The present invention relates to semiconductor power device technology and more particularly to improved trench MOS (metal oxide semiconductor) barrier Schottky rectifiers with planar surfaces and fabrication processes for forming the same.
Trench MOS barrier Schottky (TMBS) rectifiers are Schottky diodes that have been integrated with trench gate shielding structures (e.g., TMBS rectifiers or monolithically integrated trench gate FET and Schottky diode devices). An integrated TMBS, which typically includes a Schottky diode array that has been interspersed between MOS trenches, generally comprises a mesa structure formed in a semiconductor epitaxial layer of a semiconductor substrate. The mesa is defined by the region between one or more trenches, which are disposed in the epitaxial layer. In TMBS devices, charge coupling between majority charge carriers in a mesa disposed between trenches in the epitaxial/drift region and conductors on the sidewalls of the trenches changes the electric field profile under the Schottky contact which reduces reverse leakage current and improves breakdown properties.
Existing techniques used to fabricate TMBS rectifiers produce topographies between device structures. For example, in an active array the tops of the polysilicon gates, silicon mesa and field dielectric are irregular and not substantially flat. This irregular topography can include abrupt changes which can significantly affect device performance by increasing reverse leakage current. Further, topographies which are created between the polysilicon gates and the mesa regions or the field dielectric to the active array propagate to layers that are subsequently formed on top of the polysilicon gates and mesa regions or the field dielectric and active array. These topographies propagate to the top surfaces of the TMBS rectifiers which end up having similar topographies. The top surfaces of the TMBS rectifier can include layers such as nitride layers and solderable top metal (STM) layers which are prone to developing cracks when they have substantially non-planar topographies. The cracks that develop in the nitride and STM layers on the top of the TMBS rectifiers can propagate to the bottom part of the nitride and STM layers and reach the metal pad layer. These cracks can then increase the reverse leakage current in the TMBS rectifier which make the TMBS rectifier inoperable or reduce its performance.
These topographies can also reduce the effectiveness of solder connections made with the STM to the package. The topographies can reduce the integrity of the solder connection because the non-coplanar surface on the STM layer on top of the TMBS rectifier is not as conducive to soldering as a planar surface. Since these topographies reduce the integrity of the solder connection, the topographies also reduce the reliability of the TMBS rectifier because the solder connections on the STM surface having non-coplanar topography are not as reliable.
Further, variations in topographies which are created between the polysilicon gates and mesa can increase the chances of inducing plasma damage to the structure (shield dielectric). The damage is caused by plasma etching the polysilicon gates, which has a non-planar surface between the polysilicon and mesa regions. This plasma induced damage can further damage the TMBS rectifier while it is being fabricated. The non-uniform topographies can increase the chances of damage occurring during processes such as plasma etching. Non-uniform contours can cause charge build up during processes such as etching which can cause arcing and damage to the TMBS rectifier as it is being fabricated. Damages that occur during fabrication can reduce yields which can increase the cost of manufacturing TMBS rectifiers. Variations in the topography can also make it difficult to uniformly deposit onto or etch material from the surface. For example, variations in topography make it difficult to bring the entire surface of the substrate in the depth of field of photolithography systems, or selectively remove material based on position. These variations that occur during fabrication can lead to variations in the electrical performance of the TMBS rectifier.
Therefore, there is a need for cost effective fabrication processes and substrate structures that reduce variations in the topography surface between termination and active cells and assists in reducing reverse leakage current and improves solderability properties.
Embodiments of the present invention provide techniques for fabricating High Efficiency Diode (HED) rectifiers that reduce variations in the topography surface between termination and active cells and assists in reducing reverse leakage current and improves solderability properties. Embodiments of the invention also provide embodiments of HED rectifiers structures made using these techniques.
In one embodiment, a method of forming a semiconductor device includes forming a field oxide region in an epitaxial layer, forming a plurality of trenches that have sidewalls and a bottom in the epitaxial layer separated by mesas, forming a shield dielectric that lines the sidewalls and bottom of the trenches and substantially covers the mesas and field oxide region, depositing polysilicon to substantially fill the plurality of trenches and substantially cover the shield dielectric, and planarizing the polysilicon using chemical mechanical planarization (CMP) to generate a substantially planar surface including substantially planar regions of polysilicon, shield dielectric, and mesa regions. The field oxide region extends into the epitaxial layer and above the epitaxial layer. The regions of polysilicon, shield dielectric and mesa regions can be formed by planarization to form a substantially flat contiguous surface.
In another embodiment, the method further includes forming a top metal layer, a dielectric layer, and a solderable top metal (STM) layer over the top metal. The tops of the dielectric layer and the STM layer are substantially coplanar. The top metal can include a Schottky contact. The top metal can be formed over a portion of a NiSi layer and over a portion of the shield dielectric layer deposited on the field oxide layer. The dielectric layer can include polyimide. The dielectric layer can also be selected from the group consisting of polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, and silicon dioxide. A portion of the dielectric layer can be a street which is used to separate the semiconductor devices made on a single wafer.
In another embodiment of the method, forming the STM metal includes depositing Ti/NiV/Ag or Ta/Cu over the top metal.
In another embodiment, a second method of forming a semiconductor device includes forming a field oxide in an epitaxial layer, planarizing the field oxide using chemical mechanical planarization (CMP) to generate a substantially planar surface that includes substantially planar regions of field oxide and epitaxial layer, forming a plurality of trenches that have sidewalls and a bottom in the epitaxial layer separated by mesas, forming a shield dielectric that lines the sidewalls and bottom of the trenches and substantially covers the mesas and field oxide region, and depositing polysilicon to substantially fill the plurality of trenches and substantially cover the shield dielectric. The field oxide extends into the epitaxial layer and above the epitaxial layer. The polysilicon can be planarized using chemical mechanical planarization (CMP) to generate a substantially planar surface that includes substantially planar regions of polysilicon, shield dielectric, and mesas.
In yet another embodiment of the second method, forming the field oxide includes forming a pad oxide layer over a substrate, forming a nitride layer over the pad oxide layer, etching the pad oxide layer and nitride layer according to a pattern, gowning the field oxide in the pattern and recessed into the substrate, and removing the pad oxide layer and nitride layer from active areas.
In another embodiment, a third method of forming a semiconductor device includes forming a field oxide in an epitaxial layer, forming a plurality of trenches that have sidewalls and a bottom in the epitaxial layer separated by mesas, forming a shield dielectric that lines the sidewalls and bottom of the trenches and substantially covers the mesas and field oxide region, depositing polysilicon to substantially fill the plurality of trenches and substantially cover the shield dielectric, forming a top metal over the polysilicon and over a portion of the shield dielectric layer, forming a dielectric layer over a first portion of the top metal, forming a solderable top metal (STM) layer over a second portion of the top metal, and planarizing the STM layer using chemical mechanical planarization (CMP) to generate a substantially planar surface that includes substantially planar regions of the STM material and dielectric material. The field oxide extends into the epitaxial layer and above the epitaxial layer. The dielectric layer can include polyimide.
In yet another embodiment, the third method further includes planarizing the field oxide using chemical mechanical planarization (CMP) to generate a substantially planar surface including substantially planar regions of field oxide and epitaxial layer.
