct 2000 A
6139319 Sauer et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6143011 Hood et al. Nov 2000 A
D435651 Hartwein Dec 2000 S
6159006 Cook et al. Dec 2000 A
6162052 Kokubu Dec 2000 A
6162177 Bab et al. Dec 2000 A
6162202 Sicurelli et al. Dec 2000 A
6164966 Turdiu et al. Dec 2000 A
6179617 Ruddle Jan 2001 B1
6190318 Bab et al. Feb 2001 B1
6197020 O'Donnell, Jr. Mar 2001 B1
6213972 Butterfield et al. Apr 2001 B1
6221031 Heraud Apr 2001 B1
6224378 Valdes et al. May 2001 B1
6227855 Hickok et al. May 2001 B1
6231567 Rizoiu et al. May 2001 B1
6245032 Sauer et al. Jun 2001 B1
6254597 Rizoiu et al. Jul 2001 B1
6270342 Neuberger et al. Aug 2001 B1
6282013 Ostler et al. Aug 2001 B1
6288499 Rizoiu et al. Sep 2001 B1
6290502 Hugo Sep 2001 B1
6309340 Nakagawa Oct 2001 B1
6312440 Hood et al. Nov 2001 B1
6315557 Messick Nov 2001 B1
6315565 Slotke et al. Nov 2001 B1
6319002 Pond Nov 2001 B1
6343929 Fischer Feb 2002 B1
6350123 Rizoiu et al. Feb 2002 B1
6354660 Friedrich Mar 2002 B1
6386871 Rossell May 2002 B1
6389193 Kimmel et al. May 2002 B1
6390815 Pond May 2002 B1
6428319 Lopez et al. Aug 2002 B1
6440103 Hood et al. Aug 2002 B1
D463556 Bareth et al. Sep 2002 S
6454566 Lynch et al. Sep 2002 B1
6464498 Pond Oct 2002 B2
6485304 Beerstecher et al. Nov 2002 B2
6497572 Hood et al. Dec 2002 B2
6511493 Moutafis et al. Jan 2003 B1
6514077 Wilk Feb 2003 B1
6527766 Bair Mar 2003 B1
6533775 Rizoiu Mar 2003 B1
6538739 Visuri et al. Mar 2003 B1
6544256 Rizoiu et al. Apr 2003 B1
6561803 Rizoiu et al. May 2003 B1
6562050 Owen May 2003 B1
6567582 Rizoiu et al. May 2003 B1
6572709 Kaneda et al. Jun 2003 B1
6592371 Durbin et al. Jul 2003 B2
6602074 Suh et al. Aug 2003 B1
6610053 Rizoiu et al. Aug 2003 B1
6616447 Rizoiu et al. Sep 2003 B1
6616451 Rizolu et al. Sep 2003 B1
6638219 Asch et al. Oct 2003 B1
6641394 Garman Nov 2003 B2
6644972 Mays Nov 2003 B1
6663386 Moelsgaard Dec 2003 B1
6669685 Rizoiu et al. Dec 2003 B1
6676409 Grant Jan 2004 B2
6679837 Daikuzono Jan 2004 B2
6695686 Frohlich et al. Feb 2004 B1
6744790 Tilleman et al. Jun 2004 B1
6783364 Juan Aug 2004 B1
6817862 Hickok Nov 2004 B2
6821272 Rizoiu et al. Nov 2004 B2
D499486 Kuhn et al. Dec 2004 S
6827766 Carnes et al. Dec 2004 B2
6829427 Becker Dec 2004 B1
6881061 Fisher Apr 2005 B2
6886371 Arai et al. May 2005 B2
6893259 Reizenson May 2005 B1
6910887 Van Den Houdt Jun 2005 B2
6942658 Rizoiu et al. Sep 2005 B1
6948935 Nusstein Sep 2005 B2
6971878 Pond Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6981869 Ruddle Jan 2006 B2
6997714 Schoeffel Feb 2006 B1
7008224 Browning et al. Mar 2006 B1
7011521 Sierro et al. Mar 2006 B2
7011644 Andrew et al. Mar 2006 B1
7014465 Marais Mar 2006 B1
7029278 Pond Apr 2006 B2
7044737 Fu May 2006 B2
7068912 Becker Jun 2006 B1
7090497 Harris Aug 2006 B1
7108693 Rizoiu et al. Sep 2006 B2
7115100 McRury et al. Oct 2006 B2
7144249 Rizoiu et al. Dec 2006 B2
7147468 Snyder et al. Dec 2006 B2
7163400 Cozean et al. Jan 2007 B2
7187822 Rizoiu et al. Mar 2007 B2
7194180 Becker Mar 2007 B2
7226288 Schoeffel Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7238342 Torabinejad et al. Jul 2007 B2
7261558 Rizoiu et al. Aug 2007 B2
7261561 Ruddle et al. Aug 2007 B2
D550358 Nakanishi Sep 2007 S
7269306 Koeneman et al. Sep 2007 B1
7270544 Schemmer et al. Sep 2007 B2
7270657 Rizoiu et al. Sep 2007 B2
7288086 Andriasyan Oct 2007 B1
7290940 Boutoussov Nov 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7296318 Mourad et al. Nov 2007 B2
7303397 Boutoussov Dec 2007 B2
7306459 Williams et al. Dec 2007 B1
7306577 Lemoine et al. Dec 2007 B2
7320594 Rizoiu et al. Jan 2008 B1
7326054 Todd et al. Feb 2008 B2
7356208 Becker Apr 2008 B2
7356225 Loebel Apr 2008 B2
7384419 Jones et al. Jun 2008 B2
7415050 Rizoiu et al. Aug 2008 B2
7421186 Boutoussov et al. Sep 2008 B2
7424199 Rizoiu et al. Sep 2008 B2
7445618 Eggers et al. Nov 2008 B2
7448867 Aloise et al. Nov 2008 B2
7458380 Jones et al. Dec 2008 B2
7461658 Jones et al. Dec 2008 B2
7461982 Boutoussov et al. Dec 2008 B2
7467946 Rizoiu et al. Dec 2008 B2
7470124 Bornstein Dec 2008 B2
7485116 Cao Feb 2009 B2
7549861 Ruddle et al. Jun 2009 B2
7563226 Boutoussov Jul 2009 B2
7575381 Boutoussov Aug 2009 B2
7578622 Boutoussov Aug 2009 B2
7620290 Rizoiu et al. Nov 2009 B2
7621745 Bornstein Nov 2009 B2
7630420 Boutoussov Dec 2009 B2
7641668 Perry et al. Jan 2010 B2
7665467 Jones et al. Feb 2010 B2
7670141 Thomas et al. Mar 2010 B2
7695469 Boutoussov et al. Apr 2010 B2
7696466 Rizoiu et al. Apr 2010 B2
7697814 Rizoiu et al. Apr 2010 B2
7702196 Boutoussov et al. Apr 2010 B2
7748979 Nahlieli Jul 2010 B2
7751895 Jones et al. Jul 2010 B2
7766656 Feine Aug 2010 B1
7778306 Marincek et al. Aug 2010 B2
7815630 Rizoiu et al. Oct 2010 B2
7817687 Rizoiu et al. Oct 2010 B2
7833016 Gharib et al. Nov 2010 B2
7833017 Hof et al. Nov 2010 B2
7845944 DiGasbarro Dec 2010 B2
7867223 Van Valen Jan 2011 B2
7867224 Lukac et al. Jan 2011 B2
7878204 Van Valen Feb 2011 B2
7891363 Jones et al. Feb 2011 B2
7891977 Riva Feb 2011 B2
7901373 Tavger Mar 2011 B2
7909040 Jones et al. Mar 2011 B2
7909817 Griffin et al. Mar 2011 B2
7916282 Duineveld et al. Mar 2011 B2
7942667 Rizoiu et al. May 2011 B2
7957440 Boutoussov Jun 2011 B2
7959441 Glover et al. Jun 2011 B2
7967017 Jones et al. Jun 2011 B2
7970027 Rizoiu et al. Jun 2011 B2
7970030 Rizoiu et al. Jun 2011 B2
7980854 Glover et al. Jul 2011 B2
7980923 Olmo et al. Jul 2011 B2
7997279 Jones et al. Aug 2011 B2
7998136 Jones et al. Aug 2011 B2
8002544 Rizoiu et al. Aug 2011 B2
8011923 Lukac et al. Sep 2011 B2
8023795 Rizoiu et al. Sep 2011 B2
8033825 Rizoiu et al. Oct 2011 B2
8037566 Grez Oct 2011 B2
8047841 Jefferies Nov 2011 B2
8052627 Gromer et al. Nov 2011 B2
8056564 Jones et al. Nov 2011 B2
8062673 Figuly et al. Nov 2011 B2
8100482 Kito et al. Jan 2012 B2
8128401 Ruddle et al. Mar 2012 B2
8152797 Boutoussov et al. Apr 2012 B2
8204612 Feine et al. Jun 2012 B2
8221117 Rizoiu et al. Jul 2012 B2
8235719 Ruddle et al. Aug 2012 B2
8241035 Jones et al. Aug 2012 B2
8256431 Van Valen Sep 2012 B2
D669180 Takashi et al. Oct 2012 S
D669583 Kagawa Oct 2012 S
8276593 Jones et al. Oct 2012 B2
8295025 Edel et al. Oct 2012 B2
8297540 Vijay Oct 2012 B1
8298215 Zinn Oct 2012 B2
8317514 Weill Nov 2012 B2
8322910 Gansmuller et al. Dec 2012 B2
8328552 Ruddle Dec 2012 B2
8366702 Van Valen Feb 2013 B2
8371848 Okawa et al. Feb 2013 B2
8388345 Ruddle Mar 2013 B2
8403922 Boutoussov et al. Mar 2013 B2
8419719 Rizoiu et al. Apr 2013 B2
8439676 Florman May 2013 B2
8439904 Jones et al. May 2013 B2
8448645 Jones et al. May 2013 B2
8470035 Cruise et al. Jun 2013 B2
8474635 Johnson Jul 2013 B2
8479745 Rizoiu Jul 2013 B2
8485818 Boutoussov et al. Jul 2013 B2
8506293 Pond Aug 2013 B2
8525059 Berger et al. Sep 2013 B2
8544473 Rizoiu et al. Oct 2013 B2
8568392 Jones et al. Oct 2013 B2
8588268 Boutoussov et al. Nov 2013 B2
8602033 Jones et al. Dec 2013 B2
8603079 Van Valen Dec 2013 B2
8617090 Fougere et al. Dec 2013 B2
8653392 Berger et al. Feb 2014 B2
8672678 Gramann et al. Mar 2014 B2
D701971 Valen et al. Apr 2014 S
8684956 McDonough et al. Apr 2014 B2
8709057 Tettamanti et al. Apr 2014 B2
RE44917 Tuttle May 2014 E
8740957 Masotti Jun 2014 B2
8747005 Kemp et al. Jun 2014 B2
8753121 Gharib et al. Jun 2014 B2
8758010 Yamanaka et al. Jun 2014 B2
8764739 Boutoussov et al. Jul 2014 B2
8792251 Shih Jul 2014 B2
8801316 Abedini Aug 2014 B1
D713538 Van Valen et al. Sep 2014 S
8821483 Boutoussov et al. Sep 2014 B2
8827990 Van Valen et al. Sep 2014 B2
8834450 McCrary et al. Sep 2014 B1
8834457 Cao Sep 2014 B2
