The present invention relates generally to an air intake system for a two-stroke or four-stroke internal combustion engine. More specifically, it relates to an air intake system that is tunable through the use of interchangeable velocity stacks.
Many smaller two-stroke and four-stroke internal combustion engines typically use an air intake boot to connect the air box to the carburetor or the throttle body if it is a fuel injected engine (collectively herein the “carburetor/throttle body”). As is shown in
The power characteristics of an engine are dependent on the velocity and volume of the air leaving the second end opening 03 of the intake boot 01 and entering the carburetor/throttle body (the “air flow”). For example, a higher velocity air flow will, in general, result in higher torque.
The problem with the intake boots of the prior art is that they do not provide a simple means for easily adjusting the velocity or volume of the air flow. It requires a given intake boot to be replaced with another intake boot with a different configuration, which different configuration causes a higher or lower velocity air flow.
It is an object of the present invention to provide a tunable air intake system in which the velocity and volume of the air flow can be easily adjusted through the use of interchangeable velocity stacks.
The present invention is an air intake system for a two-stroke or four-stroke internal combustion engine that is tunable through the use of interchangeable velocity stacks. It includes an intake boot with a larger opening at the end that connects to the air box and a smaller opening at the end that connects to the carburetor/throttle body. The smaller opening is disposed removably to connect easily to one end of each of multiple interchangeable velocity stacks. When so connected, the funnel-shaped end of a velocity stack extends into the intake boot.
The invention, as well as its advantages, may be better understood by reading the following detailed description of preferred embodiments and the following drawings in which:
The present invention is a tunable air intake system comprising an air intake boot with interchangeable velocity stacks that extend into the air intake boot wherein the velocity stacks can be easily interchanged with simple tools. A velocity stack is a trumpet-shaped device that is added to the air entry of an engine's fuel system. As shown in
1. Allow smooth and even entry of air into the velocity stack with the air flow adhering to the walls of the velocity stack;
2. Modify the dynamic tuning range of the air intake system by functioning as a small reverse megaphone that can extend the duration of pulses within the tract; and
3. Alter the dynamic tuning speed by including extra length. A velocity stack may be customized in a number of ways, including changing its length and changing its interior configuration.
As is shown in
As shown in
The first end 28, 29, 30 of each of the velocity stacks 21, 23, 25, respectively, has means for removably connecting the velocity stack to the second end opening 13 of the air intake boot 11. Velocity stack 21 is illustrative of the means for connecting each of the velocity stacks. The first end 28 of the velocity stack 21 has a lip 42 around its exterior surface such that when the first end 28 is inserted into the second end opening 13 of the air intake boot 11, the second end 32 extends through the second end opening 13 and into the air intake boot 11 and the lip 42 slips over the flange 16 and is held in place by a hose clamp (not shown) or other holding means known to those skilled in the art.
The first end 28 of velocity stack 21, which is again illustrative of all the velocity stacks has, in turn, means for removably connecting to a carburetor/throttle body through the use of a ring 61 made of TPU or a material with similar characteristics known to those skilled in the art. A first side 62 of ring 61 engages the first end 28 of the velocity stack 21 and a second side 63 of the ring engages the carburetor/throttle body. The first side 62 and the second side 63 of the ring are held in place by hose clamps (not shown) or other holding means known to those skilled in the art.
In operation, the ring 61 can easily be disengaged with simple tools from the carburetor/throttle body and first end 28 of the velocity stack 21. The lip 42 of velocity stack 21 can also easily be disengaged with simple tools from the rim 16 of the air intake boot so that the velocity stack 21 can be removed. A different velocity stack, for example velocity stack 23 or 25, can then be substituted with simple tools, as described above, for the removed velocity stack 21. The velocity stack to be substituted can be chosen to increase or decrease the velocity and volume of the air flow to the carburetor/throttle body, thereby tuning the engine's power characteristics to better suit the terrain or the rider's skill level.
The first end 62 of the velocity stack 61 has a flange 66 around its exterior surface. When the second end 63 of the velocity stack 61 is inserted through the opening 64 and into the air intake boot 65, the flange 66 fits into an indentation 67 around the interior surface of the opening 64 in the air intake boot 65.
The first end 62 of the velocity stack 61 also includes means for removably connecting the velocity stack 61 to a carburetor/throttle body. As shown in
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention.
The present application claims the benefit of Provisional Patent Application Ser. No. 61/201,043 filed Dec. 5, 2008, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4457267 | Gorr | Jul 1984 | A |
4913855 | Panzica | Apr 1990 | A |
5707560 | Nevin | Jan 1998 | A |
5971026 | Beran | Oct 1999 | A |
6042088 | Wang | Mar 2000 | A |
20030019456 | Ayton | Jan 2003 | A1 |
20030062013 | Kino et al. | Apr 2003 | A1 |
20080195298 | Delgado | Aug 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100147244 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
61201043 | Dec 2008 | US |