In yet another embodiment, the third method further includes planarizing the polysilicon using chemical mechanical planarization (CMP) to generate a substantially planar surface including substantially planar regions of polysilicon, shield dielectric and mesas.
In yet another embodiment, the third method further includes planarizing the field oxide using chemical mechanical planarization (CMP) to generate a substantially planar surface including substantially planar regions of field oxide and epitaxial layer, and planarizing the polysilicon using chemical mechanical planarization (CMP) to generate a substantially planar surface including substantially planar regions of polysilicon, shield dielectric and mesas.
In yet another embodiment, the third method further includes forming a nickel silicide (NiSi) layer over the plurality of trenches. The top metal can be formed over a portion of the NiSi layer and over a portion of the shield dielectric layer deposited on the field oxide layer.
In another embodiment, a semiconductor device includes an epitaxial layer, a field oxide region disposed in the epitaxial layer, a plurality of trenches that include sidewalls and a bottom disposed in the epitaxial layer, the plurality of trenches are separated by a plurality of mesas, a shield dielectric that lines the trench sidewalls and bottom of the trenches and covers the field oxide region, a polysilicon that substantially fills the plurality of trenches, and a substantially planar surface that includes substantially planar regions of polysilicon, shield dielectric and mesas. The substantially planar surface can be formed using chemical mechanical planarization (CMP). The field oxide extends into the epitaxial layer. The substantially planar surface can be contiguous with polysilicon, shield dielectric and mesas.
In yet another embodiment, the semiconductor device further includes a top metal, a dielectric layer and a solderable top metal (STM) layer disposed over the top metal. The tops of the dielectric layer and the STM layer are substantially coplanar.
In another embodiment, a second semiconductor device includes an epitaxial layer, and a field oxide region disposed in the epitaxial layer. The field oxide extends into the epitaxial layer and forms a substantially planar first surface including substantially planar regions of field oxide and epitaxial layer, a plurality of trenches including sidewalls and a bottom disposed in the epitaxial layer, the plurality of trenches separated by a plurality of mesas, a shield dielectric that lines the trench sidewalls and bottom of the trenches and covers the field oxide region, and a polysilicon that substantially fills the plurality of trenches. The first surface can be formed using chemical mechanical planarization (CMP). The top surface of the field oxide and the top surface of the epitaxial layer can form a contiguous surface.
In yet another embodiment, the second semiconductor device further includes a substantially planar second surface including substantially planar regions of polysilicon, shield dielectric and mesas, the second surface is formed using CMP.
In another embodiment, a third semiconductor device includes an epitaxial layer, a field oxide region disposed in the epitaxial layer, a plurality of trenches including sidewalls and a bottom disposed in the epitaxial layer, a shield dielectric that lines the trench sidewalls and bottom of the trenches and covers the field oxide region, a polysilicon that substantially fills the plurality of trenches, a top metal that covers a portion of the shield dielectric layer, a dielectric layer that covers a first portion of the top metal, a solderable top metal (STM) layer disposed adjacent to the dielectric layer and covering a second portion of the top metal, and a substantially planar first surface that includes substantially planar regions of the STM material and dielectric material. The substantially planar first surface can be formed using chemical mechanical planarization (CMP). The field oxide extends into the epitaxial layer. The plurality of trenches is separated by a plurality of mesas. The dielectric layer can be any dielectric materials such as polyimide, polymer dielectrics, know semiconductor dielectrics, or combinations thereof. For example, the dielectric layer can be selected from the group consisting of polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, and silicon dioxide. The STM metal can include Ti/NiV/Ag or Ta/Cu.
In yet another embodiment, a third semiconductor device further includes a substantially planar second surface including substantially planar regions of field oxide and epitaxial layer, the substantially planar second surface formed using chemical mechanical planarization (CMP).
In yet another embodiment, a third semiconductor device further includes a substantially planar third surface including substantially planar regions of polysilicon, shield dielectric and mesas, the substantially planar third surface formed using chemical mechanical planarization (CMP).
In yet another embodiment, a third semiconductor device further includes a substantially planar second surface including substantially planar regions of field oxide and epitaxial layer, and a substantially planar third surface including substantially planar regions of polysilicon, shield dielectric and mesas. The substantially planar second surface is formed using chemical mechanical planarization (CMP). The substantially planar third surface is formed using chemical mechanical planarization (CMP).
The embodiments described above and herein are not the only embodiments of this invention. Features found in particular embodiments described herein can be combined with other embodiments described herein. Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.
A further understanding of the nature and advantages of the invention may be realized by reference to the remaining portions of the specification and the drawings, presented below. The Figures are incorporated into the detailed description portion of the invention.
In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent that the invention may be practiced without these specific details.
Embodiments of the present invention provide HED rectifiers with improved performance including reduced reverse leakage current, reliable solderability properties, and higher manufacturing yields. The improved HED rectifier has a reduce topography variation across the surface between termination and active cells which assists in reducing reverse leakage current and significantly improves solderability depending on packaging methodology. The reverse leakage current is reduced by creating a planar surface between shield dielectric, polysilicon and mesas, prior to Schottky metallization. The reduced topography variation produces a more uniform surface across the device which eliminates plasma etch damage caused by traditional contact etch methods and improves the uniformity of layers within the device. A CMP process can also be used to keep the shield electrode and dielectric intact to reduce the electric field at the top corners of the cell structure. A low stress metallic Schottky contact region is formed with the mesa that is co-planar with the shield electrode and dielectric. A recessed field oxide is produced using a LOCal Oxidation of Silicon (LOCOS) process. A chemical mechanical planarization process can be used to form the termination dielectric which provides a planar surface from street to active area. The shield polysilicon electrode is processed using CMP to produce a planarized surface across the active cell structure (shield polysilicon, shield dielectric and active silicon mesa area). The solderable metal surface can also be processed using CMP to help planarize the solderable surface.
Because of its topography, region 190A can cause significant reverse leakage current in the HED rectifier, which can reduce its performance or render it inoperable. In one embodiment, the field oxide region 120 is planarized using a CMP process to generate a substantially planar surface having substantially planar regions at the top of the trenches with field oxide and epitaxial layer, which significantly reduces reverse leakage current. Further details of this CMP process are discussed with reference to
Also, because of its topography the other regions 190B-190E can develop a primary crack that can propagate to the bottom part of the nitride 175, which can increase the reverse leakage current in the HED rectifier reducing its performance or rendering it inoperable. The chances of this primary crack developing can be significantly reduced by reducing the variation in topography in region 190A. The chances of this primary crack developing can also be significantly reduced by reducing the variation in topography in regions 190B-190E. In one embodiment the variation in topography in regions 190B-190E is reduced by using CMP to planarize the field oxide layers 120, shield dielectric layer 140, and polysilicon 145 gates. Once these layers are planarized, their height variation will be significantly reduced and therefore will not propagate and manifest itself on the surface of the HED rectifier. Further details of this CMP process are discussed with reference to
After the shield dielectric layer 340 is deposited, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material which is deposited into the trenches 335 and over the shield dielectric layer 340 is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material is then doped by implanting boron. In one embodiment, boron is implanted into the undoped polysilicon material using a high carrier concentration.
