This invention relates to apparatus and methods for radiation treatment of thin films.
More specifically, the invention relates to apparatus and methods of using ultraviolet radiation and other process conditions to facilitate a desired change in film properties.
Many layers of thin films are used to make an integrated circuit. IC manufacturing requires thin films to have certain properties in order for the circuit to function as designed. For example, there is a general need for materials with low dielectric constants (low-k). Using low-k materials as the intermetal dielectric (i.e., the layer of insulator separating consecutive levels of the conductive metal interconnects) reduces the delay in signal propagation due to capacitive effects, otherwise know as the RC delay. A dielectric material of low dielectric constant will have low capacitance, and hence the RC delay of an IC constructed with such a material will be lower as well.
As another example, there is a general need for materials with specific tensile or compressive stresses. Increasing shallow trench isolation (STI) film tensile stress increases transistor drain current and device performance because the electron and hole mobilities are higher. Other applications require dielectric films to have compressive stress. These and other properties may be met on the film as deposited, or after treatment.
One such treatment may be a thermal process in which the substrate is heated to a temperature for a time. A thermal treatment may remove unwanted particles from the film, or change its stresses and other properties. These thermal processes, however, have certain difficulties. In particular, substrate temperatures generally need to be high (i.e., greater than about 500 degrees Celsius) with exposure times typically on the order of hours. As is well known in the field, these conditions can damage copper containing devices, especially in the application wherein a low-k dielectric is being cured and the long exposure time may be unsuitable for mass manufacturing. Also, the use of temperature sensitive nickel silicide precludes inducing film stress by using temperatures above 400° C. while some SiN films have a cure temperature up to 480° C.
To overcome these disadvantages of thermal processing, another technique has been developed, which involves curing the film with UV radiation. Irradiation of the low-k or spacer nitride films permits modulation of desired film properties such as dielectric constant or film stress at lower temperatures. However, the use of UV radiation in such processes may result in deleterious side-effects unless special care is taken to deliver the precise amount of radiation and to maintain the substrate temperature at an optimal level. Delivery of the precise amount of radiation may be complicated when the deposited film on the substrate is not perfectly uniform. A uniform UV cure may exacerbate pre-existing non-uniformity by curing less the areas that need more film property change and curing more the areas that need less film property change.
What are needed therefore are improved methods and devices for treating thin films with UV radiation to obtain desired film properties.
The present invention addresses this need by providing improved apparatus and methods for ultraviolet (UV) cure of thin films. A semiconductor processing apparatus for UV cure involves a process chamber and a UV lamp assembly that includes a central external reflector. The central external reflector (CER) is one or more optical reflectors mounted in between the UV radiation source and the chamber, such that none or a portion of the UV light is reflected onto the substrate by the CER. The CER may be mounted below and in between the UV light source(s), preferably with a rotational axis parallel to a plane of the substrate, substrate holder, or the chamber window. The CER is positioned external to the process chamber, i.e., outside of the process chamber window, so that it is not affected by reactions that occurs inside the chamber. By adjusting the angles of the optical reflectors, the CER can achieve different radiation profiles on the substrate. For example, the radiation can be made substantially uniform or the substrate center can be exposed to 50% less radiation than near a substrate edge.
In one aspect, the present invention pertains to the semiconductor apparatus for irradiating a substrate with light. The apparatus may include a process chamber having a substrate holder and a window, and a UV lamp assembly. The UV light assembly is mounted on the process chamber over the window and includes one or more UV light sources and an adjustable central external reflector (CER). The CER includes one or more reflective optics mounted on a rotational adjustment mechanism. Each reflector may be mounted on its own rotational adjustment mechanism. As the mechanism rotates about an axis, the angle of UV light reflected from the reflector through the window changes. The angle of the CER is measured from a horizontal plane parallel to the substrate holder and window. At 45 degrees in a two-reflector CER, the reflectors are tilted toward each other and reflect little light because the reflectors are not in the direct light path from the light source. At 90 degrees, the reflectors are perpendicular to the substrate and a significant amount of light is reflected and prevented from reaching the center of the substrate.
The rotational adjustment mechanism may include a stepper motor and one or more reflective optics mount. The optical reflector is attached to a mount that rotates about an axis. The stepper motor moves the mount to different degree of rotation and thereby controls the angle of reflection. The reflective optics mount may be a hinge, a pivot joint, or any other mechanism that can cause an attached optical reflector to rotate. In certain embodiments, the adjustable CER also includes a translational adjustment mechanism to move the reflector and the mount along the axis.
