Not applicable.
The present invention generally relates to spectrometers, and more particularly to interferometric scanning spectrometers.
Grating spectrometers are commonly used to analyze the spectral content of an object or scene. However, grating spectrometers typically have an undesirably low 1st order diffraction throughput (e.g., approximately 20%) averaged over the detected wavelengths. Further, grating spectrometers typically have an efficiency curve that is tuned around one wavelength.
In one aspect of the disclosure, a tunable interferometric scanning spectrometer is provided. The interferometric scanning spectrometer splits incoming light beams among two different optical paths in the spectrometer, recombines the light beams from the different optical paths to produce combined light beams, detects intensities of the combined light beams across a focal plane (e.g., with a sensor array), and calculates a spectra based on the detected intensities and a filter function that is a function of optical path difference (OPD) between the optical paths.
In one aspect, the spectrometer comprises a rotatable dispersive element (e.g., glass plate) in one of the optical paths. In this aspect, the OPD between the optical paths may be adjusted by rotation of the dispersive element.
In another aspect, the spectrometer comprises a moveable minor in the other optical path. In this aspect, the OPD between the optical paths may be adjusted by displacement of the minor.
In another aspect, each of the detected intensities corresponds to a different field angle. In this aspect, the spectrometer may calculate the spectra by multiplying the detected intensities with an inverse of a filter function matrix. The filter function matrix may be derived by calculating the filter function at different field angles and different wavelengths.
In another aspect, the filter function varies across the focal plane, resulting in coloring across the focal plane. In this aspect, the coloring is exploited to measure the spectra of an object or scene.
In another aspect, the coloring across the focal plane is mitigated by using piston shear to compensate for plate shear. In this aspect, the spectrometer may be used in applications (e.g., optical filter to block a broad range of wavelengths) where it may be desirable to mitigate the coloring across the focal plane.
In another aspect, the spectrometer can achieve higher spectral resolution over a small band by placing a band pass filter in front of the focal plane.
In another aspect, a hybrid spectrometer is provided that has the versatility of being used as either a scanning spectrometer or a Fourier spectrometer.
Additional features and advantages of the invention will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
In one aspect, the interferometeric scanning spectrometer 105 comprises a housing 110 with an opening 115 for receiving incoming light beams from an object or scene that is within a field of view of the spectrometer. The field of view defines a range of field angles (e.g., −2.5 to 2.5 degrees) over which the spectrometer 105 receives incoming beams through the opening 115.
The spectrometer 105 also comprises a beam splitter 125, a lens 130 and a sensor array 145 aligned with a focal plane 140 of the spectrometer 105. The beam splitter 125 splits the incoming light beams into first and second light beams that propagate along first and second legs (optical paths) of the spectrometer 105, respectively.
In the first leg, the spectrometer 105 comprises a rotatable dispersive element D1 and a mirror M1. In one aspect, the dispersive element D1 comprises a glass plate that may be rotated (e.g., using a knob) to a plate angle θplt with respect to the horizontal axis 117, as shown in
In the second leg, the spectrometer 105 comprises another dispersive element D2 (e.g., a glass plate) and another mirror M2, which may be moved along the horizontal axis 117 of the spectrometer 105. In one aspect, the mirror M2 is controllably moved along the horizontal axis 117 by a piston (not shown). In this aspect, the terms minor displacement and piston displacement may be used interchangeably. Thus, the second light beams pass through the dispersive element D2 to the minor M2, which reflects the second light beams back through the dispersive element D2 to the beam splitter 125.
The beam splitter 125 combines the first and second light beams directed back to the beam splitter 125 into combined light beams, and directs the combined light beams to the lens 130. The lens 130 focuses the combined beams onto the focal plane 140. The sensor array 145 measures the intensities of the light beams impinging on the focal plane 140. As shown in
The intensities detected across the focal plane 140 by the sensor array 145 are then inputted to a processor 150. The processor 150 computes a spectra of the object or scene based on the detected intensities and a filter function of the spectrometer, which is discussed in further detail below.
Although a beam splitter 125 is shown in the example in
In one aspect, the interferometeric scanning spectrometer 105 has an associated filter function ƒ that determines the light intensity at the focal plane 140 as a function of the optical path difference (OPD) between the two legs (optical paths) of the spectrometer. The filter function ƒ may be expressed as follows:
ƒ(OPD)=½+[1+cos(2πOPD)] (1)
where it has been assumed that the intensity in each leg is identical and normalized. Equation (1) is referred to as the filter function because it filters light in the spectrometer 105 with respect to wavelength prior to detection by the sensor array 145 at the focal plane 140. When the object or scene is white, the filter function results in substantial coloring across the focal plane that can be detected with the sensor array 145. This phenomenon is exploited to estimate the spectra of an object or scene, as discussed further below.