In other embodiments, a CMP process can be used to further remove the remaining shield dielectric on the tops of the mesas. In this embodiment an end point detector can be used to determine when the polysilicon has been removed. After the polysilicon is removed the CMP process can be changed to a different CMP process to remove the shield dielectric layer. Changing to a different CMP process can include changing the slurry composition and pad abrasiveness to one which is designed to etch oxides. Once the CMP setup and process is changed the shield dielectric is removed from the mesa surface using this new CMP process. This new CMP process is stopped when silicon is exposed.
In operation 460, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, and an implant region 325. The shield dielectric layer 340 can have a thickness ranging from 200 Å to 5000 Å depending on the breakdown voltage of the device. In one embodiment, the shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at elevated temperatures. In operation 465, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. In one embodiment the polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon can be doped by several methods, such as vapor phase doping of polysilicon or implanting of dopant ions with dopant species such as boron, phosphorous, arsenic (the doping species are not limited to these examples). In another embodiment, the polysilicon could be a single crystal polysilicon. In another embodiment, the polysilicon could be insitu doped polysilicon using dopant gases during a deposition cycle. In operation 470, excess polysilicon 335 material is removed and the polysilicon to silicon mesa regions are planarized. In one embodiment, this planarization is performed using CMP. The CMP process removes the excess polysilicon 335 material disposed on top of the shield dielectric layer 340 outside of the trenches 335. The CMP process can also be used to remove some of the shield dielectric layer 340 disposed outside of the trench 335, leaving behind a thinner shield dielectric layer 340 outside of trenches 335 than inside of trenches 335. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has the shield dielectric layer 340 partially extending above the epitaxial layer 302 and trenches 335 with the polysilicon 345 material filling the trenches 335 up to the shield dielectric layer 340 and flush with the top of the shield dielectric layer 340. Planarizing the polysilicon using CMP generates a substantially planar surface having substantially planar regions of polysilicon and gate oxide. The regions of polysilicon and gate oxide formed by planarizing form a substantially flat contiguous surface.
Next in operation 472, a field dielectric region 320, which can be an oxide region, is formed in the epitaxial layer 302 and is recessed into the epitaxial layer 302 with some of the field dielectric region 320 being above the epitaxial layer 302 plane. In one embodiment, the field dielectric region 320 is deposited. In operation 475, a Schottky metallization layer is deposited. Next in operation 480, a Schottky barrier silicide is formed. In some embodiments, the Schottky metallization layer is omitted and operations 475 and 480 are not used. In operation 485 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 490 a dielectric layer 375 and STM layer 385 are formed. The dielectric can be polyimide, PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. Finally, in operation 498, the HED rectifier is completed.
In operation 540, a hard mask oxide is deposited or grown. The hard mask will be used in subsequent operations to form various features including trenches 335. In operation 545 the hard mask is patterned. In operation 550, trenches 335 are formed using an etch process. In one embodiment the trenches 335 have a pitch ranging from 0.8-1.0 um, a critical dimension ranging from 0.4-0.6 um, and a depth ranging from 0.5-5.0 um. However, in other embodiments the trenches can have values for the pitch, critical dimension, and depth which are outside of these ranges. In operation 555, the hard mask is removed. The hard mask can be removed using various techniques or combinations of techniques such as etching, wet BOE, which just removes the remaining hard mask oxide with minimum attack to field oxide, or CMP which planarizes the field to active regions. In some embodiments, operation 555 is optional and the hard mask can be left on for future removal post polysilicon etch.
In operation 560, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and an implant region 325. The shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at high temperatures. In operation 565, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material can then be doped by implanting boron. In operation 570, excess polysilicon 335 material is removed and the polysilicon to silicon mesa regions are planarized. In one embodiment this planarization is performed using CMP. The CMP process removes the excess polysilicon 335 material disposed on top of the shield dielectric layer 340 outside of the trenches 335. The CMP process can also be used to remove some of the shield dielectric layer 340 disposed outside of the trench 335, leaving behind a thinner shield dielectric layer 340 outside of trenches 335 than inside of trenches 335. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has the shield dielectric layer 340 partially extending above the epitaxial layer 302 and trenches 335 with the polysilicon 345 material filling the trenches 335 up to the shield dielectric layer 340 and flush with the top of the shield dielectric layer 340. Planarizing the polysilicon using CMP generates a substantially planar surface having substantially planar regions of polysilicon, gate oxide and field oxide. The regions of polysilicon, gate oxide and field oxide formed by planarizing form a substantially flat contiguous surface. This process can be performed with or without a photo pattern.
In operation 575, a Schottky metallization layer is deposited. Next in operation 580, a Schottky barrier silicide is formed. In operation 585 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 590 a dielectric layer 375 and STM layer 385 are formed. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. In some embodiments the dielectric layer 375 is polyimide. Alternatively, the dielectric layer 375 can be PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. Finally, in operation 598, the HED rectifier is completed.
In operation 640, a hard mask oxide is grown. The hard mask will be used in subsequent operations to form various features including trenches 335. In operation 645 the hard mask is patterned. In operation 650, trenches 335 are formed using an etch process. In one embodiment the trenches 335 have a pitch ranging from 0.8-1.0 um, a critical dimension ranging from 0.4-0.6 um, and a depth ranging from 0.5-5.0 um. However, in other embodiments the trenches can have values for the pitch, critical dimension, and depth which are outside of these ranges. In operation 655, the hard mask is removed. The hard mask can be removed using various techniques or combinations of techniques such as etching, wet BOE, which just removes the remaining hard mask oxide with minimum attack to field oxide, or CMP which planarizes the field to active regions. In some embodiments, operation 655 is optional and the hard mask can be left on for future removal post polysilicon etch.
In operation 660, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and an implant region 325. The shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at high temperatures. In operation 665, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material can then be doped by implanting boron. In operation 670, excess polysilicon 335 material is removed. In one embodiment, the excess polysilicon 335 is removed using an Oxide/Nitride/Oxide (ONO) etch process. This process can be performed with or without a photo pattern.
In operation 675, a Schottky metallization layer is deposited. Next in operation 680, a Schottky barrier silicide is formed. In operation 685 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 690 a dielectric layer 375 and STM layer 385 are formed. The dielectric layer 375 can be polyimide, PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. Finally, in operation 698, the HED rectifier is completed.
In operation 740, a hard mask oxide is grown. The hard mask will be used in subsequent operations to form various features including trenches 335. In operation 745 the hard mask is patterned. In operation 750, trenches 335 are formed using an etch process. In one embodiment the trenches 335 have a pitch ranging from 0.8-1.0 um, a critical dimension ranging from 0.4-0.6 um, and a depth ranging from 0.5-5.0 um. However, in other embodiments the trenches can have values for the pitch, critical dimension, and depth which are outside of these ranges. In operation 755, the hard mask is removed. The hard mask can be removed using various techniques or combinations of techniques such as etching, wet BOE, which just removes the remaining hard mask oxide with minimum attack to field oxide, or CMP which planarizes the field to active regions. In some embodiments, operation 755 is optional and the hard mask can be left on for future removal post polysilicon etch.