8926323 Mossle Jan 2015 B2
8944814 Mossle Feb 2015 B2
8977085 Walsh et al. Mar 2015 B2
8978930 Bublewitz et al. Mar 2015 B2
D726324 Duncan et al. Apr 2015 S
9022959 Fusi, II et al. May 2015 B2
9022961 Fougere et al. May 2015 B2
9025625 Skrabelj et al. May 2015 B2
9050157 Boyd et al. Jun 2015 B2
9052805 Boutoussov et al. Jun 2015 B2
9060845 Van Valen et al. Jun 2015 B2
9084651 Laufer Jul 2015 B2
9101377 Boutoussov et al. Aug 2015 B2
9186222 Marincek et al. Nov 2015 B2
D745966 Piorek et al. Dec 2015 S
9204946 Kotlarchik et al. Dec 2015 B2
9216073 McDonough et al. Dec 2015 B2
9308326 Hunter et al. Apr 2016 B2
9333060 Hunter May 2016 B2
9341184 Dion et al. May 2016 B2
9408781 Qian et al. Aug 2016 B2
9492244 Bergheim et al. Nov 2016 B2
9504536 Bergheim et al. Nov 2016 B2
9545295 Sung et al. Jan 2017 B2
9566129 Browning et al. Feb 2017 B2
9572632 Lukac et al. Feb 2017 B2
9579174 Yamamoto et al. Feb 2017 B2
9597168 Black et al. Mar 2017 B2
9603676 Bochi Mar 2017 B1
9610125 Kazic et al. Apr 2017 B2
9675426 Bergheim et al. Jun 2017 B2
9696893 Boutoussov et al. Jul 2017 B2
9700382 Pond et al. Jul 2017 B2
9700384 Yamamoto et al. Jul 2017 B2
9700394 Yamamoto et al. Jul 2017 B2
9713511 Lifshitz Jul 2017 B2
9730773 Uchitel et al. Aug 2017 B2
9743999 Policicchio Aug 2017 B2
9788899 Sivriver et al. Oct 2017 B2
9820827 Feine et al. Nov 2017 B2
9820834 Maxwell et al. Nov 2017 B2
9864485 Patton et al. Jan 2018 B2
9867997 Boutoussov et al. Jan 2018 B2
9872748 Schoeffel Jan 2018 B2
9877801 Khakpour et al. Jan 2018 B2
D812231 Duncan et al. Mar 2018 S
D813391 Duncan et al. Mar 2018 S
9931187 Fregoso et al. Apr 2018 B2
9956039 Boutoussov et al. May 2018 B2
9987200 Kishen Jun 2018 B2
10010388 Gharib et al. Jul 2018 B2
10016263 Gharib et al. Jul 2018 B2
D824935 Boutoussov et al. Aug 2018 S
10039625 Gharib et al. Aug 2018 B2
10039932 Van Valen Aug 2018 B2
10098708 Pond Oct 2018 B2
10098717 Bergheim et al. Oct 2018 B2
10105289 Guzman Oct 2018 B2
10130424 Boutoussov et al. Nov 2018 B2
10314671 Lifshitz et al. Jun 2019 B2
10321957 Boutoussov et al. Jun 2019 B2
10327866 Lifshitz et al. Jun 2019 B2
10335249 Hiemer et al. Jul 2019 B2
10363120 Khakpour et al. Jul 2019 B2
10420629 Buchanan Sep 2019 B2
10420630 Bergheim et al. Sep 2019 B2
10430061 Boutoussov et al. Oct 2019 B2
10450656 Sivriver et al. Oct 2019 B2
10518299 Lukac et al. Dec 2019 B2
10561560 Boutoussov et al. Feb 2020 B2
D881394 Classen et al. Apr 2020 S
10617498 Gharib et al. Apr 2020 B2
10631962 Bergheim et al. Apr 2020 B2
10702355 Bergheim et al. Jul 2020 B2
10722325 Khakpour et al. Jul 2020 B2
10729514 Buchanan Aug 2020 B2
D896827 Boutoussov et al. Sep 2020 S
10779908 Dresser et al. Sep 2020 B2
10779920 Buchanan Sep 2020 B2
10806543 Bergheim et al. Oct 2020 B2
10806544 Khakpour et al. Oct 2020 B2
10835355 Gharib et al. Nov 2020 B2
D903868 Goisser et al. Dec 2020 S
10877630 Patton et al. Dec 2020 B2
D923038 Boutoussov et al. Jun 2021 S
11103309 Boutoussov et al. Aug 2021 B2
11103333 Khakpour et al. Aug 2021 B2
11141249 Evans et al. Oct 2021 B2
11160455 Islam Nov 2021 B2
11160645 Bergheim et al. Nov 2021 B2
11173010 Boutoussov et al. Nov 2021 B2
11173019 Bergheim et al. Nov 2021 B2
11193209 Sivriver et al. Dec 2021 B2
11202687 Boutoussov et al. Dec 2021 B2
11213375 Khakpour et al. Jan 2022 B2
11250941 Patton et al. Feb 2022 B2
11284978 Bergheim et al. Mar 2022 B2
11350993 DiVito et al. Jun 2022 B2
11426239 DiVito et al. Aug 2022 B2
11547538 Ertl et al. Jan 2023 B2
11680141 Gomurashvili et al. Jun 2023 B2
11684421 DiVito et al. Jun 2023 B2
11701202 Khakpour et al. Jul 2023 B2
D997355 Schultz et al. Aug 2023 S
11801119 Al Shehadat Oct 2023 B2
11918432 Gharib et al. Mar 2024 B2
20010041324 Riitano Nov 2001 A1
20020012897 Tingley et al. Jan 2002 A1
20020014855 Rizoiu et al. Feb 2002 A1
20020072032 Senn et al. Jun 2002 A1
20020086264 Okawa et al. Jul 2002 A1
20020090594 Riitano et al. Jul 2002 A1
20020108614 Schultz Aug 2002 A1
20020142260 Pond Oct 2002 A1
20020168610 Papanek et al. Nov 2002 A1
20020183728 Rosenberg Dec 2002 A1
20030013063 Goldman Jan 2003 A1
20030013064 Zirkel Jan 2003 A1
20030022126 Buchalla et al. Jan 2003 A1
20030023234 Daikuzono Jan 2003 A1
20030027100 Grant Feb 2003 A1
20030096213 Hickok et al. May 2003 A1
20030121532 Coughlin et al. Jul 2003 A1
20030124485 Teraushi Jul 2003 A1
20030129560 Atkin Jul 2003 A1
20030158544 Slatkine Aug 2003 A1
20030191429 Andrew et al. Oct 2003 A1
20030207231 Nance Nov 2003 A1
20030207232 Todd et al. Nov 2003 A1
20030211083 Vogel et al. Nov 2003 A1
20030215768 Aumuller et al. Nov 2003 A1
20030236517 Appling Dec 2003 A1
20040038170 Hiszowicz et al. Feb 2004 A1
20040048226 Garman Mar 2004 A1
20040063073 Kajimoto et al. Apr 2004 A1
20040063074 Fisher Apr 2004 A1
20040068256 Rizoiu et al. Apr 2004 A1
20040072122 Hegemann Apr 2004 A1
20040073374 Lockhart et al. Apr 2004 A1
20040092925 Rizoiu et al. May 2004 A1
20040101809 Weiss et al. May 2004 A1
20040102782 Vercellotti et al. May 2004 A1
20040126732 Nusstein Jul 2004 A1
20040127892 Harris Jul 2004 A1
20040166473 Cohen Aug 2004 A1
20040193236 Altshuler Sep 2004 A1
20040210276 Altshuler et al. Oct 2004 A1
20040224288 Bornstein Nov 2004 A1
20040259053 Bekov Dec 2004 A1
20050064371 Soukos et al. Mar 2005 A1
20050065497 Levatino Mar 2005 A1
20050096529 Cooper et al. May 2005 A1
20050112525 McPherson et al. May 2005 A1
20050136375 Sicurelli et al. Jun 2005 A1
20050142517 Frysh et al. Jun 2005 A1
20050155622 Leis Jul 2005 A1
20050170312 Pond Aug 2005 A1
20050175960 Wiek et al. Aug 2005 A1
20050186530 Eagle Aug 2005 A1
20050199261 Vanhauwemeiren et al. Sep 2005 A1
20050256517 Boutoussov Nov 2005 A1
20050271531 Brown, Jr. et al. Dec 2005 A1
20050272001 Blain et al. Dec 2005 A1
20050277898 Dimalanta et al. Dec 2005 A1
20050281530 Rizoiu et al. Dec 2005 A1
20050281887 Rizoiu Dec 2005 A1
20050283143 Rizoiu Dec 2005 A1
20060019220 Loebel et al. Jan 2006 A1
20060021642 Sliwa et al. Feb 2006 A1
20060036172 Abe Feb 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060110710 Schemmer et al. May 2006 A1
20060142743 Rizoiu et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060142745 Boutoussov Jun 2006 A1
20060184071 Klopotek Aug 2006 A1
20060189965 Litvak et al. Aug 2006 A1
20060227653 Keller Oct 2006 A1
20060234182 Ruddle et al. Oct 2006 A1
20060234183 Ruddle et al. Oct 2006 A1
20060240381 Rizoiu et al. Oct 2006 A1
20060240386 Yaniv et al. Oct 2006 A1
20060241574 Rizoiu Oct 2006 A1
20060246395 Pond Nov 2006 A1
20060257819 Johnson Nov 2006 A1
20060264808 Staid et al. Nov 2006 A1
20070003604 Jones Jan 2007 A1
20070009449 Kanca Jan 2007 A1
20070014517 Rizoiu et al. Jan 2007 A1
20070016176 Boutoussov et al. Jan 2007 A1
20070016177 Vaynberg et al. Jan 2007 A1
20070016178 Vaynberg et al. Jan 2007 A1
20070020576 Osborn et al. Jan 2007 A1
20070042315 Boutoussov et al. Feb 2007 A1
20070042316 Pichat et al. Feb 2007 A1
20070049911 Brown Mar 2007 A1
20070054233 Rizoiu et al. Mar 2007 A1
20070054235 Rizoiu et al. Mar 2007 A1
20070054236 Rizoiu et al. Mar 2007 A1
20070059660 Rizoiu et al. Mar 2007 A1
20070060917 Andriasyan Mar 2007 A1
20070072153 Gross et al. Mar 2007 A1
20070083120 Cain et al. Apr 2007 A1
20070087303 Papanek et al. Apr 2007 A1
20070088295 Bankiewicz Apr 2007 A1
20070099149 Levy et al. May 2007 A1
20070104419 Rizoiu et al. May 2007 A1
20070128576 Boutoussov Jun 2007 A1
20070135797 Hood et al. Jun 2007 A1
20070148615 Pond Jun 2007 A1
20070175502 Sliwa Aug 2007 A1
20070179486 Welch et al. Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070190482 Rizoiu Aug 2007 A1
