This application is related to U.S. patent application Ser. No. 11/308,045 filed on Mar. 3, 2006 and U.S. patent application Ser. No. 11/164,644 filed Nov. 30, 2005.
This invention relates generally to the field optical communications and in particular to a tunable optical dispersion compensator.
In long-distance transmission of optical signals, the accumulation of chromatic dispersion in optical fibers presents serious problems. These problems intensify with an increase in bit rate and the distance traveled by the optical signals. Efforts to date that compensate for dispersion have primarily involved the use of dispersion compensating optical fibers (DCF).
Dispersion compensating efforts that employ DCF—while well-proven—are not particularly amenable to integration in existing network elements. This is due—in part—because DCF is employed as a large spool of fiber which occupies significant space in a network office and is not adjustable. In addition, service providers that utilize DCF in their networks must accurately characterize their fiber, deploy more expensive optical amplifiers and accept additional latency added to links employing the DCF [˜20% additional latency for a fully compensated standard-single-mode fiber (SSMF) link]. Finally, DCF cannot satisfy all of the dispersion compensation requirements of many 40-Gb/s links, consequently a tunable optical dispersion compensator (TODC) having a small tuning range is often required in addition to the DCF.
A TODC employing an arrayed waveguide grating (AWG) and thermo-optic lens was described in U.S. Pat. No. 7,006,730 directed to a “Multichannel Integrated Tunable Thermo-Optic Lens and Dispersion Compensator the entire contents of which are hereby incorporated by reference. The TODC described therein appeared to be an attractive alternative/supplement to DCF.
I have developed according to the present invention a tunable optical dispersion compensator (TODC) including a Mach-Zehnder interferometer structure coupled to selected inputs of a silica arrayed-waveguide grating (AWG) apparatus, the output of which is coupled to an adjustable lens. Advantageously, the Mach-Zehnder interferometer structure broadens the transmissivity passband of the TODC at high dispersion settings in a low-loss manner.
According to an aspect of the invention, the Mach-Zehnder interferometer structure has two optical paths of different length namely L1 and L1+ΔL1 which is coupled to central input waveguides of an AWG apparatus having a number of unequal length waveguides that differ in length by an integer multiple of ΔL1.
A more complete understanding of the present invention may be realized by reference to the accompanying drawings in which:
The following merely illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope.
Furthermore, all examples and conditional language recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.
Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Thus, for example, it will be appreciated by those skilled in the art that the diagrams herein represent conceptual views of illustrative structures embodying the principles of the invention.
With initial reference to
Star coupler(s) 101, 102 each include a plurality of input ports connected to a plurality of output ports via a free space region. The plurality (N) of output ports (for coupler 101) are connected to N waveguides 110[1] . . . 110[n], which provide a pre-determined amount of path length difference to a corresponding plurality (N) of input ports of star coupler 102. Preferably, these devices are formed from waveguides and integrated onto an optical “chip” (not specifically shown) and each of the couplers may include one or more input and/or output waveguides e.g., 106.
With these preliminary structures described, we may now describe more particularly an apparatus according to the present invention. With continued reference to
The first star coupler 101 is optically connected to the second star coupler 102 via an array of waveguides 110[1] . . . 110[n] having a predetermined length. According to an aspect of the present invention, the lengths of the waveguides in the array increase by an amount substantially equal to ΔL2, where ΔL2 is the length difference between the two paths (104, 105) of the Mach-Zehnder interferometer structure 103. More particularly, the first waveguide 110[1] exhibits a path length of L2 and each successive waveguide in the array is increased in length by an amount substantially equal to ΔL2. There may be a small deviation in ΔL2, i.e., a chirp, without departing from the spirit of the invention. Accordingly, the second waveguide in the array 110[2] will exhibit a length of L2+ΔL2; the third waveguide 110[3] will exhibit a length of L2+2ΔL2. Accordingly, the last waveguide 110[n] will exhibit a length of L2+(n−1)ΔL2 where n is the number of the waveguide in the array. The combined structure 101, 110, and 102 is known as an AWG.
Turning now to
As shown in
Those skilled in the art will now observe that the second star coupler 102 is positioned at the edge of optical chip 100. More particularly, it is positioned such that an edge of the chip is located where output waveguides (not specifically shown) would normally be found in a pure frequency routing device. As will be shown, this structure permits the advantageous construction of a TODC.
Turning now to
Shown in
When configured in this manner, portions of light input to input/output waveguide 310 traverses the first slab waveguide star coupler 333, the grating 330, the second slab waveguide star coupler 335, traverses the lens PLC 340, is reflected by the mirror 345, and subsequently output via input/output waveguide 310 having an amount of its accumulated dispersion compensated. In a preferred embodiment, the mirror 345 length along slab 335 will only be equal to or less than the width of the Brillouin zone of grating 330. This ensures that high diffraction orders from the grating are not reflected back into the grating. In addition, the mirror 345 is preferably flat, as it is easiest to cut and/or polish a flat surface, both for the PLC 340 and for the mirror 345. As can be appreciated, when the mirror 345 is flat, the device provides negative dispersion when no lens element 342 is not activated which compensates the dispersion of most single-mode optical fibers. The mirror 345 may also be curved, which will adjust the non-activated-lens dispersion setting.
It is explained in U.S. Pat. No. 7,006,730 (which is hereby incorporated by reference) how the TODC operates when structure 320 is replaced by a single waveguide. A fundamental issue with that TODC design is that the transmissivity passband narrows as the dispersion magnitude is increased. This narrowing is due to the fact that at the wavelengths at the edges of the passband, the lens element 342 causes the light distribution to be off-center in the waveguide array 330. This in turn causes the light to be focused at a tilted angle into the output waveguide 310 when 320 is not present, causing high loss at the passband edges, and thus narrowing the passband. The present invention is the addition of element 320. Element 320 accepts this tilted beam with significantly higher efficiency than a single waveguide, thus improving the loss at the passband edges. The net result of adding element 320 is a significantly wider transmissivity passband at high dispersion settings. We must change the effective orientation of element 320 when the sign of dispersion changes (i.e., the longer arm must trade places with the shorter arm), and at zero dispersion we do not want 320 at all. These adjustments are addressed by
Turning now to that
More particularly,
Although
Although the previous discussion has focused on a tunable optical dispersion compensator, one may also use this invention to construct a fixed optical dispersion compensator. In such a case, lens element 342 is either non-adjustable or non-existent.
At this point, while we have discussed and described our invention using some specific examples, those skilled in the art will recognize that our teachings are not so limited. Accordingly, our invention should be only limited by the scope of the claims attached hereto.
Number | Name | Date | Kind |
---|---|---|---|
6289147 | Bulthuis et al. | Sep 2001 | B1 |
6606433 | Oguma et al. | Aug 2003 | B2 |
6728446 | Doerr | Apr 2004 | B2 |
7305162 | Nikonov et al. | Dec 2007 | B2 |
7555175 | Nara | Jun 2009 | B2 |
20030128926 | Doerr | Jul 2003 | A1 |
20030133655 | Dingel | Jul 2003 | A1 |
20030223694 | Nikonov et al. | Dec 2003 | A1 |
20080044122 | Fondeur et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090116789 A1 | May 2009 | US |