The optical reflector is selected to reflect the radiation of interest, which may be UV radiation at wavelengths of about 150-400 nm, preferably about 200-300, and even more preferably at about 250 nm for certain applications, e.g., high tensile nitride film, and about 200-250 nm for other applications, e.g., ultra low-k film curing. The reflective optics may be a dielectric coated mirror, a metal coated mirror, or an aluminum metal coated with an oxide, e.g., silicon oxide or aluminum oxide.
In certain embodiments, the apparatus also includes a controller to execute a set of instructions. The instructions include receiving an indication of the extent of non-uniformity of a substrate or a substrate batch; determining an angle of reflection to compensate for the non-uniformity; moving the rotational adjustment mechanism to the determined angle; and, radiating the substrate with UV radiation. In other embodiments, the controller may execute a set of instructions to receive an indication of the extent of non-uniformity of a substrate or a substrate batch to be induced by the UV cure; determining an angle of reflection to induce the non-uniformity; moving the rotational adjustment mechanism to the determined angle; and, radiating the substrate with UV radiation.
In another aspect, the present invention pertains to a method of UV curing a semiconductor substrate. The method includes providing a substrate having a non-uniform film deposition into a process chamber; adjusting an angle of reflection on an adjustable central external reflector; and, exposing a substrate with UV radiation reflected by the adjustable CER. The method may also include receiving an indication of an extent of non-uniformity of a substrate or a substrate batch and determining an angle of reflection to compensate for the non-uniformity. In certain embodiments, the method can include an operation to measure substrate non-uniformity, either before or after providing the substrate in the process chamber. The UV radiation may have wavelengths of 150-400 nm.
In another embodiment, the method induces non-uniformity in a substrate as a part of an overall process flow. In such situations, it may be anticipated that subsequent processing will induce non-uniformity and the opposite non-uniformity is induced in the UV cure process to counter the effect of subsequent non-uniformity. The method then includes providing a substrate that may or may not have a non-uniform film deposition into a process chamber, receiving an indication of the non-uniformity to induce as well as any existing non-uniformity, and selecting an appropriate UV exposure sequence with CER adjustments to induce the non-uniformity desired.
The substrate is not only exposed to reflected UV radiation from the CER, but from other reflectors as well as directly from the UV light source. The total exposure is thus a sum of all the various reflections and unreflected light and is generally a percentage of the light generated. One particular advantage of this present invention is that a larger percentage of the light generated is irradiated onto the substrate than other methods to control irradiance distribution, such as attenuating filters. Having a larger percentage of the light irradiated onto the substrate is saves time, and conserves power and parts.
The total exposure distribution compensates for the non-uniformity on the substrate. As deposited film on a substrate may be uniform or non-uniform which regards to thickness, stress, amount of trapped material, and other film properties. These non-uniform properties may require more or less radiation at different locations from the center of the substrate to achieve a uniform cure. Generally, a substrate may require irradiation at the edges of the substrate and less in the center. The amount of extra radiation at the edge may vary from process to process, batch to batch, or even substrate to substrate.
One way to measure UV cure uniformity is the percentage of shrinkage. Given the same amount of material and same film properties, uniform radiation would achieve uniform shrinkage. But when the film varies in thickness or has different properties, the radiation would have to be non-uniform, i.e., compensate for the film non-uniformity, in order to achieve the same percentage of shrinkage at the substrate edge and center. In one example, the angle of reflection, i.e. at 90 degrees, may be adjusted such that the UV radiation at the substrate center is 50% of that at the substrate edge.
The angle of reflection may be fixed for the duration of the UV exposure or can be adjusted during the UV exposure so as to sweep the substrate with varying amounts of UV radiation. Additionally, a translational position of the adjustable CER may be changed before or during the UV exposure. The reflection angle and translational position may be adjusted concurrently or separately to sweep reflected UV radiation at different positions across the substrate.
The method may also include a separate operation of exposing the substrate to UV radiation at a different relative orientation of light source to substrate. In certain embodiments, the change of orientation may be effected by rotating either the substrate holder of the UV light source. In other embodiments, the substrate may be moved to a separate station that has a UV light assembly fixed at a different relative orientation. By moving the substrate through separate stations at different orientations, a uniform exposure is achieved across along perimeters of various concentric circles on the substrate surface.