20070208328 Boutoussov et al. Sep 2007 A1
20070224575 Dieras et al. Sep 2007 A1
20070265605 Vaynberg et al. Nov 2007 A1
20070287125 Weill Dec 2007 A1
20070298369 Rizoiu et al. Dec 2007 A1
20080014545 Schippers Jan 2008 A1
20080032259 Schoeffel Feb 2008 A1
20080033411 Manvel Artyom et al. Feb 2008 A1
20080044789 Johnson Feb 2008 A1
20080065057 Andriasyan Mar 2008 A1
20080070185 Rizoiu et al. Mar 2008 A1
20080070195 DiVito et al. Mar 2008 A1
20080085490 Jabri Apr 2008 A1
20080097417 Jones et al. Apr 2008 A1
20080102416 Karazivan et al. May 2008 A1
20080125677 Van Valen May 2008 A1
20080138761 Pond Jun 2008 A1
20080138764 Rizoiu Jun 2008 A1
20080138772 Bornstein Jun 2008 A1
20080151953 Rizoiu et al. Jun 2008 A1
20080155770 Grez Jul 2008 A1
20080157690 Rizoiu et al. Jul 2008 A1
20080159345 Bornstein Jul 2008 A1
20080160479 Ruddle et al. Jul 2008 A1
20080160480 Ruddle et al. Jul 2008 A1
20080160481 Schoeffel Jul 2008 A1
20080188848 Deutmeyer et al. Aug 2008 A1
20080199831 Teichert et al. Aug 2008 A1
20080209650 Brewer et al. Sep 2008 A1
20080219629 Rizoiu et al. Sep 2008 A1
20080221558 Becker Sep 2008 A1
20080255498 Houle Oct 2008 A1
20080274438 Schemmer Nov 2008 A1
20080276192 Jones et al. Nov 2008 A1
20080285600 Marincek et al. Nov 2008 A1
20080311045 Hardy Dec 2008 A1
20080311540 Gottenbos et al. Dec 2008 A1
20080314199 Niemi et al. Dec 2008 A1
20090004621 Quan et al. Jan 2009 A1
20090011380 Wang Jan 2009 A1
20090031515 Rizoiu et al. Feb 2009 A1
20090035717 Rizoiu et al. Feb 2009 A1
20090042171 Rizoiu Feb 2009 A1
20090047624 Tsai Feb 2009 A1
20090047634 Calvert Feb 2009 A1
20090054881 Krespi Feb 2009 A1
20090059994 Nemes et al. Mar 2009 A1
20090067189 Boutoussov et al. Mar 2009 A1
20090092947 Cao Apr 2009 A1
20090105597 Abraham Apr 2009 A1
20090105707 Rizoiu et al. Apr 2009 A1
20090111068 Martinez Apr 2009 A1
20090111069 Wagner Apr 2009 A1
20090130622 Bollinger May 2009 A1
20090143775 Rizoiu et al. Jun 2009 A1
20090170052 Borczyk Jul 2009 A1
20090208898 Kaplan Aug 2009 A1
20090211042 Bock Aug 2009 A1
20090225060 Rizoiu et al. Sep 2009 A1
20090227185 Summers et al. Sep 2009 A1
20090263759 Van Herpern Oct 2009 A1
20090275935 McKee Nov 2009 A1
20090281531 Rizoiu et al. Nov 2009 A1
20090298004 Rizoiu Dec 2009 A1
20100015576 Altshuler et al. Jan 2010 A1
20100042040 Arentz Feb 2010 A1
20100047734 Harris et al. Feb 2010 A1
20100068679 Zappini Mar 2010 A1
20100086892 Riozoui et al. Apr 2010 A1
20100092922 Ruddle Apr 2010 A1
20100125291 Rizoiu et al. May 2010 A1
20100143861 Gharib Jun 2010 A1
20100151406 Boutoussov et al. Jun 2010 A1
20100151407 Rizoiu et al. Jun 2010 A1
20100152634 Dove Jun 2010 A1
20100160838 Krespi Jun 2010 A1
20100160904 McMillan et al. Jun 2010 A1
20100167226 Altshuler et al. Jul 2010 A1
20100167228 Rizoiu et al. Jul 2010 A1
20100185188 Boutoussov et al. Jul 2010 A1
20100190133 Martinez Jul 2010 A1
20100206324 Paschke Aug 2010 A1
20100209867 Becker et al. Aug 2010 A1
20100229316 Hohlbein et al. Sep 2010 A1
20100233645 Rizoiu Sep 2010 A1
20100233649 McPeek et al. Sep 2010 A1
20100261136 Schulte et al. Oct 2010 A1
20100272764 Latta et al. Oct 2010 A1
20100273125 Janssen et al. Oct 2010 A1
20100279250 Pond et al. Nov 2010 A1
20100279251 Pond Nov 2010 A1
20100330539 Glover et al. Dec 2010 A1
20110020765 Maxwell et al. Jan 2011 A1
20110027746 McDonough et al. Feb 2011 A1
20110027747 Fougere et al. Feb 2011 A1
20110046262 Bublewitz et al. Feb 2011 A1
20110070552 Bornstein Mar 2011 A1
20110072605 Steur Mar 2011 A1
20110076638 Gottenbos et al. Mar 2011 A1
20110087605 Pond Apr 2011 A1
20110096549 Boutoussov et al. Apr 2011 A1
20110111365 Gharib et al. May 2011 A1
20110129789 Rizoiu et al. Jun 2011 A1
20110136935 Khor et al. Jun 2011 A1
20110143310 Hunter Jun 2011 A1
20110151394 Rizoiu et al. Jun 2011 A1
20110183284 Yamanaka et al. Jul 2011 A1
20110189627 Gharib et al. Aug 2011 A1
20110189630 Koubi Aug 2011 A1
20110198370 Ho Aug 2011 A1
20110200959 Rizoiu et al. Aug 2011 A1
20110217665 Walsh et al. Sep 2011 A1
20110229845 Chen Sep 2011 A1
20110256503 Fraser Oct 2011 A1
20110269099 Glover et al. Nov 2011 A1
20110270241 Boutoussov Nov 2011 A1
20110281230 Rizoiu et al. Nov 2011 A1
20110281231 Rizoiu et al. Nov 2011 A1
20120065711 Netchitailo et al. Mar 2012 A1
20120077144 Fougere et al. Mar 2012 A1
20120094251 Mössle Apr 2012 A1
20120099815 Boutoussov et al. Apr 2012 A1
20120135368 Rizoiu et al. May 2012 A1
20120135373 Cheng et al. May 2012 A1
20120141953 Mueller Jun 2012 A1
20120148979 Ruddle Jun 2012 A1
20120240647 Montemurro Sep 2012 A1
20120276497 Gharib Nov 2012 A1
20120282566 Rizoiu et al. Nov 2012 A1
20120282570 Mueller Nov 2012 A1
20120021375 Binner et al. Dec 2012 A1
20130040267 Bergheim Feb 2013 A1
20130066324 Engqvist et al. Mar 2013 A1
20130084544 Boutoussov et al. Apr 2013 A1
20130084545 Netchitailo et al. Apr 2013 A1
20130085485 Van Valen et al. Apr 2013 A1
20130085486 Boutoussov et al. Apr 2013 A1
20130086758 Boutoussov et al. Apr 2013 A1
20130089829 Boutoussov et al. Apr 2013 A1
20130110101 Van Valen et al. May 2013 A1
20130115568 Jelovac et al. May 2013 A1
20130131656 Marincek et al. May 2013 A1
20130143180 Glover et al. Jun 2013 A1
20130177865 Ostler Jul 2013 A1
20130178847 Rizoiu et al. Jul 2013 A1
20130190738 Lukac et al. Jul 2013 A1
20130190743 Boutoussov et al. Jul 2013 A1
20130216980 Boronkay et al. Aug 2013 A1
20130236857 Boutoussov et al. Sep 2013 A1
20130273494 Boutoussov et al. Oct 2013 A1
20130274724 Rizoiu Oct 2013 A1
20130288195 Mueller Oct 2013 A1
20130296910 Deng Nov 2013 A1
20130330684 Dillon et al. Dec 2013 A1
20130337404 Feine Dec 2013 A1
20140032183 Fisker et al. Jan 2014 A1
20140072931 Fougere et al. Mar 2014 A1
20140080090 Laufer Mar 2014 A1
20140087333 DiVito et al. Mar 2014 A1
20140113243 Boutoussov et al. Apr 2014 A1
20140124969 Blaisdell et al. May 2014 A1
20140127641 Hilscher et al. May 2014 A1
20140134965 Karmi et al. May 2014 A1
20140147804 Yamamoto et al. May 2014 A1
20140170588 Miller et al. Jun 2014 A1
20140205965 Boutoussov et al. Jul 2014 A1
20140220511 DiVito et al. Aug 2014 A1
20140242551 Downs Aug 2014 A1
20140257254 Boutoussov et al. Sep 2014 A1
20140261534 Schepis Sep 2014 A1
20140272782 Luettgen et al. Sep 2014 A1
20140303692 Pignatelli et al. Oct 2014 A1
20140342303 Altshuler et al. Nov 2014 A1
20140349246 Johnson et al. Nov 2014 A1
20150010878 Seibel et al. Jan 2015 A1
20150017599 Marincek et al. Jan 2015 A1
20150017607 Nelson et al. Jan 2015 A1
20150030991 Sung et al. Jan 2015 A1
20150044630 Gharib et al. Feb 2015 A1
20150056567 Fregoso et al. Feb 2015 A1
20150056570 Kansal Feb 2015 A1
20150126984 Boutoussov et al. May 2015 A1
20150147715 Breysse May 2015 A1
20150147717 Taylor et al. May 2015 A1
20150150650 Netchitailo et al. Jun 2015 A1
20150173850 Garrigues et al. Jun 2015 A1
20150182283 Boutoussov et al. Jul 2015 A1
20150190597 Zachar et al. Jul 2015 A1
20150216398 Yang et al. Aug 2015 A1
20150216597 Boutoussov et al. Aug 2015 A1
20150216622 Vartanian et al. Aug 2015 A1
20150230865 Sivriver et al. Aug 2015 A1
20150268803 Patton et al. Sep 2015 A1
20150277738 Boutoussov et al. Oct 2015 A1
20150283277 Schafer et al. Oct 2015 A1
20150327964 Bock Nov 2015 A1
20150335410 Zhao Nov 2015 A1
20150342679 Boutoussov et al. Dec 2015 A1
20150359672 Van Valen et al. Dec 2015 A1
20150367142 Kazic et al. Dec 2015 A1
20150374471 Stangel et al. Dec 2015 A1
20160022392 Chang et al. Jan 2016 A1
20160067149 Kishen Mar 2016 A1
20160100921 Ungar Apr 2016 A1
20160113733 Pond et al. Apr 2016 A1
20160113745 Golub et al. Apr 2016 A1