In operation 760, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and an implant region 325. The shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at high temperatures. In operation 765, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material can then be doped by implanting boron. In operation 770, excess polysilicon 335 material is removed and the polysilicon to silicon mesa regions are planarized. In one embodiment this planarization is performed using CMP. The CMP process removes the excess polysilicon 335 material disposed on top of the shield dielectric layer 340 outside of the trenches 335. The CMP process can also be used to remove some of the shield dielectric layer 340 disposed outside of the trench 335, leaving behind a thinner shield dielectric layer 340 outside of trenches 335 than inside of trenches 335. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has the shield dielectric layer 340 partially extending above the epitaxial layer 302 and trenches 335 with the polysilicon 345 material filling the trenches 335 up to the shield dielectric layer 340 and flush with the top of the shield dielectric layer 340. Planarizing the polysilicon using CMP generates a substantially planar surface having substantially planar regions of polysilicon, gate oxide and field oxide. The regions of polysilicon, gate oxide and field oxide formed by planarizing form a substantially flat contiguous surface. This process can be performed with or without a photo pattern.
In operation 775, a Schottky metallization layer is deposited. Next in operation 780, a Schottky barrier silicide is formed. In operation 785 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 790 a dielectric layer 375 and STM layer 385 are formed. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. In some embodiments the dielectric layer 375 is polyimide. Alternatively, the dielectric layer 375 can be PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. In operation 795, STM layer 385 material is removed using CMP. The CMP process removes the excess STM layer 385 material disposed on top of the top metal 365 and next to the dielectric layer 375. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has dielectric layer 375 and the STM layer 385 substantially co-planar so that both form a flush top surface. Planarizing the STM layer 385 using CMP generates a substantially planar surface having substantially planar regions of dielectric layer 375 material and STM layer 385 material. The regions of dielectric layer 375 material and STM layer 385 material formed by planarizing form a substantially flat contiguous surface. Finally, in operation 798, the HED rectifier is completed.
In operation 860, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, and an implant region 325. The shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at high temperatures. In operation 865, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material can then be doped by implanting boron. In operation 870, excess polysilicon 335 material is removed and the polysilicon to silicon mesa regions are planarized. In one embodiment this planarization is performed using CMP. The CMP process removes the excess polysilicon 335 material disposed on top of the shield dielectric layer 340 outside of the trenches 335. The CMP process can also be used to remove some of the shield dielectric layer 340 disposed outside of the trench 335, leaving behind a thinner shield dielectric layer 340 outside of trenches 335 than inside of trenches 335. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has the shield dielectric layer 340 partially extending above the epitaxial layer 302 and trenches 335 with the polysilicon 345 material filling the trenches 335 up to the shield dielectric layer 340 and flush with the top of the shield dielectric layer 340. Planarizing the polysilicon using CMP generates a substantially planar surface having substantially planar regions of polysilicon, and gate oxide. The regions of polysilicon and gate oxide formed by planarizing form a substantially flat contiguous surface. This process can be performed with or without a photo pattern.
Next in operation 872, a field dielectric region 320, which can be an oxide region, is formed in the epitaxial layer 302 and is recessed into the epitaxial layer 302 with some of the field dielectric region 320 being above the epitaxial layer 302 plane. In operation 875, a Schottky metallization layer is deposited. Next in operation 880, a Schottky barrier silicide is formed. In operation 885 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 890 a dielectric layer 375 and STM layer 385 are formed. In some embodiments the dielectric layer 375 is polyimide. Alternatively, the dielectric layer 375 can be PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. In operation 895, STM layer 385 material is removed using CMP. The CMP process removes the excess STM layer 385 material disposed on top of the top metal 365 and next to the dielectric layer 375. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has dielectric layer 375 and the STM layer 385 substantially co-planar so that both form a flush top surface. Planarizing the STM layer 385 using CMP generates a substantially planar surface having substantially planar regions of dielectric layer 375 material and STM layer 385 material. The regions of dielectric layer 375 material and STM layer 385 material formed by planarizing form a substantially flat contiguous surface. Finally, in operation 898, the HED rectifier is completed.
In operation 940, a hard mask oxide is grown. The hard mask will be used in subsequent operations to form various features including trenches 335. In operation 945 the hard mask is patterned. In operation 950, trenches 335 are formed using an etch process. In one embodiment the trenches 335 have a pitch ranging from 0.8-1.0 um, a critical dimension ranging from 0.4-0.6 um, and a depth ranging from 0.5-5.0 um. However, in other embodiments the trenches can have values for the pitch, critical dimension, and depth which are outside of these ranges. In operation 955, the hard mask is removed. The hard mask can be removed using various techniques or combinations of techniques such as etching, wet BOE, which just removes the remaining hard mask oxide with minimum attack to field oxide, or CMP which planarizes the field to active regions. In some embodiments, operation 955 is optional and the hard mask can be left on for future removal post polysilicon etch.
In operation 960, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and an implant region 325. The shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, the field oxide region 320 and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at high temperatures. In operation 965, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material can then be doped by implanting boron. In operation 970, excess polysilicon 335 material is removed. In one embodiment, the excess polysilicon 335 is removed using an ONO etch process. This process can be performed with or without a photo pattern.
In operation 975, a Schottky metallization layer is deposited. Next in operation 980, a Schottky barrier silicide is formed. In operation 985 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 990 a dielectric layer 375 and STM layer 385 are formed. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. In operation 995, STM layer 385 material is removed using CMP. The CMP process removes the excess STM layer 385 material disposed on top of the top metal 365 and next to the dielectric layer 375. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has dielectric layer 375 and the STM layer 385 substantially co-planar so that both form a flush top surface. Planarizing the STM layer 385 using CMP generates a substantially planar surface having substantially planar regions of dielectric layer 375 material and STM layer 385 material. The regions of dielectric layer 375 material and STM layer 385 material formed by planarizing form a substantially flat contiguous surface. In some embodiments the dielectric layer 375 is polyimide. Alternatively, the dielectric layer 375 can be PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. Finally, in operation 998, the HED rectifier is completed.
In operation 1060, the shield dielectric layer 340 is formed so that it follows the contours of the trench and the substrate. The shield dielectric layer 340 can be formed by growing the oxide layer, depositing the oxide layer or combinations of growing and depositing the oxide. The shield dielectric layer 340 is formed along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, and an implant region 325. The shield dielectric layer 340 can have a thickness of approximately 400±50 Å. In some embodiments, the shield dielectric layer 340 can form a contiguous film along the bottom and sidewalls of the trench 335 and along the top of the epitaxial layer 302, and the implant region 325. The shied oxide layer 340 can be formed by exposing the HED rectifier to oxygen diluted in an inert gas such as argon, helium, or xenon at high temperatures. In operation 1065, the polysilicon 345 material is deposited inside the trench 335 and over the top of the shield dielectric layer 340. The polysilicon material is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material can then be doped by implanting boron. In operation 1070, excess polysilicon 335 material is removed. In one embodiment, the excess polysilicon 335 is removed using an ONO etch process. This process can be performed with or without a photo pattern.