In one aspect, the actual light intensity that impinges on a detector at the focal plane 140 is given by the filter function times the intensity of the source integrated over the detectable wavelength band of the detector. The filter function, as shown above, is a function of OPD. OPD, in turn, is a function of wavelength λ, field angle θfa, beam splitter angle θbs, plate angle θplt of the dispersive element D1, and displacement p of Mirror M2, and may be expressed as:
OPD=ℑa(λ,θfa,θbs,θplt,p) (2)
where ℑa is a known function. Zero OPD may correspond to the position of mirror M2 and the angle of the dispersive element D1 at which the optical path distance between the first and second legs is equal for all wavelengths. The displacement p of mirror M2 may be with respect to a position of minor M2 corresponding to zero OPD and the plate angle θplt may be with respect to an angle corresponding to zero OPD.
There are two main methods for adjusting the OPD: one associated with minor (piston) displacement and another associated with dispersive element (plate) rotation.
The term associated with the mirror (piston) displacement can be further broken down into two terms: piston length change and a piston shear. The OPD terms associated with piston length change and piston shear as a function of field angle θfa are given respectively by:
and
The total OPDpstn associated with piston displacement is given by:
The piston length change is 2p for a field angle of zero (θfa=0°) and increases as the field angle increases.
Referring to
The term associated with dispersive element (plate) rotation may be further broken down into three terms: plate shear, plate dispersion path change, and plate air path change. The OPD terms associated with plate shear, plate dispersion path change, and plate air path change as a function of field angle are given respectively by:
and
The plate shear is similar to piston shear. Referring to
The total OPDplt associated with plate rotation is given by:
OPDplt=OPDplt
Finally, the total OPD is obtained by combining the total OPD associated with piston displacement and the total OPD associated with plate rotation, and is given by:
OPD=OPDpstn+OPDplt (10)
Equation (10) for the total OPD can then be inserted into the Equation (1) to create the filter function for the interferometric scanning spectrometer 105.
In
Thus, the plate shear is the primary cause of variation in the OPD as a function of field angle. This variation in OPD causes a variation in the filter function across the focal plane 140, resulting in the coloring across the focal plane 140 discussed above. A method for mitigating this coloring is discussed later.
This coloring across the focal plane 140 is exploited to measure the spectra of an object or scene. For the interferometric scanning spectrometer, the following parameters are known: 1) the electromagnetic intensity (pan-chromatic) on the focal plane 140 at the various field angles, and 2) the configuration of the interferometer which defines the filter function in Equation (1).
The electromagnetic intensity that impinges on the focal plane as a function of field angle is given by
where s is the spectra of the source, i is intensity at the focal plane 140 as a function of the field angle, and λmin and λmax are the minimum and maximum wavelengths, respectively, that a detector can detect. Equation (11) can be discretized and written in matrix form to yield a linear system of equations as follows:
where in is the intensity detected by the nth detector of the sensor array 145 at the nth field angle, and the spectra of the source is discretized into a set of spectral bands s1 to sm. The above matrix relating the spectra to the intensity is the filter function matrix. In the filter function matrix, component ƒλ
In order to capture the spectra of the source, the filter function matrix may be inverted. Therefore, m=n. This applies a constraint on the number of spectral bands m in that the number of spectral bands m can not be larger than the set of field angles n, similar to a grating spectrometer. There can be more sets of field angles than spectral bands (m<n) leading to a least-squares-fit solution. However, this would reduce the number of spectral bands. Equation (12) is linear, and therefore, all the attributes that follow from that fact apply such as uniqueness, etc. Writing the above equation in matrix notation gives:
The spectra
where
The interferometic scanning spectrometer can be utilized effectively to estimate spectra from the intensity Ī detected by the sensor array 145 when the filter function matrix can be inverted. This may be done by selecting a plate rotation and/or piston displacement that results in a filter function matrix that is well conditioned (i.e., invertible).
Once the plate rotation angle and/or piston displacement is adjusted to obtain a well-conditioned filter function matrix, the filter function matrix {tilde over (F)} may be calculated according to Equation (12). The inverse filter matrix {tilde over (F)}est−1 may then be obtained by inverting the filter function matrix {tilde over (F)}. The inverse filter matrix {tilde over (F)}est−1 may be stored in memory 155 coupled to the processor 150.