20160128815 Birdee et al. May 2016 A1
20160135581 Pai May 2016 A1
20160149370 Marincek et al. May 2016 A1
20160149372 Marincek et al. May 2016 A1
20160220200 Sandholm et al. Aug 2016 A1
20160270889 Casabonne et al. Sep 2016 A1
20160334283 Scurtescu et al. Nov 2016 A1
20170027646 DivVito et al. Feb 2017 A1
20170036253 Lukac et al. Feb 2017 A1
20170056143 Hyun Mar 2017 A1
20170189149 Golub et al. Jul 2017 A1
20170196658 Schoeffel Jul 2017 A1
20170197071 Gottenbos Jul 2017 A1
20170216579 Becker et al. Aug 2017 A1
20170265965 Chow et al. Sep 2017 A1
20170274220 Ertl et al. Sep 2017 A1
20170281305 Bergheim Oct 2017 A1
20170300220 Boutoussov et al. Oct 2017 A1
20170325889 DiVito et al. Nov 2017 A1
20170340523 Guzman Nov 2017 A1
20180008347 DeVito et al. Jan 2018 A9
20180021104 Duncan et al. Jan 2018 A1
20180104020 Boutoussov et al. Apr 2018 A1
20180125608 Gottenbos et al. May 2018 A1
20180140865 Boutoussov et al. May 2018 A1
20180214247 Sharma et al. Aug 2018 A1
20180228581 Ouyang Aug 2018 A1
20180228582 Shin Aug 2018 A1
20180257962 Montemurro Sep 2018 A1
20180360563 Khakpour Dec 2018 A1
20190059996 Duncan et al. Feb 2019 A1
20190117078 Sharma et al. Apr 2019 A1
20190142516 Boutoussov et al. May 2019 A1
20190175401 Van Valen et al. Jun 2019 A1
20190282332 Lifshitz et al. Sep 2019 A1
20190282347 Gharib et al. Sep 2019 A1
20190336219 DiVito Nov 2019 A9
20200069402 Gharib Mar 2020 A1
20200085534 Kim et al. Mar 2020 A1
20200139146 Khakpour May 2020 A1
20200179209 Boutoussov et al. Jun 2020 A1
20200197143 Snyder et al. Jun 2020 A1
20200205934 Groves, Jr. et al. Jul 2020 A1
20200253369 De Gentile et al. Aug 2020 A1
20200253702 De Gentile et al. Aug 2020 A1
20200254586 Sanders et al. Aug 2020 A1
20200268491 Shotton et al. Aug 2020 A1
20200281688 Lares et al. Sep 2020 A1
20200297455 Bergheim Sep 2020 A1
20200330184 Boutoussov et al. Oct 2020 A1
20200347191 Gomurashvili Nov 2020 A1
20200360108 Gomurashvili et al. Nov 2020 A1
20210038344 Khakpour Feb 2021 A1
20210068921 Bergheim Mar 2021 A1
20210069756 Lukac et al. Mar 2021 A1
20210077234 Gharib et al. Mar 2021 A1
20210082562 Patton et al. Mar 2021 A1
20210085435 Bergheim Mar 2021 A1
20210106402 Khakpour et al. Apr 2021 A1
20210121275 Parham et al. Apr 2021 A1
20210145538 Boutoussov et al. May 2021 A1
20210153937 Duncan et al. May 2021 A1
20210186824 Gomurashvili et al. Jun 2021 A1
20210386510 Li et al. Dec 2021 A1
20210386532 Khakpour et al. Dec 2021 A1
20220015829 Boutoussov et al. Jan 2022 A1
20220022961 Boutoussov et al. Jan 2022 A1
20220031548 Boutoussov et al. Feb 2022 A1
20220054230 Lifshitz et al. Feb 2022 A1
20220071735 Boutoussov et al. Mar 2022 A1
20220186376 Sivriver et al. Jun 2022 A1
20220202525 Boutoussov et al. Jun 2022 A1
20220208334 Patton et al. Jun 2022 A1
20220233291 DeZan et al. Jul 2022 A1
20220296346 Bergheim et al. Sep 2022 A1
20220313405 Bergheim et al. Oct 2022 A1
20220370177 Khakpour et al. Nov 2022 A1
20230022589 Bergheim et al. Jan 2023 A1
20230028923 Gharib et al. Jan 2023 A1
20230310132 Khakpour et al. Oct 2023 A1
20240016706 Gomurashvili et al. Jan 2024 A1
Foreign Referenced Citations (86)
Number Date Country
2031739 Jun 1991 CA
2771397 Feb 2011 CA
2189448 Feb 1995 CN
1127982 Jul 1996 CN
2693189 Apr 2005 CN
2936192 Aug 2007 CN
200953143 Oct 2007 CN
201070397 Jun 2008 CN
201370644 Dec 2009 CN
101632849 Jan 2010 CN
103027762 Apr 2013 CN
107080697 Aug 2017 CN
107411976 Dec 2017 CN
3708801 Sep 1988 DE
4404983 Sep 1994 DE
10248336 May 2004 DE
102005028925 Jan 2007 DE
0261466 Mar 1988 EP
0436316 Jul 1991 EP
0685454 Dec 1995 EP
0830852 Mar 1998 EP
0902654 Aug 2004 EP
1886659 Feb 2008 EP
1225547 Jul 1960 FR
2831050 Apr 2003 FR
917633 Feb 1963 GB
2011305 Jul 1979 GB
51-064791 Apr 1976 JP
01-313048 Dec 1989 JP
05-169039 Sep 1993 JP
H07155335 Jun 1995 JP
H08-117335 May 1996 JP
H08-1118 Sep 1996 JP
09-84809 Mar 1997 JP
09-276292 Oct 1997 JP
10-33548 Feb 1998 JP
H11-28219 Feb 1999 JP
11-113927 Apr 1999 JP
H11-504843 May 1999 JP
11-244303 Sep 1999 JP
2000-254153 Sep 2000 JP
2002-209911 Jul 2002 JP
2004-313659 Nov 2003 JP
3535685 Jun 2004 JP
2004-261288 Sep 2004 JP
2005-052754 Mar 2005 JP
2005-080802 Mar 2005 JP
2005-095374 Apr 2005 JP
2006-247619 Sep 2006 JP
2008-93080 Apr 2008 JP
2008-132099 Jun 2008 JP
2009-114953 May 2009 JP
2010-247133 Nov 2010 JP
10-2008-0105713 Dec 2008 KR
10-2012-0084897 Jul 2012 KR
10-2013-0022553 Mar 2013 KR
10-2013-0141103 Dec 2013 KR
2004-72508 May 2014 KR
2326611 Dec 2011 RU
M 336 027 Jul 2008 TW
WO 1992004871 Apr 1992 WO
WO 1992012685 Aug 1992 WO
WO 1995035069 Dec 1995 WO
WO 1997021420 Jun 1997 WO
WO 1998023219 Jun 1998 WO
WO 1998025536 Jun 1998 WO
WO 199963904 Dec 1999 WO
WO 2000045731 Aug 2000 WO
WO 2000074587 Dec 2000 WO
WO 2001026577 Apr 2001 WO
WO 200126735 Apr 2001 WO
WO 2001036117 May 2001 WO
WO 200193773 Dec 2001 WO
WO 2002078644 Oct 2002 WO
WO 2003086223 Oct 2003 WO
WO 2004032881 Apr 2004 WO
WO 2006082101 Aug 2006 WO
WO 2008120018 Oct 2008 WO
WO 2009151983 Dec 2009 WO
WO 2011114718 Sep 2011 WO
WO 2012074918 Jun 2012 WO
WO 201315700 Jan 2013 WO
WO 2013057519 Apr 2013 WO
WO 2013061251 May 2013 WO
WO 2013160888 Oct 2013 WO
WO 2022099258 May 2022 WO
Non-Patent Literature Citations (298)
Entry
US 11,612,435 B2, 03/2023, DiVito et al. (withdrawn)
U.S. Appl. No. 16/160,799, filed Oct. 15, 2018, Bergheim et al.
U.S. Appl. No. 17/452,731, filed Oct. 28, 2021, Bergheim et al.
U.S. Appl. No. 17/454,725, filed Nov. 12, 2021, Bergeim et al.
U.S. Appl. No. 17/562,798, filed Dec. 27, 2021, Khakpour et al.
U.S. Appl. No. 61/701,947, filed Sep. 17, 2012, Laufer.
U.S. Appl. No. 61/894,762, filed Oct. 23, 2013, Lifshitz et al.
U.S. Appl. No. 61/895,316, filed Oct. 24, 2013, Lifshitz et al.
Abad-Gallegos et al, “In vitro evaluation of the temperature increment at the external root surface after Er,Cr:YSGG laser irradiation of the root canal”, Med Oral Patol Oral Cir Bucal, vol. 14(12):658-662 (2009).
Abdelkarim-Elafifi et al., “Aerosols generation using Er,Cr:YSGG laser compared to rotary instruments in conservative dentistry: A preliminary study”, J Clin Exp Dent, vol. 13(1):e30-6 (2021).
ADA American Dental Association, “Glossary of Dental Clinical and Administrative Terms,” http://www.ada.org/en/publications/cdt/glossary-of-dental-clinical-and-administrative-ter, downloaded May 4, 2017, in 46 pages.
Adachi et al; Jet Structure Analyses on High-Speed Submerged Water Jets through Cavitation 110 Noises; pp. 568-574; The Japan Society of Mechanical Engineers International Journal—Series B, vol. 39, No. 3; Nov. 1996.
Ahmad et al., “Ultrasonic Debridement of Root Canals: Acoustic Cavitation and Its Relevance,” Journal of Endontics, vol. 14, No. 10, pp. 486-493, Oct. 1988.
Al-Jadaa et al; Acoustic Hypochlorite Activation in Simulated Curved Canals; pp. 1408-1411; Journal of Endodontics, vol. 35, No. 10; Oct. 2009.
Alomairy, Evaluating two techniques on removal of fractured rotary nickel-titanium endodontic instruments from root canals: an in vitro study. J Endod 2009;35:559-62.
Altundasar et al., “Ultramorphological and histochemical changes after ER,CR:YSGG laser irradiation and two different irrigation regimes”, Basic Research—Technology, vol. 32(5):465-468 (2006).
Anand et al; Prevention of Nozzle Wear in High-Speed Slurry Jets Using Porous Lubricated Nozzles; pp. 1-13; Department of Mechanical Engineering, The Johns Hopkins University, Oct. 2000.
Anantharamaiah et al; A simple expression for predicting the inlet roundness of micro-nozzles; pp. N31-N39; Journal of Micromechanics and Microengineering, vol. 17; Mar. 21, 2007.