Next in operation 1072, a field dielectric region 320, which can be an oxide region, is formed in the epitaxial layer 302 and is recessed into the epitaxial layer 302 with some of the field dielectric region 320 being above the epitaxial layer 302 plane. In operation 1075, a Schottky metallization layer is deposited. Next in operation 1080, a Schottky barrier silicide is formed. In operation 1085 a top metal 365 containing aluminum is formed. The top metal 365 is formed over a Schottky metallization layer and over a portion of the gate oxide layer. In operation 1090 a dielectric layer 375 and STM layer 385 are formed. In some embodiments the dielectric layer 375 is polyimide. Alternatively, the dielectric layer 375 can be PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. The dielectric layer 375 is formed according to a pattern and the STM layer 385 is formed over the top metal 365. In operation 1095, STM layer 385 material is removed using CMP. The CMP process removes the excess STM layer 385 material disposed on top of the top metal 365 and next to the dielectric layer 375. After the partial HED rectifier has been processed with CMP, the resulting partial HED rectifier has dielectric layer 375 and the STM layer 385 substantially co-planar so that both form a flush top surface. Planarizing the STM layer 385 using CMP generates a substantially planar surface having substantially planar regions of dielectric layer 375 material and STM layer 385 material. The regions of dielectric layer 375 material and STM layer 385 material formed by planarizing form a substantially flat contiguous surface. Finally, in operation 1098, the HED rectifier is completed.
The implant region 1125 is produced by implanting boron into the epitaxial layer 1102. In some embodiments, the implantation energy is increased in order to produce a P-iso under the field oxide layer 1120. The trenches 1135 are formed by etching and have a final thickness that ranges from about 2250 Å to about 2450 Å and the final depth that ranges from about 1275 nm to about 1555 nm. The width and depth of the trenches can vary outside of these ranges. In one embodiment the depth of the trenches is approximately 1415 nm. The shield dielectric layer 1140 can have a thickness of approximately 400±50 Å and follows the contours of the trench and the substrate. The shield dielectric layer 1140 is grown so that it lines the bottom and sidewalls of the trench 1135 and along the top of the epitaxial layer 1102, the field oxide region 1120 and an implant region 1125. In some embodiments, the shield dielectric layer 1140 can form a contiguous film along the bottom and sidewalls of the trench 1135 and along the top of the epitaxial layer 1102, the field oxide region 1120 and the implant region 1125. The polysilicon material 1145 which is deposited into the trenches 1135 and over the shield dielectric layer 1140 is amorphous undoped polysilicon and has a thickness of approximately 5500 ű500 Å. The polysilicon material 1145 is then doped by implanting boron. The polysilicon material 1145 substantially fills the trenches 1135 and produces a structure where the polysilicon material 1145 has a top surface that is coplanar with top surfaces of the gate oxide and/or the field oxide 1120. In some embodiments this coplanar surface is produced using CMP.
The NiSi layer 1160 is formed by first depositing nickel over the planarized region having exposed polysilicon 1145 in the trenches 1135 and exposed silicon which form the mesas between the trenches 1135, and then subjecting the nickel to external heat generated by sources such as rapid thermal anneal (RTA), hot chuck, and furnace sources (other heat sources can be used and the heat sources are not limited to these). NiSi forms when the nickel is exposed to the silicon from substrate 1100 and is subjected to external heat generated by sources such as rapid thermal anneal (RTA), hot chuck, and furnace sources (other heat sources can be used and the heat sources are not limited to these). In some embodiments un-reacted residual nickel is present. In some embodiments that Nickel layer can be sputter deposited and the thickness can be approximately 600 Å. The top layer 1165 is made of Al/Si/Cu, which is formed over the NiSi layer 1160 and the shield dielectric layer 1140, which has been deposited over the field oxide region 1120. The top layer 1165 includes an opening which is filled with dielectric layer 1175. In one embodiment, the dielectric layer 1175 is polyimide. Alternatively, the dielectric layer 1175 can be PECVD oxy-nitride, PECVD nitride, BCB, oxy-nitride films that act as a dielectric material, polyimide and deposited silicon nitride, polyimide and deposited silicon dioxide, polyimide and deposited silicon oxy-nitride, silicon nitride, silicon oxy-nitride, silicon dioxide, or some other dielectric. The dielectric layer 1175 is deposited over a portion of the top layer 1165 and fills the opening. The STM layer 1185 is made of a solderable material such as Ti/NiV/Ag, Ta/Cu, tin or other solderable metals. The STM layer 1185 can be formed using various deposition methods such as electroless deposition. The dielectric layer 1175 and the STM layer 1185 form a substantially planar surface which can be produced using CMP. The back metal 1190 is formed on the back side of the substrate 1100. The back metal 1190 can include layers of Ti, NiV and Ag or other solderable metals, which are formed on the back of the substrate 1100 after the back of the substrate 1100 has undergone a mechanical back grinding process that grinds off a portion the substrate 1100.
