Not Applicable+
Not Applicable
Not Applicable
Not Applicable
Not Applicable
The disclosure relates to tree climbing stick nesting devices and more particularly pertains to a new tree stick nesting assembly and method for allowing a plurality of tree climbing sticks to be attached together in such a manner that their inerlocking forms a secure fit preventing their movement relative to each other and elicits a subsequent reduction in noise during their transportation. Furthermore, the tree climbing sticks will be nested in such a manner that their combined volume will be reduced to facilitate their storage and transportation.
The prior art relates to nesting systems and more particularly to those systems used for securing together a plurality of tree climbing sticks. However, these systems do not always securely lock the tree climbing sticks in such a manner that prevents movement and vibration between connected tree climbing sticks. This will cause the tree climbing sticks to impact and move against each other during transportation, i.e. while being carried by a walking end-user, leading to noise being generated from the tree climbing sticks. Since a hunter will desire to remain as quiet as possible, this movement between tree climbing sticks is a disadvantage. Moreover, the connecting means of these systems are not easily manipulated and utilized and thus the nesting of these tree climbing sticks can be onerous and frustrating to their users.
An embodiment of the disclosure meets the needs presented above by generally comprising a plurality of tree climbing stick assemblies each including a stick body having an upper end, a lower end, a front side, and a rear side. The stick body has a longitudinal axis extending through the upper and lower ends. A step is attached to the stick body and is stepped upon and gripped by a user of the tree climbing stick assemblies. A standoff is attached to the stick body and is configured for engaging a surface of a tree. The standoff extends forward of the front side. A coupler is attached to the stick body and releasably secures together a pair of the tree climbing stick assemblies to define secured tree sticks such that the longitudinal axes of the secured tree sticks are orientated parallel to each other. The coupler includes a first mating member and a second mating member. The first mating member of one of the tree climbing stick assemblies is vertically engageable with the second mating member of another one of the tree climbing stick assemblies when the stick bodies of the secured tree sticks are vertically orientated.
There has thus been outlined, rather broadly, the more important features of the disclosure in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the disclosure that will be described hereinafter and which will form the subject matter of the claims appended hereto.
The objects of the disclosure, along with the various features of novelty which characterize the disclosure, are pointed out with particularity in the claims annexed to and forming a part of this disclosure.
The disclosure will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
With reference now to the drawings, and in particular to
As best illustrated in
As with conventional tree climbing stick assemblies 12, the system 10 includes stick bodies 14 with at least one step 24 and at least one standoff 26 attached to the stick body 14. The step 24 is used for both stepping upon and for gripping by a person using the system 10 to climb a tree and therefore may also be known as a “handhold.” The standoff 26 engages the tree to place the stick body 14 in a spaced relationship with the tree and therefore extends forward of the front side 20. The standoff 26 may therefore include gripping cleats to frictionally engage a tree while the steps 24 may also include protrusions to enhance friction between the step 24 and a user's footwear and hands. The embodiments provided for in the Figures are only an example of the steps 24 and standoffs 26 which may be provided for in multiple configurations, some of which are explained below, that are widely used in the art of tree climbing stick assemblies.
The steps 24 of tree climbing stick assemblies 12 be formed as single steps extending in one direction, generally laterally, away from the stick body 14 or may include dual wings extending in two directions away from the stick body 14.
The system 10 provides for each of the tree climbing stick assemblies to include a coupler 28 being attached to the stick body. The coupler 28 is used to releasably secure together a pair of the tree climbing stick assemblies 12 such that they are defined as secured tree sticks 30 shown in
The coupler 28, more particularly, includes a first mating member 32 and a second mating member 34. The first mating member 32 of one of the tree climbing stick assemblies 12 is vertically extendable into the second mating member 34 of the of another one of the tree climbing stick assemblies 12 when the stick bodies 14 of the secured sticks 30 are both vertically orientated. The term “vertically oriented” is only being used a reference direction since, it is understood, that the longitudinal axes of the stick bodies 14 each need to be only orientated in a same direction relative to each other for the couplers 28 of two tree climbing stick assemblies 12 to be engaged with each other. Typically, this will include the stick body 14 longitudinal axes being orientated parallel to each other.
As shown in the embodiment of
In the embodiment shown in
The second mating member may comprise a receiver 38 that receives the post 36. The receiver 38 may include a well, sleeve, or other similar structure having a shape complimentary to a corresponding one of the posts 36. The second mating member 34 will be positioned to receive the first mating member 32 of another one of the tree climbing stick assemblies 12 and more specifically will be positioned such that the tree climbing stick assemblies 12 are nested with respect to each other. The receiver 38 will normally be vertically offset from the post 36 of each coupler 28 either forwardly or rearwardly to compensate for the width of the stick body 14 and another other structures thereon, wherein the front side 20 of one stick body 14 faces the rear side 22 of another stick body 14 for nesting and coupling according to the system 10. In a typical embodiment, this would position the stick bodies 14 in alignment with each other with the step 24 and/or 26 standoff for one tree climbing stick assembly 12 being positioned directly above or below the step and/or standoff of the next adjacent tree climbing stick assembly 12 as is shown in
As is shown in the Figures, and in particular
The coupler 28 may include a securing member 42 to resist the first mating member 32 from easily disengaging from the second mating member 34. Though the first mating member 32 may frictionally engage the second mating member 34 by way of material considerations and fit tolerances, the securing member 42 functions as a more controllable engagement than relying on friction between the post 36 and receiver 38 alone. The securing member 42 may include a resiliently compressible element positioned on the post 36 that compresses when the post 36 is extended into the receiver 38 to enhance frictional engagement between the post 36 and the receiver 38. For example, in one embodiment of the securing member 42, an O-ring of elastomeric material is extended around the post 38 and positioned within a slot in the post 38. An alternative example may include coating of the post 38 in resiliently compressible material.