Anantharamaiah et al; A study on flow through hydroentangling nozzles and their degradation; pp. 4582-4594; Chemical Engineering Science, vol. 61; May 2006.
Anantharamaiah et al; Numerical Simulation of the Formation of Constricted Waterjets in Hydroentangling Nozzles Effects of Nozzle Geometry; pp. 31-238; Chemical Engineering Research and Design, vol. 84; Mar. 2006.
Arnabat et al., “Bactericidal activity of erbium, chromium: yttrium-scandium-gallium-garnet laser in root canals”, Lasers Med Sci vol. 25:805-810 (2010).
Attin et al; Clinical evaluation of the cleansing properties of the nonistrumental technique for cleaning root canals; pp. 929-933; International Endodontic Journal, vol. 35, Issue 11; Nov. 2002.
Aydin, et al., “Fracture resistance of root-filled teeth after cavity preparation with conventional burs, Er:YAG and Er,Cr:YSGG Lasers,” Eur Oral Res 2018; 52: 59-63.
Aydin et al., “Efficacy of erbium, chromium-doped yttrium, scandium, gallium and garnet laser-activated irrigation compared with passive ultrasonic irrigation, conventional irrigation, and photodynamic therapy against Enterococcus faecalis”, ResearchGate, https://www.researchgate.net/publication/338906248, Article in The Journal of Contemporary Dental Practice, Jan. 2020.
Bader et al., “Indications and limitations of Er:YAG laser applications in dentistry,” archive ouverte UNIGE, http://archive-ouverte.unige.ch. American Journal of Denistry, 2006, vol. 19, No. 3, p. 178-186.
Bahia, et al.: Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments. Int Endod. J. 2005;38:795-801.
Batchelor et al; Analysis of the stability of axisymmetric jets; pp. 529-551; Journal of Fluid Mechanics, vol. 14; Dec. 1962.
Beader et al., “Efficacy of three different lasers on eradication of Enterococcus faecalis and Candida albicans biofilms in root canal system”, ResearchGate, https://www.researchgate.net/publication/316287465, Article in Photomedicine and Laser Surgery, Apr. 2017.
Begenir et al; Effect of Nozzle Geometry on Hydroentangling Water Jets: Experimental Observations; pp. 178-184; Textile Research Journal, vol. 74; Feb. 2004.
Begenir, Asli; The Role of Orifice Design in Hydroentanglement; Thesis submitted to North Carolina State University; dated Dec. 2002, in 107 pages.
Betancourt et al., “Er,Cr:YSGG laser-activated irrigation and passive ultrasonic irrigation: comparison of two strategies for root canal disinfection”, Photobiomodulation, Photomedicine, and Laser Surgery, vol. 383(2):91-97 (2020).
Betancourt et al., “ER/Cr:YSGG laser-activation enhances antimicrobial and antibiofilm action of low concentrations of sodium hypochlorite in root canals”, Antibiotics, vol. 8(232):1-10 (2019).
Biolase Study, Efficacy of the Er,Cr:YSGG laser in the Laser Assisted Endodontic Treatment, BlindRandomized Clinical Trial, in 332 pages, Apr. 11, 2014. URL: https://repositorio-aberto.up.pt/handle/10216/82757.
Bolhari et al., “Efficacy of Er,Cr:YSGG laser in removing smear layer and debris with two different output powers”, Photomedicine and Laser Surgery, vol. 32(10):527-532 (2014).
Borkent et al; Is there gas entrapped on submerged silicon wafers? Visualizing nano-scale bubbles with cavitation; pp. 225-228; Solid State Phenomena, vol. 134 (2008); available online Nov. 2007.
Bornstein, Eric. “Proper use of Er: YAG lasers and contact sapphire tips when cutting teeth and bone: scientific principles and clinical application.” Dentistry today 23.8 (2004): 84-89.
Bremond et al; Cavitation on surfaces; pp. S3603-S3608; Journal of Physics: Condensed Matter, vol. 17; Oct. 28, 2005.
Brennen, Christopher E.; Fission of collapsing cavitation bubbles; pp. 153-166; Journal of Fluid Mechanics, vol. 472; Dec. 2002.
Buchanan, “Closed-System Negative Pressure Irrigation: A Serious Inflection Point inRoot Canal Cleaning,” Apr. 1, 2020. https://www.dentistrytoday.com/articles/10666.
Chang et al; Effects of Inlet Surface Roughness, Texture, and Nozzle Material on Cavitation; pp. 299-317; Atomization and Sprays, vol. 16 (2006).
Charara, et al.: “Assessment of apical extrusion during root canal procedure with the novel GentleWave system in a simulated apical environment,” J Endod 2015. In Press.
Cheng et al., “Evaluation of the bactericidal effect of Nd:YAG, Er:YAG, Er,Cr:YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals”, Lasers in Surgery and Medicine, vol. 44:824-831 (2012).
Christo, Jonathan Dr., “Efficacy of Sodium Hypochlorite and Er,Cr:YSGG Laser Energised Irrigation Against an Enterococcus faecalis Biofilm”, Sep. 2012.
Christo et al., “Efficacy of low concentrations of sodium hypochlorite and low-powered Er,Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm”, International Endodontic Journal, vol. 49:279-286 (2016).
Crump et al., “Relationship of broken root canal instruments to endodontic case prognosis: a clinical investigation,” J Am Dent Assoc 1970;80:1341-7.
Culjat et al., “B-Scan Imaging of Human Teeth Using Ultrasound,” Apr. 2003, in 4 pages.
D'Arcangelo, et al.: “Broken instrument removal—two cases,” J Endod 2000;26:368-70.
De Groot, et al., “Laser-activated irrigation within root canals: cleaning efficacy and flow visualization,” Int Endod J. 2009;42:1077-83.
De Moor et al., “Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: Evaluation of the efficacy”, Lasers in Surgery and Medicine, vol. 41:520-523 (2009).
De Moor et al., “Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs”, Basic Research Technology, JOE vol. 36(9):1580-1583 (2010).
Dewsnup et al., “Comparison of bacterial reduction in straight and curved canals using erbium, chromium: Yttrium-Scandium-Gallium-Garnet laser treatment versus a traditional irrigation technique with sodium hypochlorite”, Basich Research—Technology, JOE, vol. 36(4):725-728 (2010).
Didenkulov et al; Nonlinear Acoustic Diagnostics of Scatterer Spatial Distribution in a Cavitation Jet; Nov. 19-23, 2001, pp. 276-278, XI Session of the Russion Acoustical Society.
Divito et al.: “Cleaning and debriding efficacy of new radial and stripped tips using an Erbium laser on human root canal dentin walls—an in vitro study: SEM observations,” undated.
Divito et al., “The Photoacoustic Efficacy of an Er:YAG Laser with Radial and Stripped Tips on Root Canal Dentin Walls: An SEM Evaluation,” J Laser Dent 2011;19(1):156-161.
Dumouchel, Christophe; On the experimental investigation on primary atomization of liquid streams; pp. 371-422; Experimental Fluids, vol. 45; Jun. 22, 2008.
Ebihara et al.: “Er:YAG laser modification of root canal dentine: Influence of pulse duration, repetitive irradiation and water spray,” Lasers in Medical Science, 17(3), 198-207, Aug. 2002.
Eddingfield et al; Mathematical Modeling of High Velocity Water Jets; pp. 25-39; Proceedings of 1st U.S. Water Jet Conference; 1981.
El-Din, et al., “Antibacterial Effect of Er,Cr:YSGG Laser Under Various Irradiation Conditions in Root Canals Contaminated With Enterococcus faecalis,” Alexandria Dental Journal. (2017) vol. 42 pp. 108-112.
EMS Electro Medical Systems, “Cleaning”, in 2 pages, dated 2005, downloaded from http://www.ems-dent.com/en/endodontics cleaning. htm.
Erken, “Evaluation of apically extruded debris using two niti systems associated with two irrigation techniques in primary teeth”, ResearchGate, https://www.researchgate.net/publication/310465261, The Journal of Clinical Pediatric Dentistry, Nov. 2016.
Esen, et al.: “Apical microleakage of root-end cavities prepared by CO2 laser,” J Endod 2004;30:662-4.
ESI Endo Soft Instruments, EMS Electro Medical Systems, Brochure in 2 pages, downloaded from www.emsdent.com, dated Jan. 2004.
Feldman, et al.: “Retrieving broken endodontic instruments,” J Am Dent Assoc. 1974:88:588-91.
Feng et al; Enhancement of ultrasonic cavitation yield by multi-frequency sonication; pp. 231-236; Ultrasonics Sonochemistry, vol. 9; Oct. 2002.
Flint, E. B., et al., “The Temperature of Cavitation”, Science, vol. 253, Sep. 20, 1991, pp. 1397-1399.
Foldyna et al; Acoustic wave propagation in high-pressure system; pp. e1457-e1460; Ultrasonics vol. 44 (Supplement 1); Jun. 8, 2006.
Fors, et al.: “A method for the removal of broken endodontic instruments from root canals,” J Endod 1983;9:156-9.
Fuchs, “Ultrasonic Cleaning: Fundamental Theory and Application,” Blackstone—Ney Ultrasonics, Jamestown, NY, May 2002.
G.E. Reisman and C.E. Brennen, “Pressure Pulses Generated by Cloud Cavitation”, FED—vol. 236, 1996 Fluids Engineering Division Conference, vol. 1, pp. 319-328, ASME 1996.
G.E. Reisman, Y.-C. Wang and C.E. Brennen, “Observations of shock waves in cloud cavitation”, J. Fluid Mech. (1998), vol. 355, pp. 255-283.
Gencoglu, et al.: Comparison of the different techniques to remove fractured endodontic instruments from root canal systems. Eur J Dent 2009;3:90-5.
George, M.D.Sc., Ph.D, et al., “Thermal Effects from Modified Endodontic Laser Tips Used in the Apical Third of Root Canals with Erbium-Doped Yttrium Aluminium Garnet and Erbium, Chromium-Doped Yttrium Scandium Gallium Garnet Lasers,” Photomedicine and Laser Surgery vol. 28, No. 2, 2010, ª Mary Ann Liebert, Inc., pp. 161-165.
George et al., “Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal”, Basic Research—Technology, JOE, vol. 34(12):1524-1521 (2008).
George et al., Apical extrusion of root canal irrigants when using Er:YAG and ER,Cr:YSGG lasers with optical fibers: An in vitro dye study, Basic Research—Technology, JOE, vol. 34(6):706-708 (2008).
Ghassemieh et al; Effect of Nozzle Geometry on the Flow Characteristics of Hydroentangling Jets; pp. 444-450; Textile Research Journal, vol. 73; May 2003.
Ghassemieh et al; The effect of nozzle geometry on the flow characteristics of small water jets; pp. 1739-1753; Proceedings of the Institute of Mechanical Engineers, Part C: Mechanical Engineering Science, vol. 12, Sep. 2006.