These and other features and advantages of the invention will be described in more detail below with reference to the associated drawings.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail to not unnecessarily obscure the present invention. While the invention will be described in conjunction with the specific embodiments, it will be understood that it is not intended to limit the invention to the embodiments.
Reference will be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. In this application, the terms “work piece,” “wafer” and “substrate” will be used interchangeably. The following detailed description assumes the invention is implemented on a wafer. However, the invention is not so limited. The work piece may be of various shapes, sizes, and materials (e.g., displays of various sizes).
The present invention involves an ultraviolet (UV) irradiation apparatus for processing semiconductor substrates. UV radiation is used to treat thin films on substrates to achieve various property changes. UV radiation can break chemical bonds, change composition of material, cause chemical reactions to occur, affect density and stress, and otherwise provide energy to a substrate.
A typical implementation of UV irradiation apparatus has a number of UV lamps to illuminate a substrate. The UV lamps may be flood lamps, generating UV light in a broad range of wavelengths, or a high intensity discharge light that emits UV radiation in a smaller spectrum. Monochromatic sources of UV radiation, such as certain lasers, may also be used.
In certain implementations, two individual linear mercury bulbs are used in two individual lamp assemblies. For illuminating a 300 mm wafer, the linear bulbs are 200 mm. With a two bulb configuration, the relative orientation of the bulbs to the circular substrate is varied over time to achieve a uniform exposure for each circular section. In other words, each circular section, i.e. pie piece, of similar size substrate is exposed to a substantially similar intensity and radiation distribution as the next circular section at the end of total exposure. This may be achieved by moving substrate from station to station where each station has a different relative orientation of the bulbs to the substrate. Generally, having four stations of varying orientation is sufficient to ensure a relatively uniform UV irradiance. Uniform exposure may also be achieved by rotating the either the lamp assembly or the substrate during UV cure.
Various reflectors are also used in lamp assemblies to direct generated UV radiation toward the substrate. Linear bulbs generate light in all directions, but the substrate surface is only on one side of the bulb. Thus reflectors are used to direct UV radiation that would have otherwise escape from the lamp assembly toward the substrate. This way, lamp power is used more efficiently.
As discussed above UV radiation is used to effect a number of film property changes. These changes depend on the property of film as deposited. In many instances, the as-deposited film is radially non-uniform across the substrate. In other words, the film stress at the substrate edge may be higher or lower, usually lower, than the film at the substrate center. In order to cure the film to the same extent across the substrate, the radiation has to be adjusted accordingly. One way to achieve a specific radiation distribution profile to accommodate film non-uniformity is to adjust the reflectors 104 and 106. By changing the angles in the various reflector pieces in the overhead reflectors 104 and 106, a specific non-uniform irradiance distribution can be achieved. However, this process is time consuming because mechanical parts have to be manufactured and modeled, and what works for one set of non-uniform conditions does not work for the next. This process is also costly because new hardware is manufactured for each set of non-uniform conditions and not efficient because substrate to substrate differences cannot be accommodated as the chamber needs to be taken out of service to change hardware. The adjustable central external reflector (CER) of the present invention addresses these issues by allowing in situ adjustment of irradiation distribution using one set of hardware that can be remotely controlled without shutting down the tool or taking a chamber out of service.
Apparatus
As shown in
In
The reflector 209 may be a mirror made of metal or other known substance and may be reflectively coated. In some cases, dielectric material may be used to coat the surface such that only UV radiation of certain wavelengths is reflected, or is reflected more strongly. In one example, the mirror may be aluminum metal coated with silicon oxide. In other examples, the mirror may be coated with a metal. The mirror may be flat or curved, rectangular or not. Reflected UV wavelength may be at about 150-400 nm, preferably about 225-300, and even more preferably at about 250 nm. The CER surface may be made of the same material as the overhead reflectors and ring reflectors in
In certain embodiments, the adjustable CER includes a translational adjustment mechanism that allows the reflective optics to move along the axis of rotation or perpendicular to the axis of rotation. For example, the reflective optics may move along the axle rod of
The reflective optics may also be configured to move perpendicular to the axes of rotation (i.e. two axes as depicted in
The adjustable CER may be connected to a controller configured to execute a set of instructions to process the substrate. The controller can move the rotational and translational adjustment mechanisms depending on the UV cure specifications for the substrate. The controller may be local to the process chamber so that only manual changes are possible. The controller may also be integrated to a semiconductor processing tool so that non-uniformity indications or specific CER angle instructions may be entered at the tool interface at a front panel.
