The presently disclosed subject matter relates generally to heating, ventilating, and air conditioning (HVAC) systems and more particularly to a tubular-shaped and modular air handling unit (AHU) for HVAC systems.
Heating, ventilating, and air conditioning (HVAC) systems are well known for maintaining environmental conditions within buildings. A typical HVAC installation divides the building into zones and regulates environmental parameters (e.g., temperature, humidity, outdoor/recirculated air ratio, etc.) of each zone to predefined control setpoints. In some HVAC systems, an air distribution system connects each of the zones to a separate air handling unit (AHU) that conditions the air supplied to a particular zone. The air handling unit generally includes elements for introducing outdoor air into the system and for exhausting air from the system. Other elements are provided for heating, cooling, filtering, and otherwise conditioning the air for the zone.
The air handling unit may include a constant volume supply fan or variable volume supply fan to circulate the air within the zone's air distribution ducts at a desired flow rate. Frequently, the AHU-portion of the HVAC system is rectangular and ties into round (i.e., tubular) ductwork. There are certain drawbacks to integrating rectangular-shaped AHUs and round ductwork. In one example, rectangular AHUs can be large and bulky compared to the round ductwork to which they are coupled. In another example, there can be certain efficiency disadvantages with respect to tying rectangular AHUs into round ductwork. Namely, there can be undesirable pressure drops between the AHU and the ductwork.
Another drawback of current AHUs of HVAC systems is that their configuration is substantially fixed and difficult to upgrade when certain requirements (e.g., seasonal energy efficiency ratio (SEER) requirements) change. For example, components of the AHU (e.g., fan, electronics, coils, etc.) are interconnected and difficult to replace or upgrade individually without replacing or otherwise modifying the entire AHU.
In some embodiments, an air handling system is provided that may include a coil module, a fan module, and/or an electronics module, wherein the coil module, fan module, and electronics module may each be configured to be independently installed or removed from the system. The fan module may include a fan that causes air to move through the system. The electronics module may be installed within the fan module or coil module, or may be installed adjacent the fan module and/or coil module. In some embodiments, the coil module may include an evaporator coil arranged adjacent or otherwise proximate to an outer wall of the coil module and capable of conditioning air flowing through the coil module.
In some embodiments, the coil module, fan module, and/or electronics module may be substantially tubular in shape, and further wherein the coil module and fan module have a first diameter. In some embodiments, the diameter may be substantially equal to a diameter of duct work connected to the system, but may optionally be any desired diameter. The coil module, or any other module, may in some embodiments include an outer surface made from a composite material, or made from metal, plastic, or any other suitable material. In some embodiments, a rubberized or composite coating may be included on the outer and/or inner surface of the modules as desired to protect against rust and/or other corrosion caused by, for example, moisture or water in the system. The system may also include one or more drains that may be used to allow water to drain out of the system. In some embodiments, the one or more drains may be selectively opened depending on the orientation in which the system is installed. In some embodiments, the one or more drains may include punch outs or some other mechanism for selectively opening what may otherwise be a closed drain.
Having thus described the presently disclosed subject matter in general terms, reference will now be made to the accompanying Drawings, which are not necessarily drawn to scale, and wherein:
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Drawings, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
In some embodiments, the presently disclosed subject matter provides a tubular-shaped and modular air handling unit (AHU) that may be used in connection with heating, ventilating, and air conditioning (HVAC) systems. For example, a modular AHU is disclosed that may include a coil module, a fan module, and an electrical module, among others. In some embodiments, each of the coil module, fan module, electrical module, etc. may be substantially tubular shaped for, among other things, easily coupling one to another and/or easily coupling to tubular-shaped (or round or circular) ductwork. Further, because of the modular configuration, the presently disclosed modular AHU may be easily upgradable relative to, for example, conventional AHUs.
Referring now to
In some embodiments, coil module 110 may include a tubular-shaped outer shell 112 that houses an evaporator coil 120 (see, for example,
Fan module 130 may include a tubular-shaped outer shell 132 that houses a fan assembly 134 (see, for example,
In some embodiments, a crimped pipe adaptor 160 may be provided at each end of outer shell 112 of coil module 110, outer shell 132 of fan module 130, and outer shell 152 of electrical module 150. Crimped pipe adaptor may be used, for example, to facilitate interconnection of coil module 110, fan module 130, and/or electrical module 150. Of course, any number of other connection means may be employed to facilitate inter-connection as needed. The crimped pipe adaptor 160 at each end of coil module 110, fan module 130, and electrical module 150 may also facilitate easy coupling from one module to another or any module to ductwork. Further, outer shell 112 of coil module 110, outer shell 132 of fan module 130, and outer shell 152 of electrical module 150 may be formed, for example, of aluminum, plastic, composite material, and/or any other suitable material for such systems.
In some embodiments, moisture may form inside AHU 100 through normal use. Accordingly, the inside surface of outer shell 112 of coil module 110, outer shell 132 of fan module 130, and outer shell 152 of electrical module 150 may be lined with, for example, a rubberized coating and/or a composite material lining, among other suitable materials, to resist or prevent corrosion and rust. Other coatings to reduce or prevent corrosion or rust may be utilized as well. Alternatively, in some embodiments, outer shell 112 of coil module 110, outer shell 132 of fan module 130, and outer shell 152 of electrical module 150 may be formed from inherently water resistant materials, such as for example composite material, plastics, and/or any other suitable material.
Each of the modules of modular AHU 100 (e.g., coil module 110, fan module 130, and electrical module 150) have a diameter D and a length L. The diameter D of the modules can be from about 14 inches to about 22 inches in one example, or can be from about 5 inches to about 36 inches in another example. In other embodiments, the diameter D of the modules can be of any diameter used in HVAC systems, and will depend on the capacity of the overall system, as is understood by those having skill in the art.
Further, the length L of the modules can vary among the modules, and may in one example include a coil module 110 having a length L of about 33 inches, a fan module 130 having a length L of about 12 inches, and an electrical module 150 having a length L of about 12 inches. In other embodiments, the modules may be substantially the same length L. In some embodiments, coil module 110 may have a length L from about 10 inches to about 50 inches, or in some embodiments 33 inches. In some embodiments, fan module 130 may have a length L from about 5 inches to about 30 inches, and in some embodiments may be about 12 inches to about 14 inches. In some embodiments, electrical module 150 may have a length L from about 5 inches to about 30 inches, or in some embodiments have a length L of about 12 inches. When combined together, the coil module 110, fan module 130, and electrical module 150 may have a combined length of about 57 inches in some embodiments. While in some embodiments, the diameter D of each of, for example, coil module 110, fan module 130, and electrical module 150 may be substantially the same, the length L of each module can be the same or different. In other embodiments, diameter D of each module may be relatively different.
Referring now to
Referring now to
Referring now to
As depicted in
Referring now to
Referring now to
Following long-standing patent law convention, the terms “a,” “an,” and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a subject” includes a plurality of subjects, unless the context clearly is to the contrary (e.g., a plurality of subjects), and so forth.
Throughout this specification and the claims, the terms “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments, ±100% in some embodiments ±50%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
Further, the term “about” when used in connection with one or more numbers or numerical ranges, should be understood to refer to all such numbers, including all numbers in a range and modifies that range by extending the boundaries above and below the numerical values set forth. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
Although the foregoing subject matter has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be understood by those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/260,843, filed Jan. 29, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/623,011, filed Jan. 29, 2018, each of which is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
62623011 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16260843 | Jan 2019 | US |
Child | 17724854 | US |