Gordon, DMD, et al., “The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with radial emitting tips on root canal dentin walls infected with Enterococcus faecalis,” Research—Advances in Dental Products, JADA, vol. 138, Jul. 2007. RFT endolase, Root Calan Therapy System for the Waterlase MD YSGG Laser, Peer-Reviewed Clincal Articles.
Gregorcic, Peter, Matija Jezersek, and Janez Mozina. “Optodynamic energy-conversion efficiency during an Er: YAG-laser-pulse delivery into a liquid through different fiber-tip geometries.” Journal of biomedical optics 17.7 (2012): 075006.
Guidotti R, et al, “Er:YAG 2,940-nm laser fiber in endodontic treatment: a help in removing smear layer,” Lasers Med Sci. 2014;29:69-75.
Haapasalo, et al.: “Tissue dissolution by a novel multisonic ultra-cleaning system and sodium hypochlorite,” J Endod 2014;40:1178-81.
Hahn et al; Acoustic resonances in the bubble plume formed by a plunging water jet; pp. 1751-1782; Proceedings of the Royal Society of London A, vol. 459; May 16, 2003.
Haikel, et al.: Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 1999;25:434-40.
Haikel, et al.: Dynamic fracture of hybrid endodontic hand instruments compared with traditional files. J Endod 1991;17:217-20.
Hashish, Mohamed; Experimental Studies of Cutting with Abrasive Waterjets; pp. 402-416; Proceedings of 2nd American Water Jet Conference; 1983.
Herbert et al; Cavitation pressure in water; pp. 041603-1 to 041603-22; Physical Review E, vol. 74; Oct. 2006.
Hiroyasu, Hiro; Spray Breakup Mechanism from the Hole-Type Nozzle and its Applications; pp. 511-527; Atomization and Sprays, vol. 10 (2000).
Hmud R. et al. “Cavitational Effects in Aqueous Endodontic Irrigants Generated by Near-Infrared Lasers”, Journal of Endodontics, vol. 36, Issue 2, Feb. 2010, available online Dec. 4, 2009, in 4 pages.
Hoque et al; Air entrainment and associated energy dissipation in steady and unsteady plunging jets at free surface; pp. 37-45; Applied Ocean Research, vol. 30; May 2008.
Hulsmann, et al.: Influence of several factors on the success or failure of removal of fractured instruments from the root canal. Endod Dent Traumatol 199;15:252-8.
Hulsmann: “Methods for removing metal obstructions from the root canal,” Endod Dent Traumatol 1993;9:223-37.
Hydrocision Products: SpineJet Hydrosurgery; system webpage in 2 pages, copyright 2010, downloaded from http://www.hydrocision.com on Apr. 22, 2010.
Hydrocision SpineJet XL HydroSurgery System; Brochure in 2 pages, copyright 2004-2006, downloaded from http://www.hydrocision.com on Apr. 22, 2010.
Iqbal, et al.: “A comparison of three methods for preparing centered platforms around separated instruments in curved canals,” J Endod 2006; 32:48-51.
Ishizaki et al., “Thermographical and morphological studies of Er,Cr:YSFF laser irradiation on root canal walls”, Photomedicine and Laser Surgery, vol. 22(4):291-297 (2004).
Jlad, Fall 2015, Issue 3.
Jackson et al; Nozzle Design for Coherent Water Jet Production; pp. 53-89; Proceeding of the 2nd US Water Jet Conference; May 1983.
Jiang, et al., “Evaluation of a Sonic Device Designed to Activate Irrigant in the Root Canal,” Journal of endodontics, 36(1): 143-146, Jan. 2010.
Jonathan, et al., “Comparative Evaluation of the Antibacterial Efficacy of Four Different Disinfection Techniques in Minimally Instrumented Experimentally Infected Root Canals: An in vitro Study,” International Journal of Laser Densitry, May-Aug. 2013; 3(2): 49-54.
Junge et al; Cell Detachment Method Using Shock-Wave-Induced Cavitation; pp. 1769-1776; Ultrasound in Medicine & Biology, vol. 29, No. 12; Dec. 2003.
Kalumuck et al; Development of High Erosivity Well Scale Cleaning Tools; pp. 1-36; Dynaflow, Inc.; Report 98012 conducted under Contract No. DE-FG07-981013684 for the US Dept. of Energy; Jul. 1999, in 36 pages.
Karasawa et al; Effect of Nozzle Configuration on the Atomization of a Steady Spray; pp. 411-426; Atomization and Sprays, vol. 2 (1992).
Kato, Hiroharu; Utilization of Cavitation for Environmental Protection—Killing Planktons and Dispersing Spilled Oil; pp. 1-8; In CAV2001: Fourth International Symposium on Caviation; California Institute of Technology, Pasadena, CA; dated Jun. 2001.
Kimura et al., “Lasers in endodontics: a review,” International Endodontic Journal, 33, 173-185, 2000.
Koch et al., “Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV)”, Clin. Oral Invest. vol. 20:381-386 (2016).
Kolnick, Justin. “Managing Refractory Endodontic Disease With Radial Apical Cleansing (Report of Two Clinical Cases).” (Sep. 2018).
Kourti, E. et al., “Smear Layer Removal By Means of Erbium, Chromium: Yttrium Scandium Gallium Garnet (er,Cr:YSGG) Laser Irradiatin From Apical Third of Mesial Root Canals,” International Journal of Recent Scientific Research, vol. 12, Issue, 05, pp. 41804-41808, May 2021.
Kustarci et al., “Efficacy of laser activated irrigation on apically extruded debris with different preparation systems”, Photomedicine and Laser Surgery, vol. 33(7):384-389 (2015).
Lee et al; The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from different-sized simulated plastic root canals; pp. 607-612; International Endodontic Journal, vol. 37; May 2004.
Li et al; Cavitation Resonance; pp. 031302-1 to 031302-7; Journal of Fluids Engineering, vol. 130; Mar. 2008.
Licata et al., “Effectiveness of a new method of disinfecting the root canal, using Er,Cr:YSGG laser to kill Enterococcus faecaslis in an infected tooth model”, ResearchGate, https://www.researchgate.net/publication/255688995, Article in Lasers in Medical Science, Aug. 2013.
Lienhard V et al; Velocity Coefficients for Free Jets From Sharp-Edged Orifices; pp. 13-17; Reprinted from Mar. 1984, vol. 106, Journal of Fluids Engineering.
Lin et al; Drop and Spray Formation from a Liquid Jet; pp. 85-105; Jan. 1998: vol. 30; Annual Review of Fluid Mechanics.
Linfield, Kevin William; A Study of the Discharge Coefficient of Jets From Angled Slots and Conical Orifices; Thesis submitted to Dept. of Aerospace Science and Engineering; University of Toronto; dated 2000; in 148 pages.
Lopes et al., “Evaluation of chemical and morphological changes in radicular dentin after different final surface treatments”, Micros. Res. Tech. vol. 81:973-979 (2018).
Lukac et al.: “Photoacoustic Endodontics Using the Novel SWEEPS Er:YAG Laser Modality,” Journal of the Laser and Health Academy, vol. 2017, No. 1; www.laserlaserandhealth.com.
Lukac, et al., “Modeling Photoacoustic Efficiency during Erbium Laser Endodontics,” Journal of the Laser and Health Academy, vol. 2013, No. 2.
Lukac, et al., “Wavelength dependence of photoninduced photoacoustic streaming technique for root canal irrigation,” Journal of Biomedical Optics 21(7), 075007 (Jul. 2016).
Lumkes, Jr., Control Strategies for Dynamic Systems: Design and Implementation, 2002, pp. 117-118.
Lussi et al; A new non-instrumental technique for cleaning and filling root canals; pp. 1-6; International Endodontic Journal, vol. 28; Jan. 1995.
Lussi et al; A Novel Noninstrumented Technique for Cleansing the Root Canal System; pp. 549-553; Journal of Endodontics, vol. 19, No. 11; Nov. 1993.
Lussi et al; In vivo performance of the new non-instrumentation technology (NIT) for root canal obturation; pp. 352-358; International Endodontic Journal, vol. 35; Apr. 2002.
Ma, et al.: “In vitro study of calcium hydroxide removal from mandibular molar root canals,” J Endod 2015;41:553-8.
Madarati, et al.: “Efficiency of a newly designed ultrasonic unit and tips in reducing temperature rise on root surface during the removal of fractured files,” J Endod 2009;35:896-9.
Madarati, et al.: “Management of intracanal separated instruments,” J Endod 2013;39:569-81.
Madarati, et al.: “Qualtrough AJ. Factors contributing to the separation of endodontic files,” Br Dent J 2008;204:241-5.
Martins et al., “Outcome of Er,Cr:YSGG laser-assisted treatment of teeth with apical periodontitis: A blind randomized clinical trial”, Photomedicine and Laser Surgery, vol. 32(1):3-9, (2014).
Martins et al., “Efficacy of Er,Cr:YSGG laser with endodontical radial firing tips on the outcome of endodontic treatment: blind randomized controlled clinical trial with six-month evaluation”, Lasers Med Sci vol. 28:1049-1055 (2013).
Matsumoto, et al. “Visualization of irrigant flow and cavitation induced by Er: YAG laser within a root canal model.” Journal of endodontics 37.6 (2011): 839-843.
Matsuoka et al., “Morphological study of the Er,Cr:YSGG laser for root canal preparation in mandibular incisors with curved root canals”, Photomedicine and Laser Surgery, vol. 23(5):480-484 (2005).
Maximum Dental Inc ., “Canal Clean Max”, “Intra Canal Irrigation and Aspiration Device”, and “SonicMax, Endo-Perio Sonic Handpiece”, in 3 pages, downloaded from www.dentalmaximum.com on May 8, 2008.
Merigo, et al., “Bactericidal effect of Er,Cr:YSGG laser irradiation on endodontic biofilm: An ex vivo study,” Journal of Photochemistry & Photobiology, B: Biology 218 (2021) 112185.
Minas et al., “In vitro investigation of intra-canal dentine-laser beam interaction aspects: II. Evaluation of ablation zone extent and morphology”, Lasers Med Sci vol. 25:867-872 (2010).
Molina, et al.: “Histological evaluation of root canal debridement of human molars using the GentleWaveTM system,” J Endod 2015;41:1702-5.
Montero-Miralles, et al., “Comparative study of debris and smear layer removal with EDTA and Er,Cr:YSGG laser,” J Clin Exp Dent. 2018;10(6):e598-602.
Mrochen, et al. “Erbium: yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry Erbium: yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry.” Journal of biomedical optics 6.3 (2001): 344-350.
Nagahashi et al., “Er:YAG laser-induced cavitation can activate irrigation for the removal of intraradicular biofilm”, Scientific Reports, https://doi.org/10.1038/s41598-022-08963-x, pp. 1-11 (2022).
Nammour et al.: “External temperature during KTP-nd:YAG laser irradiation in root canals: An in vitro study,” Lasers in Medical Science, 19(1), 27-32, Jul. 2004.