The adjustable CER of the present invention may be implemented on a number of semiconductor processing chambers and tools. As discussed above, multiple-station sequential process chambers, multiple-station non-sequential process chambers, or single station chambers may be used. In a multiple-station chamber, a substrate is moved from station to station to ensure that it is exposed to UV radiation from a number of bulb orientations. In a single station chamber, relative movement between the UV lamp assembly and the substrate via a rotating substrate holder may be used. Additionally, a substrate can also be transferred from chamber to chamber to effect the same kind of exposure to multiple orientations as from a multiple-station chamber.
Suitable tools may be configured with one or more process chambers. Suitable semiconductor processing tools include the SOLA and modified VECTOR available from Novellus Systems, Inc. of San Jose, Calif. Other suitable semiconductor processing tools include the Centura and Producer available from Applied Materials, Inc. of Santa Clara, Calif.
Details of the UV lamp assembly, reflectors, process chamber window, and temperature control on the substrate holder may be found in commonly assigned co-pending U.S. application Ser. No. 11/688,695, titled “Multi-Station Sequential Curing of Dielectric Films”, which is incorporated herein by reference in its entirety for all purposes.
For convenience, discussion of the UV lamp assembly and adjustable CER apparatus focused on a two linear bulb configuration for the UV source; however, the present invention is not so limited. For example, the adjustable CER apparatus would work with any number of bulbs, e.g., 3, 4, or 5, in any kind of configuration, e.g., parallel or end-to-end. The CER apparatus would also work with other types of bulbs, not just linear bulbs. As UV bulbs evolve and techniques to build UV lamp assemblies advance, the use of a CER apparatus to control irradiance of reflected light continues to apply.
Although discussion of the adjustable CER apparatus focused on UV cure applications, the present invention is not so limited. The adjustable CER apparatus is applicable to any radiative processing of semiconductor substrates where the need to provide non-uniform irradiance distribution exists.
Methods
In one aspect, the present invention pertains to a method to cure a semiconductor substrate with UV radiation.
The information measured or indication received can then be fed directly to a controller that would determine an angle of reflection to compensate for the non-uniformity, at operation 405. Compensate for non-uniformity includes both UV curing uniformly and correcting the non-uniformity. In the former case, the angle of reflection is adjusted so that the curing occurs uniformly even though the substrate is not. After UV curing, the substrate is likely still non-uniform, but the curing did not exacerbate the non-uniformity. In the latter case, the curing does not occur uniformly so that the non-uniformity is to a certain extent corrected, so that the non-uniformity is reduced after UV curing. Still in other cases, use of CER may induce non-uniformity in a uniform substrate, to anticipate subsequent non-uniform processing.
This determination may be made a number of ways. In one situation where the input is a film property distribution across the substrate, the controller may compare the distribution against those stored in memory and select the angle of reflection that most closely matches the distribution. The controller may also calculate, based on software programming, the best angle to use. In some cases, the CER angle may be determined by an operator. Note that this angle may change over the duration of processing. Thus the determination output may be a number, e.g., the number of degrees for the CER angle, or a timing sequence, e.g., how the angle should change over time.
Generally, non-uniformity on a substrate is determined based on a diameter cross-section. For different diameters, the non-uniformity is the same. Because deposition on a substrate typically involves elements in a shape of a disk, e.g., showerheads, substrates, and substrate supports, each circular section of a substrate typically has the same non-uniformity as the next slice. In other words, film property along perimeters of concentric circles on a substrate is typically the same. However, in some circumstances, complex non-uniformity can develop. Complex non-uniformity, as used herein, is when the film property along a perimeter of a substrate annulus is non-uniform. For example, if a quadrant of a showerhead has a lower flow due to plugged holes, if a substrate is misshapen, e.g., concave, convex, or potato-chip shaped, or if a vacuum foreline is plugged, the film as-deposited may develop complex non-uniformity.
UV curing of substrates that have complex non-uniformity using a substantially uniform irradiation distribution may exacerbate the non-uniformity. In addition to determining an angle of reflection, the controller may move the reflector along the axes of rotation and/or perpendicular to the axes of rotation. These freedoms of motion allow irradiance compensation for most complex non-uniformity cases. When a multiple-station chamber is used, another method to compensate for complex non-uniformity is to use different angles of reflection and/or UV power at each station to target various regions on the substrate.