The spectrometer 105 may then be used to measure the spectra of an object or scene. In one aspect, the spectrometer 105 is a hybrid spectrometer that has the versatility of being used as a scanning spectrometer or a Fourier spectrometer. For the example of a scanning spectrometer, the object or scene may be scanned across the field of view of the spectrometer 105. The scan may be performed by moving the object across the field of view, by moving the spectrometer so that the entire field of view sweeps across the object, using a scanning mirror, or other known method. For the example of a Fourier spectrometer, the spectra of the object or scene may be measured by stepping the mirror M2 to different positions along the axis 117 and collecting intensity data at each position.
The sensor array 140 is used to detect electromagnetic intensities on the focal plane 145 for the different field angles as the object or scene is scanned. In this example, n detectors d1 to dn of the sensor array 145 may be used to detect the intensities i1 to in, respectively, for the n field angles in the intensity matrix Ī. Thus, the detected intensities from the detectors d1 to dn for the different field angles correspond to the intensity matrix Ī shown in Equation (14). The processor 150 may then estimate the spectra for the object or scene based on the detected intensities for the different field angles and the inverse filter matrix in accordance with Equation (14). The processor 150 may send the estimated spectra to an output device (e.g., display) and/or store the estimated spectra in the memory 155.
Advantages of the interferometic scanning spectrometer over a grating spectrometer will now be explained. In particular, consider a simplified grating spectrometer system of equations given below:
where cλ
The interferometric scanning spectrometer according to various aspects may provide at least the following advantages over a grating spectrometer:
In grating spectrometers, the 1st order diffraction is approximately 20% throughput (averaged over all wavelengths) whereas the interferometric scanning spectrometer has a 35% throughput.
The efficiency curve for a grating spectrometers are undesirably very peaky and typically tuned around one wavelength whereas the interferometric scanning spectrometer efficiency is desirably very flat across the maximum and minimum wavelengths of the system, e.g., 400-900 nanometers. The maximum and minimum wavelengths of the system may be determined by the range of detectable wavelengths of the sensor array 145. Thus, the interferometric scanning spectrometer can estimate spectra over a broadband.
Higher spectral resolution over a small band can be obtained in the interferometric scanning spectrometer by placing a band pass filter in front of the focal plane—see Equation (15).
The efficacy of the interferometric scanning spectrometer according to an aspect will now be discussed using an example of chlorophyll fluorescing. In this example,
The interferometer shown in
A method for mitigating the coloring across the focal plane 140 will now be discussed. The coloring across the focal plane can be mitigated by basically using the piston shear to compensate for plate shear. This is done by taking the partial derivative of the OPD with respect to the field angle θfa evaluated at θfa=0 and setting the quantity equal to zero and solving for piston as a function of plate rotation angle. This can be expressed as:
and
p=ℑb(λ,θplt) (17)
where ℑb is a known function. However, the equation is still a function of wavelength λ, and therefore, piston position is not valid for all wavelengths. However, if a particular wavelength of interest is chosen or desired λ0 such as a maximum or minimum similar to what was done in Palmer, then the above equations take the form:
and
p=ℑc(θplt) (19)
where ℑc is a known function. There is a direct relationship between piston displacement and plate rotation giving minimal coloring across the focal plane. It should be noted that coloring will occur even if the plate is not rotated due strictly to the piston shear.
The description is provided to enable any person skilled in the art to practice the various aspects described herein. The previous description provides various examples of the subject technology, and the subject technology is not limited to these examples. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. Headings and subheadings, if any, are used for convenience only and do not limit the invention.
A phrase such as an “aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples. A phrase such as an aspect may refer to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples. A phrase such an embodiment may refer to one or more embodiments and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples. A phrase such a configuration may refer to one or more configurations and vice versa.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.” Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
The present application claims the benefit of priority under 35 U.S.C. §119 from U.S. Provisional Patent Application Ser. No. 61/311,051, entitled “INTERFEROMETRIC SCANNING SPECTROMETER,” filed on Mar. 5, 2010, which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6816315 | Ai et al. | Nov 2004 | B1 |
7499175 | Palmer et al. | Mar 2009 | B1 |
20020154314 | Copner et al. | Oct 2002 | A1 |
Entry |
---|
Weisstein, Eric W., Millimeter/Submillimeter Fourier Transform Spectroscopy of Jovian Planet Atmospheres, California Institute of Technology, 1996. |
Witte, S. et al., Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control, Optics Express, vol. 17, No. 14 (Jul. 6, 2009), pp. 11335-11349. |
Hearn, D.R., Fourier Transform Interferometry, Technical Report 1053, Lincoln Laboratory, MIT, Oct. 29, 1999. |
Number | Date | Country | |
---|---|---|---|
61311051 | Mar 2010 | US |