Nasher et al., “Debris and smear layer removal in curved root canals using the dual wavelength Er,Cr:YSGG/Diode 940 nm laser and the XP_Endoshaper and finisher technique”, ResearchGate, https://www.researchgate.net/publication/338755431, Article in Photobiomodulation Photomedicine and Laser Surgery, Jan. 2020.
Nevares, et al.: “Success rates for removing or bypassing fractured instruments: a prospective clinical study,” J Endod 2012;38:442-4.
Nowazesh et al., “Efficacy of root canal preparation by Er,Cr:YSGG laser irradiation with crown-down technique in Vitro”, Photomedicine and Laser Surgery, vol. 23(2):196-201 (2005).
Ohrn et al; Geometric Effects on Spray Cone Angle for Plain-Orifice Atomizers; pp. 253-268; Atomization and Sprays, vol. 1 (1991).
Ohrn et al.; Geometrical Effects on Discharge Coefficients for Plain-Orifice Atomizers; pp. 137-153; Atomization and Sprays, vol. 1, No. 2 (1991).
Olivi, et al., “Lasers in Endodontics,” Scientific Background and Clinical Applications, 2016.
Oral Health, Special Issue, Laser Dentistry, Photo-Acoustic, Root Canal, Decontamination, in 52 pages.
Peeters et al., “Efficacy of smear layer removal at the root tip by using ethylenediaminetetraacetic acid and erbium, chromium: Yttrium, candium, and gallium garnet laser”, Basic Research—Technology, JOE, vol. 37(11):1585-1589 (2011).
Peeters, et al., “Measurement of temperature changes during cavitation generated by an erbium, chromium: Yttrium, scandium, gallium garnet laser,” OJST. 2012;2:286-91.
Peeters et al., “Extrusion of irrigant in open apex teeth with periapical lesions following laser-activated irrigation and passive ultrasonic irrigation”, Iranian Endodontic Journal, vol. 13(2):169-175 (2018).
Peeters et al., “Measurement of pressure changes during laser-activated irrigant by an erbium, chronium: yttrium, scandium, gallium, garnet laser”, Lasers in Medical Science, DOI 10.1007/s10103-014-1605-5, Springer-Verlag London.
Peeters et al., “Radiographic examination of apical extrusion of root canal irrigants during cavitation induced by Er,Cr:YSGG laser irradiation: an in vivo study”, Clin Oral Invest vol. 17:2105-2112 (2013).
Phinney, Ralph E.; The breakup of a turbulent liquid jet in a gaseous atmosphere; pp. 689-701; J. Fluid Mechanics, vol. 60, Part 4; Oct. 1973.
Piezon Master 600 Ultrasound a la carte, EMS Electro Medical Systems, EMS SA FA-319.EN ed. Mar. 2009; Brochure dated Mar. 2009, in 2 pages.
Prasad, et al., Introduction to biophotonics. John Wiley & Sons, 2003.
Quinn, W. R.; Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate; pp. 583-614; European Journal of Mechanics—B/Fluids, vol. 26; Jul.-Aug. 2007; available online Dec. 2006.
Race et al., “Efficacy of laser and ultrasonic-activated irrigation on eradicating a mixed-species biofilm in human mesial roots”, Australian Endodontic Journal, vol. 45:317-324 (2019).
Rahimi et al., “Comparison of the effect of Er,Cr-YSGG laser ultrasonic retrograde root-end cavity preparation on the integrity of root apices”, Journal of Oral Science, vol. 52(1):77-81 (2010).
Ramamurthi et al; Disintegration of Liquid Jets from Sharp-Edged Nozzles; pp. 551-564; Atomization and Sprays, vol. 4 (1994).
Reitz et al; Mechanism of atomization of a liquid jet; pp. 1730-1742; Physics Fluids, vol. 25, No. 10; Oct. 1982.
Roots—international magazine of endodontics, Issn 2193-4673, vol. 15, Issue Apr. 2019.
Roth, et al.: “A study of the strength of endodonitc files: potential for torsional breakage and relative flexibility,” J Endod 1983; 9:228-32.
Ruddle, “Nonsurgical retreatment,” J Endod 2004;30:827-45.
Sabeti, “Healing of apical periodontitis after endodontic treatment with and without obturation in dogs,” Journal of Endodontics, Jul. 2006, pp. 628-633.
Sallam et al; Liquid breakup at the surface of turbulent round liquid jets in still gases; pp. 427-449; International Journal of Multiphase Flow, vol. 28; Mar. 2002.
Sawant et al; Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection; pp. 320-328; Biochemical Engineering Journal, vol. 42, Issue 3; Dec. 2008.
Schoop et al., “The impact of an erbium, chromium: yttrium-scandium-gallium-garnet laser with radial-firing tips on endodontic treatment,” Lasers in Medical Science, vol. 24(1):59-65, published online Nov. 20, 2007.
Schoop et al., “The use of the erbium, chromium:yttrium-scandium-gallium-garnet laser in endodontic treatment”, JADA, vol. 138:949-955 (2007).
Schneider, et al.: “A comparison of canal preparations in straight and curved root canals,” Oral Surg Oral Med Oral Pathol 1971;32:271-5.
Schneider, et al.: “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods 2012;9:671-5.
Seet, et al., “An in-vitro Evaluation of the Effectiveness of Endodontic Irrigants, with and without Sonic and Laser Activation, in the Eradication of Enterococcus faecalis Biofilm”.
Sen et al., “Comparative safety of needle, EndoActivator, and laser-activated irrigation in overinstrumented root canals”, Photomedicine and Laser Surgery, vol. 36(4):198-202 (2018).
Shaheed, et al., “Healing of Apical Periodontitis after Minimally Invasive Endodontics therapy using Er, Dr:YSGG laser: A Prospective Clinical Study,” Sys Rev Pharm 2020; 11(2): 135-140.
Shen, et al.: “Factors associated with the removal of fractured NiTi instruments from root canal systems,” Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:605-10.
Shi et al; Comparison-speed liquid jets; Experiments in Fluids, vol. 35; pp. 486-492; Oct. 7, 2003.
SIGMA-ALDRICH, Product Specification, 2-propanol SDS, Product No. 190764.
Silva, et al., “Analysis of Permeability and Morphology of Root Canal Dentin After ER,Cr:YSGG Laser Irradiation,” Photomedicine and Laser Surgery vol. 28, No. 1, pp. 103-108, 2010.
Skyttner, “Endodontic instrument separations: evaluation of a patient cases series with separated endodontic instruments and factors related to the treatment regarding separated instruments [thesis],” Stockholm: Karolinska Institutet; 2007.
Soares et al., “Impact of Er,Cr:YSGG laser therapy on the cleanliness of the root canal walls of primary teeth”, Basic Research—Technology, JOE, vol. 34(4):474-477 (2008).
Sou et al; Effects of cavitation in a nozzle on liquid jet atomization; pp. 3575-3582; International Journal of Heat and Mass Transfer, vol. 50; Mar. 2007.
Souter, et al.: “Complications associated with fractured file removal using an ultrasonic technique,” J Endod 2005;31:450-2.
Soyama et al; High-Speed Observation of Ultrahigh-Speed Submerged Water Jets; pp. 411-416; Experimental Thermal and Fluid Science, vol. 12 1996).
Soyama, Hitoshi; High-Speed Observation of a Cavitating Jet in Air; Journal of Fluids Engineering, vol. 127; pp. 1095-1101; Nov. 2005.
Stamos et al., “Retreatodontics and ultrasonics”, Journal of Endodontics, vol. 14., No. 1, pp. 39-42, Jan. 1, 1988.
Stamos et al., “Use of ultrasonics in single-visit endodontic therapy,” Journal of Endodontics, vol. 13, No. 5, pp. 246-249, May 1, 1987.
Summers, David A; Considerations in the Comparison of Cavitating and Plain Water Jets; pp. 178-184; Rock Mechanics and Explosive Research Center, Rolla, Missouri, 1983.
Summers, David A; The Volume Factor in Cavitation Erosion; Proceedings of 6th International Conference on Erosion by Liquid and Solid Impact; University of Missouri-Rolla; Rolla, Missouri, 1983, in 12 pages.
Suslick, K. S., et al., “The Sonochemical Hot Spot”, Journal of the American Chemical Society, vol. 108, No. 18, Sep. 3, 1986, pp. 5641-5642.
Suslick, K. S., et al., “Heterogeneous Sonocatalysis with Nickel Powder”, Journal of the American Chemical Society, vol. 109, No. 11, May 27, 1987, pp. 3459-3461.
Suter, et al.: “Probability of removing fractured instruments from root canals,” Int Endod J 2005;38:112-23.
Tafreshi et al; Simulating Cavitation and Hydraulic Flip Inside Hydroentangling Nozzles; pp. 359-364; Textile Research Journal, vol. 74, Apr. 2004.
Tafreshi et al; Simulating the Flow Dynamics in Hydroentangling Nozzles: Effect of Cone Angle and Nozzle Aspect Ratio; pp. 700-704; Textile Research Journal, vol. 73; Aug. 2003.
Tafreshi et al; The effects of nozzle geometry on waterjet breakup at high Reynolds numbers; pp. 364-371; Experiments in Fluids, vol. 35; Sep. 2, 2003.
Takeda et al., “A comparative study of the removal smear layer by three endodontic irrigants and two types of laser,” International Endodontic Journal, 32, 32 39, 1999.
Takeda et al., “Comparative Study about the Removal of Smear Layer by Three Types of Laser Devices,” Journal of Clinical Laser Medicine & Surgery, vol. 16, No. 2, 1998 Mary Ann Liebert, Inc. pp. 117-122.
Terauchi, et al.: “Evaluation of the efficiency of a new file removal system in comparison with two conventional systems,” J. Endod 2007;33:585-8.
Tokuc et al., “The bactericidal effect of 2780 nm Er,Cr:YSGG laser combined with 940 nm diode laser in Enterococcus faecalis elimination: A comparative study”, Photobiomodulation, hotomedicine, and Laser Surgery, vol. XX(XX):1-6 (2019).
Schoop et al.: “The use of the erbium, chromium:yttrium-scandium-gallium-garnet laser in endodontic treatment: The results of an in vitro study,” The Journal of the American Dental Association: vol. 138, Issue 7, Jul. 2007, pp. 949-955.
Wang et al., “Evaluation of the bactericidal effect of Er,Cr:YSGG, and Nd:YAG lasers in experimentallyl infected root canals”, Basic Research—Biology, JOE, vol. 33(7):830-832 (2007).
Ward Jr.: “The use of an ultrasonic technique to remove a fractured rotary nickel-titanium instrument from the apical third of a curved root canal,” Aust Endod J 2003;29:25-30.
Wohlemuth et al.: “Effectiveness of GentleWave System in Removing Separated Instruments,” JOE, vol. 41, No. 11, Nov. 2015.
Yamazaki et al., “Effects of erbium,chromium:YSGG laser irradiation on root canal walls: A scanning electron microscopic and thermographic study”, Journal of Endodontics, vol. 27(1):9-12 (2001).