The CER assembly is then moved, at operation 407 to the angle or position determined in operation 405. The controller sends a signal to the stepper motors to rotate the reflector optics or to move the reflector optics. The CER may be moved prior to UV curing each substrate or only once for an entire batch of substrates. The frequency of adjustment depends on the availability of non-uniformity data. If non-uniformity is known for every substrate, a small operation of moving the reflectors to ensure good film property may be worthwhile. Typically however, non-uniformity information may be known for a batch of substrates. In those circumstances the reflector optics is moved once per batch. Once the reflectors are in place, then the substrate is irradiated with UV light in operation 409 for a specified duration to achieve a certain level of UV cure. The UV radiation that reaches the substrate includes both reflected and unreflected light. The adjustable CER apparatus controls the angle of reflected light and amount of unreflected light to a small portion of the substrate, as shown in
The amount of UV cure achieved depends not only on UV light power and irradiance distribution, but also substrate temperature and chamber pressure. As discussed above, UV radiation alters film properties. For silicon nitride film, UV radiation increases its tensile stress by removing certain bonds. For porous dielectric film, UV radiation increases cross-linking and densifies the film, thus shrinking the film. UV radiation is also used to remove porogen from a precursor layer containing a porogen and structure former or backbone, thereby forming a porous dielectric film. UV radiation can also be used to evolve solvents present in a film, such as a spin-on ULK film. Depending on the film treated, alteration of certain film properties, but not all, is desired.
One way to measure UV cure uniformity is the percentage of shrinkage. Given the same amount of material and same film properties, uniform radiation would achieve uniform shrinkage. But when the film varies in thickness or has different properties, the radiation would have to be non-uniform, i.e., compensate for the film non-uniformity, in order to achieve the same percentage of shrinkage at the substrate edge and center. In one example, the CER angle of reflection may be adjusted such that the UV radiation at the substrate center is 50% of that at the substrate edge.
While the film is treated with UV radiation, the reflectors may optionally move to sweep radiation across the substrate surface in operation 411. The reflectors may also move in a translational direction. A sweeping radiation across the substrate may reduce the intensity of hotspots created by the geometry of the linear bulb and circular substrate. After the UV curing is complete, the substrate is removed from the process chamber (415) or optionally transferred to the next station (413) if a multiple-station chamber is used.
Modeling Results
Computer modeling to simulate the effect of a central external reflector (CER) apparatus at different angles of reflection was conducted. The resulting irradiance distributions are
These figures show that by manipulating the CER angle, the size of the lower irradiance region about the center of a substrate can be increased or decreased, and the relative amounts of irradiance can also be changed. Thus one can match a desired irradiance distribution to a CER angle to achieve a level of desired UV cure.
Modeling data were also analyzed for total power on wafer versus CER angle.