Although specific embodiments of the invention have been described, various modifications, alterations, alternative constructions, and equivalents are also encompassed within the scope of the invention. The described invention is not restricted to operation within certain specific embodiments, but is free to operate within other embodiments configurations as it should be apparent to those skilled in the art that the scope of the present invention is not limited to the described series of transactions and steps.
The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and other modifications and changes may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the claims.
This application is a continuation of U.S. application Ser. No. 12/819,023, filed Jun. 18, 2010, which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3404295 | Warner et al. | Oct 1968 | A |
3412297 | Amlinger | Nov 1968 | A |
3497777 | Teszner et al. | Feb 1970 | A |
3564356 | Wilson | Feb 1971 | A |
3660697 | Berglund et al. | May 1972 | A |
3855009 | Lloyd et al. | Dec 1974 | A |
4003072 | Matsushita et al. | Jan 1977 | A |
4011105 | Paivinen et al. | Mar 1977 | A |
4062747 | Chang et al. | Dec 1977 | A |
4300150 | Colak | Nov 1981 | A |
4324038 | Chang et al. | Apr 1982 | A |
4326332 | Kenney | Apr 1982 | A |
4337474 | Yukimoto | Jun 1982 | A |
4345265 | Blanchard | Aug 1982 | A |
4445202 | Goetze et al. | Apr 1984 | A |
4541001 | Schutten et al. | Sep 1985 | A |
4568958 | Baliga | Feb 1986 | A |
4579621 | Hine | Apr 1986 | A |
4621414 | Iranmanesh | Nov 1986 | A |
4636281 | Buiguez et al. | Jan 1987 | A |
4638344 | Cardwell, Jr. | Jan 1987 | A |
4639761 | Singer et al. | Jan 1987 | A |
4641174 | Baliga | Feb 1987 | A |
4666556 | Fulton et al. | May 1987 | A |
4698653 | Cardwell, Jr. | Oct 1987 | A |
4716126 | Cogan | Dec 1987 | A |
4745079 | Pfiester | May 1988 | A |
4746630 | Hui et al. | May 1988 | A |
4754310 | Coe | Jun 1988 | A |
4767722 | Blanchard | Aug 1988 | A |
4774556 | Fujii et al. | Sep 1988 | A |
4801986 | Chang et al. | Jan 1989 | A |
4821095 | Temple | Apr 1989 | A |
4823176 | Baliga et al. | Apr 1989 | A |
4824793 | Richardson et al. | Apr 1989 | A |
4833516 | Hwang et al. | May 1989 | A |
4853345 | Himelick | Aug 1989 | A |
4868624 | Grung et al. | Sep 1989 | A |
4893160 | Blanchard | Jan 1990 | A |
4914058 | Blanchard | Apr 1990 | A |
4941026 | Temple | Jul 1990 | A |
4961100 | Baliga et al. | Oct 1990 | A |
4967245 | Cogan et al. | Oct 1990 | A |
4969028 | Baliga | Nov 1990 | A |
4974059 | Kinzer | Nov 1990 | A |
4975782 | Bauer | Dec 1990 | A |
4979004 | Esquivel et al. | Dec 1990 | A |
4990463 | Mori | Feb 1991 | A |
4992390 | Chang | Feb 1991 | A |
5027180 | Nishizawa et al. | Jun 1991 | A |
5032888 | Seki | Jul 1991 | A |
5034785 | Blanchard | Jul 1991 | A |
5065273 | Rajeevakumar | Nov 1991 | A |
5071782 | Mori | Dec 1991 | A |
5072266 | Bulucea et al. | Dec 1991 | A |
5079608 | Wodarczyk et al. | Jan 1992 | A |
5105243 | Nakagawa et al. | Apr 1992 | A |
5111253 | Korman et al. | May 1992 | A |
5134448 | Johnsen et al. | Jul 1992 | A |
5142640 | Iwamatsu | Aug 1992 | A |
5155059 | Hieda | Oct 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5164325 | Cogan et al. | Nov 1992 | A |
5164802 | Jones et al. | Nov 1992 | A |
5168331 | Yilmaz et al. | Dec 1992 | A |
5188973 | Omura et al. | Feb 1993 | A |
5208657 | Chatterjee et al. | May 1993 | A |
5216275 | Chen | Jun 1993 | A |
5219777 | Kang | Jun 1993 | A |
5219793 | Cooper et al. | Jun 1993 | A |
5233215 | Baliga | Aug 1993 | A |
5241195 | Tu et al. | Aug 1993 | A |
5242845 | Baba et al. | Sep 1993 | A |
5250450 | Lee et al. | Oct 1993 | A |
5262336 | Pike, Jr. et al. | Nov 1993 | A |
5268311 | Euen et al. | Dec 1993 | A |
5275961 | Smayling et al. | Jan 1994 | A |
5275965 | Manning | Jan 1994 | A |
5281548 | Prall | Jan 1994 | A |
5283201 | Tsang et al. | Feb 1994 | A |
5294824 | Okada | Mar 1994 | A |
5298781 | Cogan et al. | Mar 1994 | A |
5300447 | Anderson | Apr 1994 | A |
5300452 | Chang et al. | Apr 1994 | A |
5326711 | Malhi | Jul 1994 | A |
5346834 | Hisamoto et al. | Sep 1994 | A |
5350937 | Yamazaki et al. | Sep 1994 | A |
5363327 | Henkles et al. | Nov 1994 | A |
5365102 | Mehrotra et al. | Nov 1994 | A |
5366914 | Takahashi et al. | Nov 1994 | A |
5389815 | Takahashi | Feb 1995 | A |
5405794 | Kim | Apr 1995 | A |
5418376 | Muraoka et al. | May 1995 | A |
5424231 | Yang | Jun 1995 | A |
5429977 | Lu et al. | Jul 1995 | A |
5430311 | Murakami et al. | Jul 1995 | A |
5430324 | Bencuya | Jul 1995 | A |
5434435 | Baliga | Jul 1995 | A |
5436189 | Beasom | Jul 1995 | A |
5438007 | Vinal et al. | Aug 1995 | A |
5438215 | Tihanyi | Aug 1995 | A |
5442214 | Yang | Aug 1995 | A |
5473176 | Kakumoto | Dec 1995 | A |
5473180 | Ludikhuize | Dec 1995 | A |
5474943 | Hshieh et al. | Dec 1995 | A |
5488010 | Wong | Jan 1996 | A |
5519245 | Tokura et al. | May 1996 | A |
5532179 | Chang et al. | Jul 1996 | A |
5541425 | Nishihara | Jul 1996 | A |
5554552 | Chi | Sep 1996 | A |
5554862 | Omura et al. | Sep 1996 | A |
5567634 | Hebert et al. | Oct 1996 | A |
5567635 | Acovic et al. | Oct 1996 | A |
5572048 | Sugawara | Nov 1996 | A |
5576245 | Cogan et al. | Nov 1996 | A |
5578851 | Hshieh et al. | Nov 1996 | A |
5583065 | Miwa | Dec 1996 | A |
5592005 | Floyd et al. | Jan 1997 | A |
5593909 | Han et al. | Jan 1997 | A |
5595927 | Chen et al. | Jan 1997 | A |
5597765 | Yilmaz et al. | Jan 1997 | A |
5605852 | Bencuya | Feb 1997 | A |
5616945 | Williams | Apr 1997 | A |
5623152 | Majumdar et al. | Apr 1997 | A |
5629543 | Hshieh et al. | May 1997 | A |
5637898 | Baliga | Jun 1997 | A |
5639676 | Hshieh et al. | Jun 1997 | A |
5640034 | Malhi | Jun 1997 | A |