Yoldas, et al.: “Perforation risks associated with the use of Masserann endodontic kit drills in mandibular molars,” Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:513-7.
Yu et al.: “Study on removal effects of filling materials and broken files from root canals using pulsed Nd:YAG laser,” J Clin Laser Med Surg 2000;18:23-8.
Zehnder, “Root Canal Irrigants”, Journal of Endodontics, vol. 32, No. 5, pp. 389-398, May 2006.
Zuo et al; An Attribution of Cavitation Resonance: Volumetric Oscillations of Cloud; pp. 152-158; Journal of Hydrodynamics, vol. 21; Apr. 2009.
European Extended Search Report, dated Mar. 8, 2018, for EP Application No. 17201637.0.
European Extended Search Report re EP Application No. 09743801.4, dated Jun. 4, 2012.
European Extended Search Report re EP Application No. 14187012.1, dated Mar. 3, 2015, in 10 pages.
European Extended Search Report, dated Sep. 22, 2011, for EP Application No. 07755777.5, in 7 pages.
European Extended Search Report, re EP Application No. 08728345.3, dated Mar. 3, 2014.
European Extended Search Report, re EP Application No. 10830829.7, dated Oct. 21, 2015.
European Extended Search Report, re EP Application No. 11835265.7, dated Mar. 30, 2016, in 9 pages.
European Extended Search Report, re EP Application No. 13763534.8, dated Jan. 15, 2016.
European Search Report, re EP Application No. 13763534.8, dated Jun. 20, 2022.
European Extended Search Report, re EP Application No. 13775073.3, dated Nov. 3, 2015.
European Exam Report, re EP Application No. 14733409.8, dated May 3, 2018.
European Exam Report, re EP Application No. 14742409.7, dated Aug. 21, 2018.
International Search Report and Written Opinion dated Apr. 11, 2008, for International Appl. No. PCT/US07/09633, in 8 pages.
International Preliminary Report on Patentability dated Oct. 30, 2008, for International Appl. No. PCT/US07/09633, in 5 pages.
International Search Report and Written Opinion dated Aug. 8, 2008, for International Appl. No. PCT/US08/52122, in 18 pages.
International Preliminary Report on Patentability dated Aug. 6, 2009, for International Appl. No. PCT/US08/52122, in 13 pages.
International Search Report and Written Opinion dated Jul. 29, 2009, for International Appl. No. PCT/US09/43386, in 8 pages.
International Preliminary Report and Written Opinion dated Nov. 9, 2010 for International Appl. No. PCT/US09/43386, in 6 pages.
International Search Report and Written Opinion re App. No. PCT/US2010/056620, dated Jan. 12, 2011, in 17 pages.
International Preliminary Report on Patentability re App. No. PCT/US2010/056620, issued May 15, 2012, in 10 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US11/57401, mailed Jan. 25, 2013 in 13 pages.
International Search Report and Written Opinion from International Application No. PCT/US2011/057401, Jan. 30, 2012, in 20 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US 13/32635, mailed Jun. 17, 2013 in 14 pages.
International Search Report and Written Opinion mailed Jun. 28, 2013, re PCT Application No. PCT/US2013/036493, in 21 pages.
International Preliminary Report on Patentability and Written Opinion, mailed Oct. 14, 2014, re PCT Application No. PCT/US2013/036493, in 14 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2013/077286, mailed May 27, 2014.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2013/077286, issued Jun. 23, 2015, in 8 pages.
International Search Report and Written Opinion re App. No. PCT/US2014/014732, mailed Jul. 18, 2014.
International Preliminary Report on Patentability re PCT Application No. PCT/US2014/014732, issued Aug. 4, 2015.
International Search Report and Written Opinion, re PCT Application No. PCT/US2014/044186, mailed Jan. 21, 2015, in 19 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2014/044186, mailed Dec. 29, 2015, in 19 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2014/036451, issued Nov. 3, 2015, 2015, in 11 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2015/028360, mailed Sep. 28, 2015, in 25 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2015/028360, issued Nov. 10, 2016, in 14 pages.
European Extended Search Report, re EP Application No. 18159618.0, dated Jul. 2, 2018.
European Extended Search Report, re EP Application No. 18195055.1, dated Mar. 13, 2019.
International Search Report and Written Opinion for PCT/US2021/072194, mailed on Jan. 27, 2022, in 15 pages.
European Extended Search Report, re EP Application No. 14765398.4, dated May 31, 2017.
European Supplemental Search Report, re EP Application No. 07837261.2, dated May 3, 2012.
European Supplemental Search Report, re EP Application No. 10746978.5, dated Dec. 10, 2015.
European Extended Search Report, EP Application No. 20176387.7, dated Nov. 10, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2014/036451, mailed Jan. 21, 2015, in 20 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2017/057206, mailed Jan. 25, 2018, in 18 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2018/050753, mailed Dec. 5, 2018, in 35 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US07/18664, mailed Sep. 23, 2008.
International Preliminary Report on Patentability, re PCT Application No. PCT/US07/18664, issued Feb. 24, 2009.
International Search Report and Written Opinion, re PCT Application No. PCT/US2014/030435, mailed Aug. 28, 2014.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2014/030435, issued Sep. 15, 2015.
International Search Report and Written Opinion, re PCT Application No. PCT/US2010/025775, mailed Apr. 23, 2010.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2010/025775, issued Sep. 6, 2011.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2019/052990, issued Mar. 23, 2021.
International Invitation to Pay Additional Fees, re PCT Application No. PCT/US2019/052990, mailed Dec. 5, 2019.
International Search Report and Written Opinion, re PCT Application No. PCT/US2019/052990, mailed Feb. 6, 2020.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2017/057206, issued Apr. 23, 2019, in 8 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2018/050753, issued Mar. 17, 2020, in 10 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2019/035884, mailed Sep. 12, 2019, in 18 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2019/035884, issued Dec. 8, 2020, in 1 pages.
International Invitation to Pay Additional Fees, re PCT Application No. PCT/US2020/033837, mailed Sep. 3, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/033837, mailed Oct. 28, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/031189, mailed Jul. 31, 2020, in 17 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/033157, mailed Aug. 26, 2020, in 17 pages.
International Invitation to Pay Additional Fees, re PCT Application No. PCT/US2020/036491, mailed Sep. 18, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/036491, mailed Nov. 9, 2020.
International Preliminary Report on Patentability, re PCT Application No. PCT/IL2013/050330, dated Oct. 30, 2014.
International Preliminary Report on Patentability, re PCT Application No. PCT/IL2014/050924, dated May 6, 2016.
International Search Report and Written Opinion, re PCT Application No. PCT/IL2013/050330, mailed Jul. 30, 2013.
International Search Report and Written Opinion, re PCT Application No. PCT/IL2014/050924, mailed Mar. 19, 2015.
International Search Report and Written Opinion for PCT/US2021/053844, dated Mar. 11, 2022, in 22 pages.
Extended European Search Report and Written Opinion for European Application No. 21175783.6, dated Dec. 13, 2013, in 8 pages.
Extended European Search Report for European Application No. 22167511.9, dated Aug. 11, 2022, in 8 pages.
Australian Office Action (Examination Report No. 2), re Application No. 2007240780, dated May 3, 2013.
Australian Office Action, re Application No. 2007240780, dated Mar. 29, 2012.
Acharya Letter Re: PIPStek, LLC v. Biolase, Inc. (D. Del. Case No. 1:23-cv-00011-MN), dated Mar. 3, 2023, in 3 pages.
Acharya Letter, Exhibit A, in 34 pages, dated Mar. 3, 2023.
Acharya Letter, Exhibit B: in 15 pages, dated Mar. 3, 2023.
Acharya Letter, Exhibit C, Waterlase User Manual, in 50 pages. For purposes of examination, consider dated 2003.
Acharya Letter, Exhibit D, Waterlase User Manual, in 79 pages. For purposes of examination, consider dated 2004.
Acharya Letter, Exhibit E, Endolase Instructions for Use, in 2 pages. For purposes of examination, consider dated 2002.
Acharya Letter, Exhibit F, Fax Boutoussov to De Vito [sic], in 2 pages. For purposes of examination, consider dated May 26, 2004.
Acharya Letter, Exhibit G, Fax Boutoussov to DiVito, in 1 page. For purposes of examination, consider dated Jun. 8, 2004.
Acharya Letter, Exhibit H, Biolase Accessories Overview, in 39 pages. For purposes of examination, consider dated Jan. 2004.
Acharya Letter, Exhibit I, Rocky Mountain Symposium, in 1 page. For purposes of examination, consider dated 2004.
Correspondence DiVito to Boutoussov, in 3 pages. For purposes of examination, consider dated May 28, 2004.
Fax Boutoussov to De Vito [sic], in 1 page. For purposes of examination, consider dated Nov. 24, 2004.
Fogarty, “What is an acoustic wave?”, https://www.allthescience.org/what-is-an-acoustic-wave.htm, 7 pages (2022).
European Search Report in application No. EP 21160099.4, dated Sep. 26, 2022.
European Search Report in application No. EP 201902210.0, dated Jan. 5, 2023.
Thoms, “Detection of intraoral lesions using a fluorescence camera”, Proceedings of SPIE, vol. 6137:1-8 (2006).
Vibration definition & meaning, Merriam-Webster, https://www.merriam-webster.com/dictionary/vibration (2023).
Merriam Webster definition of transversal, https://www.merriam-webster.com/dictionary/transversal , (2024).
International Preliminary Report on Patentability and Written Opinion for PCT/US2021/072194, dated May 8, 2023, in 12 pages.
European Search Report in application no. EP 22216260.4, dated Jul. 12, 2023, in 8 pages.
Extended European Search Report in application no. EP 23178563.5, dated Dec. 6, 2023, in 7 pages.
European Search Report in application no. EP 18789278.1, dated Jan. 24, 2024, in 7 pages.
Biolase's Opening Brief in Support of Its Motion for Leave to File Early Motion for Summary Judgment and for Limited Stay Pending Resolution of Early Motion for Summary Judgment, Pipstek, LLC v. Biolase, Inc., Civil Action No. 23-011-JPM, filed Feb. 2, 2024.
Related Publications (2)
Number Date Country
20170027647 A1 Feb 2017 US
20190336219 A9 Nov 2019 US
Provisional Applications (1)
Number Date Country
60840282 Aug 2006 US
Continuations (2)
Number Date Country
Parent 13842261 Mar 2013 US
Child 14670035 US
Parent 12875565 Sep 2010 US
Child 13633096 US
Continuation in Parts (6)
Number Date Country
Parent 13633096 Oct 2012 US
Child 13842261 US
Parent 12395643 Feb 2009 US
Child 12875565 US
Parent 11704655 Feb 2007 US
Child 12395643 US
Parent 11895404 Aug 2007 US
Child 12395643 US
Parent 11895404 Aug 2007 US
Child 12875565 Sep 2010 US
Parent 11704655 Feb 2007 US
Child 11895404 US