While this invention has been described in terms of several embodiments, there are alterations, modifications, permutations, and substitute equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, modifications, permutations, and substitute equivalents as fall within the true spirit and scope of the present invention. The use of the singular in the claims does not mean “only one,” but rather “one or more,” unless otherwise stated in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3504181 | Campbell et al. | Mar 1970 | A |
4563589 | Scheffer | Jan 1986 | A |
4654226 | Jackson et al. | Mar 1987 | A |
4872947 | Wang et al. | Oct 1989 | A |
5005519 | Egermeier et al. | Apr 1991 | A |
5166101 | Lee et al. | Nov 1992 | A |
5174881 | Iwasaki et al. | Dec 1992 | A |
5178682 | Tsukamoto et al. | Jan 1993 | A |
5282121 | Bornhorst et al. | Jan 1994 | A |
5288684 | Yamazaki et al. | Feb 1994 | A |
5298939 | Swanson et al. | Mar 1994 | A |
5354715 | Wang et al. | Oct 1994 | A |
5413664 | Yagi et al. | May 1995 | A |
5426076 | Moghadam et al. | Jun 1995 | A |
5518959 | Jang et al. | May 1996 | A |
5552927 | Wheatly et al. | Sep 1996 | A |
5674783 | Jang et al. | Oct 1997 | A |
5833290 | Curelop et al. | Nov 1998 | A |
5962085 | Hayashi et al. | Oct 1999 | A |
6015503 | Butterbaugh et al. | Jan 2000 | A |
6080965 | Osawa | Jun 2000 | A |
6143063 | Hayashi et al. | Nov 2000 | A |
6232248 | Shinriki et al. | May 2001 | B1 |
6242717 | Sanderson | Jun 2001 | B1 |
6244575 | Vaartstra et al. | Jun 2001 | B1 |
6259061 | Osawa | Jul 2001 | B1 |
6291800 | Shirakawa et al. | Sep 2001 | B1 |
6394797 | Sugaya et al. | May 2002 | B1 |
6467491 | Sugiura et al. | Oct 2002 | B1 |
6524389 | Katayama et al. | Feb 2003 | B1 |
6530380 | Zhou et al. | Mar 2003 | B1 |
6563092 | Shrinivasan et al. | May 2003 | B1 |
6629012 | Riley et al. | Sep 2003 | B1 |
6821906 | Wada et al. | Nov 2004 | B2 |
6900413 | Ratliff et al. | May 2005 | B2 |
7018479 | Goodwin | Mar 2006 | B2 |
7025831 | Butterbaugh et al. | Apr 2006 | B1 |
7067819 | Janik | Jun 2006 | B2 |
7087497 | Yuan et al. | Aug 2006 | B2 |
7094713 | Niu et al. | Aug 2006 | B1 |
7097712 | Yamazaki et al. | Aug 2006 | B1 |
7176144 | Wang et al. | Feb 2007 | B1 |
7214630 | Varadarajan et al. | May 2007 | B1 |
7244672 | Nguyen et al. | Jul 2007 | B2 |
7256111 | Lopatin et al. | Aug 2007 | B2 |
7304302 | Nunan et al. | Dec 2007 | B1 |
7394067 | Soltz et al. | Jul 2008 | B1 |
7638780 | Kilburn et al. | Dec 2009 | B2 |
7642205 | Timans | Jan 2010 | B2 |
7704894 | Henry et al. | Apr 2010 | B1 |
7772527 | Choi | Aug 2010 | B2 |
7935940 | Smargiassi | May 2011 | B1 |
7960297 | Rivkin et al. | Jun 2011 | B1 |
20010018267 | Shinriki et al. | Aug 2001 | A1 |
20020017242 | Hamaguchi et al. | Feb 2002 | A1 |
20020117109 | Hazelton et al. | Aug 2002 | A1 |
20020134439 | Kawasaki et al. | Sep 2002 | A1 |
20020148563 | Carlson et al. | Oct 2002 | A1 |
20030013280 | Yamanaka | Jan 2003 | A1 |
20030194493 | Chang et al. | Oct 2003 | A1 |
20030200931 | Goodwin | Oct 2003 | A1 |
20040023513 | Aoyama et al. | Feb 2004 | A1 |
20040082163 | Mori et al. | Apr 2004 | A1 |
20040221871 | Fletcher et al. | Nov 2004 | A1 |
20040266214 | Suguro et al. | Dec 2004 | A1 |
20050006916 | Mantz | Jan 2005 | A1 |
20050016687 | Shinriki et al. | Jan 2005 | A1 |
20050072716 | Quiles et al. | Apr 2005 | A1 |
20050085094 | Yoo | Apr 2005 | A1 |
20050098553 | Devine et al. | May 2005 | A1 |
20050196929 | Yuan et al. | Sep 2005 | A1 |
20060021568 | Matsumoto | Feb 2006 | A1 |
20060074153 | Boisseau et al. | Apr 2006 | A1 |
20060105106 | Balseanu et al. | May 2006 | A1 |
20060216839 | Shenesh et al. | Sep 2006 | A1 |
20070034159 | Komino et al. | Feb 2007 | A1 |
20070196011 | Cox et al. | Aug 2007 | A1 |
20080286697 | Verhaverbeke et al. | Nov 2008 | A1 |