5648670 | Blanchard | Jul 1997 | A |
5656843 | Goodyear et al. | Aug 1997 | A |
5665619 | Kwan et al. | Sep 1997 | A |
5668394 | Lur et al. | Sep 1997 | A |
5670803 | Beilstein, Jr. et al. | Sep 1997 | A |
5679966 | Baliga et al. | Oct 1997 | A |
5684320 | Kawashima | Nov 1997 | A |
5691553 | Mori et al. | Nov 1997 | A |
5693569 | Ueno | Dec 1997 | A |
5705409 | Witek | Jan 1998 | A |
5710072 | Krautschneider et al. | Jan 1998 | A |
5714781 | Yamamoto et al. | Feb 1998 | A |
5719409 | Singh et al. | Feb 1998 | A |
5723891 | Malhi | Mar 1998 | A |
5731626 | Eaglesham et al. | Mar 1998 | A |
5744372 | Bulucea | Apr 1998 | A |
5767004 | Balasubramanian et al. | Jun 1998 | A |
5770878 | Beasom | Jun 1998 | A |
5773851 | Nakamura et al. | Jun 1998 | A |
5776813 | Huang et al. | Jul 1998 | A |
5780343 | Bashir | Jul 1998 | A |
5801417 | Tsang | Sep 1998 | A |
5814858 | Williams | Sep 1998 | A |
5821583 | Hshieh et al. | Oct 1998 | A |
5856692 | Williams et al. | Jan 1999 | A |
5877528 | So | Mar 1999 | A |
5879971 | Witek | Mar 1999 | A |
5879994 | Kwan et al. | Mar 1999 | A |
5894157 | Han et al. | Apr 1999 | A |
5895951 | So et al. | Apr 1999 | A |
5895952 | Darwish et al. | Apr 1999 | A |
5897343 | Mathew et al. | Apr 1999 | A |
5897360 | Kawaguchi | Apr 1999 | A |
5900663 | Johnson et al. | May 1999 | A |
5906680 | Meyerson | May 1999 | A |
5907776 | Hshieh et al. | May 1999 | A |
5917216 | Floyd et al. | Jun 1999 | A |
5929481 | Hshieh et al. | Jul 1999 | A |
5943581 | Lu et al. | Aug 1999 | A |
5949104 | D'Anna et al. | Sep 1999 | A |
5949124 | Hadizad et al. | Sep 1999 | A |
5959324 | Kohyama | Sep 1999 | A |
5960271 | Wollesen et al. | Sep 1999 | A |
5972741 | Kubo et al. | Oct 1999 | A |
5973360 | Tihanyi | Oct 1999 | A |
5973367 | Williams | Oct 1999 | A |
5976936 | Miyajima et al. | Nov 1999 | A |
5981344 | Hshieh et al. | Nov 1999 | A |
5981996 | Fujishima | Nov 1999 | A |
5998833 | Baliga | Dec 1999 | A |
6005271 | Hshieh | Dec 1999 | A |
6008097 | Yoon et al. | Dec 1999 | A |
6011298 | Blanchard | Jan 2000 | A |
6015727 | Wanlass | Jan 2000 | A |
6020250 | Kenney | Feb 2000 | A |
6034415 | Johnson et al. | Mar 2000 | A |
6037202 | Witek | Mar 2000 | A |
6037268 | Huang | Mar 2000 | A |
6037628 | Huang | Mar 2000 | A |
6037632 | Omura et al. | Mar 2000 | A |
6040600 | Uenishi et al. | Mar 2000 | A |
6048772 | D'Anna | Apr 2000 | A |
6049108 | Williams et al. | Apr 2000 | A |
6051488 | Lee et al. | Apr 2000 | A |
6057558 | Yamamoto et al. | May 2000 | A |
6063678 | D'Anna | May 2000 | A |
6064088 | D'Anna | May 2000 | A |
6066878 | Neilson | May 2000 | A |
6069043 | Floyd et al. | May 2000 | A |
6077733 | Chen et al. | Jun 2000 | A |
6078090 | Williams et al. | Jun 2000 | A |
6081009 | Neilson | Jun 2000 | A |
6084264 | Darwish | Jul 2000 | A |
6084268 | de Fresart et al. | Jul 2000 | A |
6087232 | Kim et al. | Jul 2000 | A |
6096608 | Williams | Aug 2000 | A |
6097063 | Fujihira | Aug 2000 | A |
6103578 | Uenishi et al. | Aug 2000 | A |
6103619 | Lai | Aug 2000 | A |
6104054 | Corsi et al. | Aug 2000 | A |
6110799 | Huang | Aug 2000 | A |
6114727 | Ogura et al. | Sep 2000 | A |
6137152 | Wu | Oct 2000 | A |
6144054 | Agahi et al. | Nov 2000 | A |
6150697 | Teshigahara et al. | Nov 2000 | A |
6153920 | Gossmann et al. | Nov 2000 | A |
6156606 | Michaelis | Dec 2000 | A |
6156611 | Lan et al. | Dec 2000 | A |
6163052 | Liu et al. | Dec 2000 | A |
6165870 | Shim et al. | Dec 2000 | A |
6168983 | Rumennik et al. | Jan 2001 | B1 |
6168996 | Numazawa et al. | Jan 2001 | B1 |
6171935 | Nance et al. | Jan 2001 | B1 |
6174769 | Lou | Jan 2001 | B1 |
6174773 | Fujishima | Jan 2001 | B1 |
6174785 | Parekh et al. | Jan 2001 | B1 |
6184545 | Werner et al. | Feb 2001 | B1 |
6184555 | Tihanyi et al. | Feb 2001 | B1 |
6188104 | Choi et al. | Feb 2001 | B1 |
6188105 | Kocon et al. | Feb 2001 | B1 |
6190978 | D'Anna | Feb 2001 | B1 |
6191447 | Baliga | Feb 2001 | B1 |
6194741 | Kinzer et al. | Feb 2001 | B1 |
6198127 | Kocon | Mar 2001 | B1 |
6201279 | Pfirsch | Mar 2001 | B1 |
6204097 | Shen et al. | Mar 2001 | B1 |
6207994 | Rumennik et al. | Mar 2001 | B1 |
6222229 | Hebert et al. | Apr 2001 | B1 |
6222233 | D'Anna | Apr 2001 | B1 |
6225649 | Minato | May 2001 | B1 |
6228727 | Lim et al. | May 2001 | B1 |
6236099 | Boden, Jr. | May 2001 | B1 |
6239463 | Williams et al. | May 2001 | B1 |
6239464 | Tsuchitani et al. | May 2001 | B1 |
6265269 | Chen et al. | Jul 2001 | B1 |
6271082 | Hou et al. | Aug 2001 | B1 |
6271100 | Ballantine et al. | Aug 2001 | B1 |
6271552 | D'Anna | Aug 2001 | B1 |
6271562 | Deboy et al. | Aug 2001 | B1 |
6274904 | Tihanyi | Aug 2001 | B1 |
6274905 | Mo | Aug 2001 | B1 |
6277706 | Ishikawa | Aug 2001 | B1 |
6281547 | So et al. | Aug 2001 | B1 |
6285060 | Korec et al. | Sep 2001 | B1 |
6291298 | Williams et al. | Sep 2001 | B1 |
6291856 | Miyasaka et al. | Sep 2001 | B1 |
6294818 | Fujihira | Sep 2001 | B1 |
6297534 | Kawaguchi et al. | Oct 2001 | B1 |
6303969 | Tan | Oct 2001 | B1 |
6307246 | Nitta et al. | Oct 2001 | B1 |
6309920 | Laska et al. | Oct 2001 | B1 |
6313482 | Baliga | Nov 2001 | B1 |
6316806 | Mo | Nov 2001 | B1 |
6326656 | Tihanyi | Dec 2001 | B1 |
6337499 | Werner | Jan 2002 | B1 |
6346464 | Takeda et al. | Feb 2002 | B1 |
6346469 | Greer | Feb 2002 | B1 |
6351018 | Sapp | Feb 2002 | B1 |
6353252 | Yasuhara et al. | Mar 2002 | B1 |
6359308 | Hijzen et al. | Mar 2002 | B1 |
6362112 | Hamerski | Mar 2002 | B1 |
6362505 | Tihanyi | Mar 2002 | B1 |
6365462 | Baliga | Apr 2002 | B2 |
6365930 | Schillaci et al. | Apr 2002 | B1 |
6368920 | Beasom | Apr 2002 | B1 |
6368921 | Hijzen et al. | Apr 2002 | B1 |
6376314 | Jerred | Apr 2002 | B1 |
