This invention relates generally to the field of liquid crystal optical devices and, more particularly, to tunable liquid crystal lenses.
Tunable liquid crystal (LC) optical devices, such as lenses, beam steering devices and shutters are known in the art. Typically, these devices use a spatially modified electric field generated by electrodes within the device. These electrodes require electrical connections to allow contact with external elements. Other electrical components may also be included within some of these devices, which may likewise require external electrical connections. Different package designs may be used to provide a device which is appropriately compact and which may be easily integrated into an external system.
In accordance with the proposed solution, a liquid crystal lens is provided that comprises a liquid crystal layer, a plurality of conductive elements, such as electrodes, and a surrounding housing. The device makes use of contacts on an exterior of the housing, each of which are in electrical communication with at least one of the conductive elements and which are positioned adjacent to one another in a first region of the housing. In an exemplary embodiment of the proposed solution, the contacts are all positioned along one side of the housing, simplifying the electrical connection of the device to external components. For example, the contacts may be arranged in a single row. The contacts may also be surface contacts, and vertical conductive portions may be provided that provide electrical connection between the surface contacts and the conductive elements in different layers of a lens device.
While electrodes are typically among the conductive elements in a liquid crystal lens device, other conductive elements may also be used. For example, a heater element may be used for increasing the operating temperature of the device, or an electrical sensor may be used to detect electrical properties of device components indicative of parameters such as temperature. Such elements are better described in co-pending commonly assigned U.S. provisional patent application 61/384,962 filed on Sep. 21, 2010 the subject matter of which is incorporated herein by reference. Other components requiring electrical connection may also be present.
In an exemplary embodiment of the proposed solution, the lens may be produced as part of a lens array manufactured using a wafer-scale process. In such a process, multiple lenses are constructed using the same wafer level layers, and are then singulated to form individual lens devices. The layers of the array correspond to layers in each of the resulting lens devices. During fabrication of the array, conductive bands may be applied to a substrate in a first layer, each band corresponding to a different row (column) of lenses in the array, and each extending across all of the individual devices of its respective row (column) such that simultaneous electrical contact may be made to all of the devices in that row (column). When the individual devices are singulated, the separated portions of a conductive band may function as electrodes for each of the lens devices. Conductive busbars that run perpendicular to the conductive bands may also be applied to the first layer during the wafer level fabrication, and make electrical contact with the conductive bands. These busbars provide a common connection point at either end of the conductive bands to allow a single testing signal to be applied simultaneously to all of the bands for testing the devices of the array. It is also possible to use a second set of conductive bands in the same layer that separate the columns (rows) of the individual lens devices and make contact with the first set of conductive bands.
In one embodiment of the proposed solution, a second layer of the array includes secondary, non-planar electrodes that work in concert with the planar electrodes of the first layer during operation of the singulated liquid crystal lenses. Each of the non-planar electrode devices is associated with a different one of the tunable lens devices and, together with its corresponding planar electrode, will generate an electric field for changing the optical properties of the liquid crystal layer of its respective device. The second layer can include conductive bands that each interconnect the secondary electrodes of a different one of the rows (columns) of devices in the array. In this embodiment, individual devices of the array may be tested during the wafer stage by selectively applying a drive signal between one or more conductive bands of the first layer and one or more conductive bands of the second layer. The result of this selective application is to provide a signal between the planar and non-planar electrodes of a single device, and to thereby change the optical properties of the liquid crystal layer for only one isolated device of the array.
The invention will be better understood by way of the following detailed description of embodiments of the invention with reference to the appended drawings, in which:
In the figure, the location of certain components in a horizontal dimension of the device is shown relative to the contact points. The planar electrodes 10 are in electrical contact with conductive strips 12 (highly conductive bands), each of which runs along an opposite edge of the (device layered) structure, thereby forming two contact points along the contact side 14 of the device. The control electrode 16 is, as discussed below, located between the planar electrodes 10 in a vertical dimension of the device, and has a contact point 18 along the contact side 14 of the device. A conductive sensor 20 is also provided, and has an electrical contact 22 along the contact side. The control structure 16/20 is better described in co-pending commonly assigned U.S. provisional patent application 61/384,962 filed on Sep. 21, 2010 the subject matter of which is incorporated herein by reference.
In an exemplary embodiment, the device of
To better understand the layered structure of the liquid crystal lenses described herein,
Also shown in
While the foregoing embodiment allows the simultaneous testing of all of the components in the wafer level array, an alternative embodiment may be used in which the individual devices may be individually addressed. An example of such an embodiment is shown in
Referring again to
On a second side of the device, the liquid crystal 28b is contained between planar electrode layer 26b and control layer 32. The control layer 32 includes a glass substrate on which is deposited a frequency dependent material, that is, a material that is optically uniform, but which is electrically non-uniform for a predetermined set of electrical frequencies. This frequency dependent material behaves like a conductor at certain frequencies of the electric field, while appearing nonconductive at other frequencies. Thus, by adjusting the frequency of a drive signal applied to the electrodes, a spatial profile of the electric field may be modified. On top of the frequency dependent material the control electrode 16 and conductive sensor 20 are patterned. For each of the planar electrode layer 26b and the control layer 32, the side of the layer facing the liquid crystal 28b is coated with an alignment coating, such as polyimide. In addition, the planar electrodes may also serve as heater elements, and have a non-negligible finite resistance that results in resistive heating when an appropriate current is passed through them.