The system 10 may include tree climbing stick assemblies 12 including a pair of couplers 28 wherein the couplers 28 are vertically spaced from each other to define an upper coupler 44 and a lower coupler 46. The upper 44 and lower 46 couplers 28 may each include single first 32 and second 34 mating members, a pair of first 32 and second 34 mating members, or a combination of one coupler 28 using single mating members and one coupler 28 utilizing dual mating members. Likewise, only some of the first mating members 32 may include the securing members 42 and all the first mating members 32 might not utilize the same structural type of securing members 42.
In some embodiments, the posts 36 of the upper coupler 44 may have a shorter vertical height than the posts 36 of the lower coupler 46, or vice versa. This will allow a person to first begin to extend the posts 36 of the lower coupler 46 into the receivers 38 of another lower coupler 46 with the upper end 16 of the stick body 14 tilted back. Once the posts 36 engage the receivers 38 of the lower coupler 46, the stick body 14 can be tilted forward against the other stick body 14 and the posts 36 of the upper coupler 44 extended into the receivers 38 of the other upper coupler 44. This structure therefore facilitates quick engagement of the tree climbing stick assemblies 12 and is further simplified by the shape of the upper sections 40 of the receivers 38. The receivers 38 of the upper couplers 44 may not require the frusto-conical upper sections 40 since the first mating members 32 of an upper coupler 44 will already be properly aligned with the second mating members 34 of the other upper coupler 44. It should be understood that the above structure may be reversed with the top coupler 44 having longer posts 36 and the frusto-conical upper sections 40.
The positioning of the couplers 28 on the stick body 14 may vary depending on several factors. As can be seen in the Figures, the couplers 28, or portions thereof, may be positioned on steps 24, standoffs 26 or both. Alternatively, a mount, not shown, may be attached to the stick body 14 for the sole purpose of supporting the first 32 and second 34 mating members. Thus, the receivers 38 may extend into the steps 24 as shown in
A button 48 may be attached to the rear side 22 of the stick body 12 and extend rearwardly therefrom. The button 48 is utilized for attachment to a tree by extending a tether around the tree and tying the tether to the button 48. The button 48 may further act as a saddle for receiving adjacent ones of the stick bodies 14 when the tree climbing stick assemblies 12 are secured together and therefore can be used to further stabilize the tree climbing stick assemblies 12, and mute sound from their abutment, when they are secured together.
In use, the tree climbing stick assembly 12 is used in a conventional manner wherein it is positioned adjacent to and coupled to a tree. This may be done with a tether attached to a button 48, or other connection point on the stick body 14, that is extended around the tree and tightened to securely hold the stick body 12 relative to the tree and such that the standoff 26 frictionally engages the tree. Typically, multiple ones of the tree climbing stick assemblies 12 are used together to form a ladder that is usable, for example, to climb upwardly to, and downwardly from, a tree stand or platform. The button 48 is positioned on the rear side 22 of the stick body 14 and has a distal surface facing away from the stick body assembly 12 which can act as a spacer and stabilizer between connected ones of the tree climbing sticks assemblies 12. The distal surface may be concavely arcuate to facilitate the action of a saddle to receive the front side 20 of a connected one of the tree climbing stick assemblies 12.
When the tree climbing stick assemblies 12 are not in use, they may be secured together to simplify transportation and storage. As shown in Figures with specific reference to
Once the two stick bodies 14 are vertically parallel to each other, the posts 36 of the upper coupler 44 are aligned with the receivers 38 of the other upper coupler 44. An upper one of the tree climbing stick assemblies 12 is then pushed downwardly on the other one of the tree climbing stick assemblies 12 to releasably secure there corresponding upper couplers 44 together. At this point, the tree climbing stick assemblies 12 define the secured tree sticks 30 as specified above. Additional tree climbing sticks assemblies 12 are attached to the secured tree sticks 30, typically one at a time, using the same process discussed above until all tree climbing stick assemblies 12 are secured together in a nested configuration. The reverse process disengages the tree climbing stick assemblies 12 from each other.
While the above process and structure may be preferred, a different embodiment may include the upper couplers 44 first being engaged before the lower couplers 46 and therefore the direction and positioning of the couplers 28 need not be germane to the function of the system 10. Particularly, the positioning of the couplers 28 generally allow the tree climbing stick assemblies 12 to be coupled and uncoupled with respect to each other utilizing a vertical motion when the longitudinal axes of the stick bodies 14 are vertically orientated. Such a motion is simplified in terms of speed and for ease of coupler alignment.
The connections of the couplers 28 of the adjacently nested ones of the tree climbing stick assemblies 12 prevents movements between them to eliminate noise. Additionally, the relative positioning of the tree climbing stick assemblies 12 to each other with the standoff 26 of one tree climbing stick assembly 12 being positioned over the standoff 26 of another tree climbing stick assembly 12 in a nested configuration facilitates the reduction of overall volume being required by a set of tree climbing stick assemblies 12 during storage and transportation.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of an embodiment enabled by the disclosure, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by an embodiment of the disclosure.
Therefore, the foregoing is considered as illustrative only of the principles of the disclosure. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the disclosure to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the disclosure. In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be only one of the elements.