6376315 | Hshieh et al. | Apr 2002 | B1 |
6376878 | Kocon | Apr 2002 | B1 |
6376890 | Tihanyi | Apr 2002 | B1 |
6384456 | Tihanyi | May 2002 | B1 |
6388286 | Baliga | May 2002 | B1 |
6388287 | Deboy et al. | May 2002 | B2 |
6400003 | Huang | Jun 2002 | B1 |
6429481 | Mo et al. | Aug 2002 | B1 |
6433385 | Kocon et al. | Aug 2002 | B1 |
6436779 | Hurkx et al. | Aug 2002 | B2 |
6437399 | Huang | Aug 2002 | B1 |
6441454 | Hijzen et al. | Aug 2002 | B2 |
6444574 | Chu | Sep 2002 | B1 |
6452230 | Boden, Jr. | Sep 2002 | B1 |
6461918 | Calafut | Oct 2002 | B1 |
6465304 | Blanchard et al. | Oct 2002 | B1 |
6465843 | Hirler et al. | Oct 2002 | B1 |
6465869 | Ahlers et al. | Oct 2002 | B2 |
6472678 | Hshieh et al. | Oct 2002 | B1 |
6472708 | Hshieh et al. | Oct 2002 | B1 |
6475884 | Hshieh et al. | Nov 2002 | B2 |
6476443 | Kinzer | Nov 2002 | B1 |
6479352 | Blanchard | Nov 2002 | B2 |
6489652 | Jeon et al. | Dec 2002 | B1 |
6498061 | Divakaruni et al. | Dec 2002 | B2 |
6501129 | Osawa | Dec 2002 | B2 |
6501146 | Harada | Dec 2002 | B1 |
6534825 | Calafut | Mar 2003 | B2 |
6566804 | Trujillo et al. | May 2003 | B1 |
6580123 | Thapar | Jun 2003 | B2 |
6593620 | Hshieh et al. | Jul 2003 | B1 |
6608350 | Kinzer et al. | Aug 2003 | B2 |
6621121 | Baliga | Sep 2003 | B2 |
6657254 | Hshieh et al. | Dec 2003 | B2 |
6667515 | Inoue | Dec 2003 | B2 |
6677641 | Kocon | Jan 2004 | B2 |
6683346 | Zeng | Jan 2004 | B2 |
6710403 | Sapp | Mar 2004 | B2 |
6720616 | Hirler et al. | Apr 2004 | B2 |
6734066 | Lin et al. | May 2004 | B2 |
6750508 | Omura et al. | Jun 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6780714 | Gajda et al. | Aug 2004 | B2 |
6806533 | Henninger et al. | Oct 2004 | B2 |
6833584 | Henninger et al. | Dec 2004 | B2 |
6838722 | Bhalla et al. | Jan 2005 | B2 |
6841825 | Kurosaki et al. | Jan 2005 | B2 |
6870220 | Kocon et al. | Mar 2005 | B2 |
6916745 | Herrick et al. | Jul 2005 | B2 |
6936890 | Hueting et al. | Aug 2005 | B2 |
6979874 | Harada | Dec 2005 | B2 |
7005347 | Bhalla et al. | Feb 2006 | B1 |
7180152 | Herman | Feb 2007 | B2 |
7345342 | Challa et al. | Mar 2008 | B2 |
7416948 | Kraft et al. | Aug 2008 | B2 |
7482205 | Herman | Jan 2009 | B2 |
7638841 | Challa | Dec 2009 | B2 |
7652326 | Kocon | Jan 2010 | B2 |
20010023961 | Hshieh et al. | Sep 2001 | A1 |
20010026989 | Thapar | Oct 2001 | A1 |
20010028083 | Onishi et al. | Oct 2001 | A1 |
20010032998 | Iwamoto et al. | Oct 2001 | A1 |
20010041400 | Ren et al. | Nov 2001 | A1 |
20010049167 | Madson | Dec 2001 | A1 |
20010050394 | Onishi et al. | Dec 2001 | A1 |
20020008284 | Zeng | Jan 2002 | A1 |
20020009832 | Blanchard | Jan 2002 | A1 |
20020014658 | Blanchard | Feb 2002 | A1 |
20020066924 | Blanchard | Jun 2002 | A1 |
20020070418 | Kinzer et al. | Jun 2002 | A1 |
20020100933 | Marchant | Aug 2002 | A1 |
20020155685 | Sakakibara | Oct 2002 | A1 |
20030006452 | Challa | Jan 2003 | A1 |
20030060013 | Marchant | Mar 2003 | A1 |
20030073287 | Kocon | Apr 2003 | A1 |
20030132450 | Minato et al. | Jul 2003 | A1 |
20030178676 | Henninger et al. | Sep 2003 | A1 |
20030178678 | Wei et al. | Sep 2003 | A1 |
20030193067 | Kim et al. | Oct 2003 | A1 |
20030197220 | Disney | Oct 2003 | A1 |
20030209757 | Henninger et al. | Nov 2003 | A1 |
20040031987 | Henninger et al. | Feb 2004 | A1 |
20040089910 | Hirler et al. | May 2004 | A1 |
20040121572 | Darwish et al. | Jun 2004 | A1 |
20040232407 | Calafut | Nov 2004 | A1 |
20050009277 | Chuang et al. | Jan 2005 | A1 |
20050017293 | Zundel et al. | Jan 2005 | A1 |
20080135889 | Session | Jun 2008 | A1 |
20080135931 | Challa et al. | Jun 2008 | A1 |
20080138953 | Challa et al. | Jun 2008 | A1 |
20080150020 | Challa et al. | Jun 2008 | A1 |
20080169505 | Hsieh | Jul 2008 | A1 |
20080185730 | Lung | Aug 2008 | A1 |
20080197407 | Challa et al. | Aug 2008 | A1 |
20080199997 | Grebs et al. | Aug 2008 | A1 |
20090008706 | Yedinak et al. | Jan 2009 | A1 |
20090008709 | Yedinak et al. | Jan 2009 | A1 |
20090111227 | Kocon et al. | Apr 2009 | A1 |
20100084706 | Kocon | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1036666 | Oct 1989 | CN |
4300806 | Dec 1993 | DE |
19736981 | Aug 1998 | DE |
0975024 | Jan 2000 | EP |
1026749 | Aug 2000 | EP |
1054451 | Nov 2000 | EP |
20031168455 | Jan 2002 | EP |
0747967 | Feb 2002 | EP |
1205980 | May 2002 | EP |
20031369927 | Dec 2003 | EP |
56-058267 | May 1981 | JP |
62-069562 | May 1981 | JP |
63-186475 | Mar 1987 | JP |
63-288047 | Aug 1988 | JP |
63-224260 | Sep 1988 | JP |
64-059868 | Mar 1989 | JP |
01-192174 | Aug 1989 | JP |
03024765 | Jan 1991 | JP |
08186258 | Jul 1996 | JP |
08-264772 | Oct 1996 | JP |
64-022051 | Nov 1998 | JP |
2000-012842 | Jan 2000 | JP |
2000-040822 | Feb 2000 | JP |
2000-040872 | Feb 2000 | JP |
2000-156978 | Feb 2000 | JP |
2000-277726 | Oct 2000 | JP |
2000-277728 | Oct 2000 | JP |
2001-015448 | Jan 2001 | JP |
2001-015752 | Jan 2001 | JP |
2001-102577 | Apr 2001 | JP |
2001-111041 | Apr 2001 | JP |
2001-135819 | May 2001 | JP |
2001-144292 | May 2001 | JP |
2001-244461 | Sep 2001 | JP |
2001-313391 | Sep 2001 | JP |
2002-083976 | Mar 2002 | JP |
224372 | Nov 2004 | TW |
WO0033386 | Jun 2000 | WO |
WO0042665 | Jul 2000 | WO |
WO0068997 | Nov 2000 | WO |
WO0068998 | Nov 2000 | WO |
WO0075965 | Dec 2000 | WO |
WO0106550 | Jan 2001 | WO |
WO0106557 | Jan 2001 | WO |
WO0145155 | Jun 2001 | WO |
WO0159847 | Aug 2001 | WO |
WO0171815 | Sep 2001 | WO |
WO0195385 | Dec 2001 | WO |
WO0195398 | Dec 2001 | WO |
WO0201644 | Jan 2002 | WO |
WO0247171 | Jun 2002 | WO |
WO03023861 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20110309470 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12819023 | Jun 2010 | US |
Child | 12819109 | US |