The wafer-level fabrication of the proposed solution produces devices that have all of their electrical contacts on a single side of the package. This allows the overall package to be smaller and simplifies the contact arrangement. The configuration of the metal strips 12, 27 and busbars 36 on the structure also improves wafer-level testing of the devices. If the only contact points were at the busbars 36 along the edges of the array, there would be a significant difference in how the devices near the interior of the array were driven as opposed to those along the edges. In the present embodiment, however, the metal strips 12 make contact with each of the planar electrodes, allowing them all to be driven in a relatively uniform manner during array level testing.
An example of a final device structure according to the present embodiment is shown in
It is understood that providing an electrical path between busbars 36c and 36d via contact 44a and between busbars 36a and 36b via contact 44d corresponds to the device drive mode illustrated in
The contact pads 42a-42d extend through the base 40 of the device (package) such that they are accessible on the other side of the base 40. Thus, as shown in
Regarding base 40, in the above reference has been made to a package base 40 and to the device package being fully enclosed in its exterior housing particularly with reference to
As mentioned hereinabove, devices can have different package designs intended for integration into different external systems providing a corresponding form factor. In some embodiments the devices are required to be compact in general, in other embodiments the devices are required to be flat, while in other embodiments the devices are required to be slender.
In the context of the tunable liquid crystal lens devices presented herein, integration into external systems generally requires mechanical integration as well electrical integration.
Mechanical integration aspects concern providing sufficient structure to integrate the device into an external system including, but not limited to: positioning and orienting the devices with respect to the overall external system. As well mechanical integration aspects can also relate to structural integrity of the overall external system and mechanical protection of the device from environmental factors such as but not limited to shock and vibration.
Accordingly, the (package) base 40 can be shaped to provide form factors which enable mechanical device integration for example into a barrel assembly, a lens assembly, etc. The hole on the base 40 can be positioned with respect to the edges of base 40 to locate the optical axis of the device, while for example a pattern of notches or a pattern of holes (not shown) in the base 40 can dictate a specific orientation in mechanically integrating the device into the external system.
It is appreciated that positioning and orienting aspects are not limited to the (package) base 40. It is appreciated that (package) base 40 can be part of an overall package into which the device is provided for integration into external systems, base 40 acting as an interposer. The base 40 can by itself provide such a package, however the invention is intended to include other types of packaging such as, but not limited to: a barrel assembly, a lens assembly, an encasing material (resin), a mould, a coating, etc. In some embodiments base 40 is oversized with respect to the device to enable mechanical integration.
Electrical integration aspects concern providing sufficient structure to electrically interconnect the device to the external system including, but not limited to: powering, conditioning and driving the device. Powering and driving aspects relate to the actuation of the device within the overall system into which it is integrated, whereas conditioning aspect can relate to providing the environmental conditions (for example temperature control) for the device to operate as well to providing protection for example from: electrical shock, thermal shock, static electricity discharges, over-currents, under-currents, capacitive/inductive coupling, etc. and/or electrical shielding.
Accordingly, the (package) base 40 can be configured act as an electrical interconnect between the device and the external system into which the device is integrated, defining and simplifying electrical interconnection between the device and the external system.
It is appreciated that protection for example from: electrical shock, thermal shock, control of capacitive/inductive coupling, etc. and/or electrical shielding can be provided by other than the (package) base 40. It is appreciated that (package) base 40 can be part of an overall package into which the device is provided for integration into external systems, base 40 acting as an interposer. The base 40 can by itself provide such a package, however the invention is intended to include other types of packaging such as, but not limited to: a barrel assembly, a lens assembly, an encasing material (resin), a mould, a coating, etc. In some embodiments base 40 is oversized with respect to the device to enable electrical integration. For example the base 40, besides contact pads 42a-d, can also include shunt resistors for example to control over-currents, static electricity discharge etc., and signal conditioning electrical components to provide protection from: under-currents, capacitive/inductive coupling, etc., whereas the overall packaging can be configure to provide thermal shielding, thermal dissipation, capacitive/inductive coupling, etc. For example, the overall packaging can contain Zinc oxide thermal paste for temperature control, or invar for electrical shielding.
It is appreciated then that the device being an optical device, such as a tunable liquid crystal lens device cannot be totally encased in (opaque) packaging. While the base 40 is integrated into the stack of the singulated device, the base 40 and packaging can form part of the device housing together with other components of the device such as, but not limited to glass substrates 33 which provide an open optical path through the device. As such the housing includes the base, any packaging and components providing optical access to the device. In some embodiments, housing/packaging components can be optically transparent and/or provide optical conditioning, for example part of the housing/packaging can be made from a transparent material configured have an optical power (lenticular, graduated index lens, etc.) For clarity, in some embodiments the housing is the base 40.
While the invention has been shown and described with referenced to preferred embodiments thereof, it will be recognized by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims priority from U.S. Provisional Application U.S. 61/368,863 filed Jul. 29, 2010, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61368863 | Jul 2010 | US |