20100267231 | Van Schravendijk et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
63307740 | Dec 1988 | JP |
01-107519 | Apr 1989 | JP |
62-229833 | Oct 1997 | JP |
11214364 | Aug 1999 | JP |
2000-0043888 | Jul 2000 | KR |
2006104583 | Oct 2006 | WO |
2006127463 | Nov 2006 | WO |
Entry |
---|
U.S. Appl. No. 11/115,576, “Single-Chamber Sequential Curing of Semiconductor Wafers”, Shrinivasan et al., filed Apr. 26, 2005. |
U.S. Appl. No. 11/115,576, Office Action mailed Oct. 3, 2007. |
U.S. Appl. No. 11/115,576, Office Action mailed May 2, 2008. |
U.S. Appl. No. 11/115,576, Office Action mailed Oct. 17, 2008. |
U.S. Appl. No. 11/115,576, Office Action mailed Apr. 22, 2009. |
U.S. Appl. No. 11/115,576, Office Action mailed Oct. 1, 2009. |
U.S. Appl. No. 11/602,564, “Method of Eliminating Small Bin Defects in High Throughput TEOS Films”, Henri et al., filed Nov. 20, 2006. |
U.S. Appl. No. 11/602,564, Office Action mailed Feb. 15, 2008. |
U.S. Appl. No. 11/602,564, Office Action mailed Sep. 9, 2008. |
U.S. Appl. No. 11/602,564, Office Action mailed Mar. 20, 2009. |
U.S. Appl. No. 11/602,564, Notice of Allowance mailed Dec. 14, 2009. |
U.S. Appl. No. 11/602,564, Allowed Claims. |
U.S. Appl. No. 11/396,303, “Method of Reducing Defects in PECVD TEOS Films”, Dhas et al., filed Mar. 30, 2006. |
U.S. Appl. No. 11/396,303, Office Action mailed Dec. 14, 2007. |
U.S. Appl. No. 11/396,303, Office Action mailed Aug. 6, 2008. |
U.S. Appl. No. 11/396,303, Office Action mailed Mar. 19, 2009. |
U.S. Appl. No. 11/396,303, Office Action mailed Oct. 28, 2009. |
U.S. Appl. No. 12/008,149, “Measuring in-situ UV intensity in UV cure tool”, Eugene Smargiassi, filed Jan. 8, 2008. |
U.S. Appl. No. 12/008,149, Office Action mailed Mar. 17, 2010. |
U.S. Appl. No. 11/115,576, Office Action mailed Apr. 15, 2010. |
U.S. Appl. No. 12/726,263, “Apparatus for UV Damage Repair of Low K Films Prior to Copper Barrier Deposition”, van Schravendijk, et al., filed Mar. 17, 2010. |
U.S. Appl. No. 11/115,576, Office Action mailed Oct. 1, 2010. |
U.S. Appl. No. 12/008,149, Notice of Allowance mailed Nov. 19, 2010. |
U.S. Appl. No. 11/115,576, Office Action mailed May 9, 2011. |
U.S. Appl. No. 13/070,306, “Measuring in-situ UV intensity in UV cure tool”, Eugene Smargiassi, filed Mar. 23, 2011. |
Kamian et al., “Ultra Violet Light Treatment Load Lock for Dielectric Films,” Novellus Systems, Inc., U.S. Appl. No. 11/561,834, filed Nov. 20, 2006, pp. 1-25. |
U.S. Appl. No. 11/561,834, Office Action mailed May 21, 2010. |
Shrinivassan et al., “Multi-Station Sequential Curing of Dielectric Films,” Novellus Systems, Inc., U.S. Appl. No. 11/688,695, filed Mar. 20, 2007. |
U.S. Appl. No. 11/688,695, Office Action mailed Jun. 11, 2009. |
U.S. Appl. No. 11/688,695, Final Office Action mailed Dec. 31, 2009. |
U.S. Appl. No. 11/688,695, Office Action mailed Jul. 23, 2010. |
U.S. Appl. No. 11/688,695, Office Action mailed Feb. 1, 2011. |
Gytri et al., “Methods and Apparatuses for Reducing Porogen Accumulation from a UV-Cure Chamber,” Novellus Systems, Inc., U.S. Appl. No. 12/132,559, filed Jun. 3, 2008. |
U.S. Appl. No. 12/132,559, Office Action mailed Nov. 19, 2010. |
U.S. Appl. No. 12/132,559, Final Office Action mailed Jun. 9, 2011. |
U.S. Appl. No. 11/561,834, Final Office Action mailed Dec. 3, 2010. |
U.S. Appl. No. 11/115,576, Notice of Allowance mailed Nov. 14, 2011. |
U.S. Appl. No. 12/132,559, Office Action mailed Nov. 22, 2011. |
U.S. Appl. No. 11/688,695, Office Action mailed Dec. 14, 2011. |
U.S. Appl. No. 11/115,576, Claims as Allowed. |
Shrinivasan et al., “Single-Chamber Sequential Curing of Semiconductor Wafers,” Novellus Systems, Inc., U.S. Appl. No. 13/370,579, filed Feb. 10, 2012. |