Tunably crosslinked polysaccharide compositions

Information

  • Patent Grant
  • 8318695
  • Patent Number
    8,318,695
  • Date Filed
    Wednesday, July 23, 2008
    16 years ago
  • Date Issued
    Tuesday, November 27, 2012
    12 years ago
Abstract
The present invention generally relates to novel biocompatible crosslinked polysaccharide gel compositions, methods of their manufacture and use, and the novel crosslinkers used to make them. In one aspect of the invention, a novel polyethylene glycol crosslinking agent is described for crosslinking hyaluronic acid. In another aspect of the invention, novel crosslinking agents comprising more than two functional groups are described. These multifunctional crosslinking agents can be used on their own to crosslink hyaluronic acid, or they may be combined with bifunctional crosslinking agents in varying ratios to make hyaluronic acid of tunable mechanical strength and hardness. The present invention also discloses novel hyaluronic acid compositions that have been coated with polyethylene glycol and methods of their use.
Description
BACKGROUND OF THE INVENTION

a. Field of the Invention


The present invention relates to novel biocompatible polysaccharide gel compositions, methods of their manufacture and use, and the novel crosslinkers used to make them. More specifically, the present invention relates to novel compositions of hyaluronic acid gels that are crosslinked with a novel multifunctional crosslinker, and to methods of making such crosslinked hyaluronic acid gels.


b. Background Art


Hyaluronic acid is a non-sulfated glycosaminoglycan that is distributed widely throughout the human body in connective, epithelial, and neural tissues. Hyaluronic acid is also a major component of skin, where it is involved in tissue repair. As skin ages and is repeatedly exposed to the sun's ultra violet rays, dermal cells decrease their production of hyaluronic acid and increase the rate of its degradation. Likewise, aging skin loses collagen, another natural substance necessary to keep skin youthful and resilient. Over time, the loss of hyaluronic acid and collagen causes aging skin to develop lines, wrinkles, and folds.


In the past several years, compositions of hyaluronic acid have been used in cosmetic applications to fill wrinkles, lines, folds, scars, and to enhance dermal tissue, for example, to plump lips. Because hyaluronic acid is natural to the human body, it is a generally well tolerated and fairly low risk skin augmentation product.


Originally, hyaluronic acid compositions contained particles, or microspheres, of hyaluronic acid suspended in a gel. These compositions, which are still in commercial use, tend to degrade within a few months after injection and thus require fairly frequent reinjection to maintain their skin augmenting effect. Specifically, hyaluronic acid is highly soluble in its natural state and has a rapid turnover through enzymatic and free radical metabolization.


More recently, compositions of cross-linked hyaluronic acid have been used for dermal augmentation. These hyaluronic acid compositions are typically crosslinked with a bifunctional crosslinking agent, such as butanediol diglycidyl ether (BDDE), typically with a double ether bond connecting the HA molecules to form a less water soluble polymer hydrogel network that is more resistant to degradation, and thus requires less frequent reinjection, than the non-crosslinked hyaluronic acid compositions. Some such cross-linked compositions contain fairly large particles, around approximately 50-1000 μm each, of hyaluronic acid suspended in a gel. Others are a fairly uniform consistency gel matrix of hyaluronic acid.


While these known crosslinked hyaluronic acid compositions last longer than their noncrosslinked counterparts, their duration is typically twelve months or less, thus still requiring fairly frequent reinjection. It is thus desirable to develop a hyaluronic acid composition that is biocompatible and useful as a dermal filler, but has a longer useful lifetime upon injection. Specifically, it is desirable to develop a hyaluronic acid composition that is biocompatible and injectable, but that has a higher mechanical strength, a greater resistance to enzymatic degradation, and a higher water retention than currently available compositions.


BRIEF SUMMARY OF THE INVENTION

The present invention relates to compositions of crosslinked hyaluronic acid, methods of their manufacture, and methods of their use. More specifically, the present invention relates to a process for the preparation of crosslinked hyaluronic acid, the process comprising contacting hyaluronic acid with a polyethylene glycol (PEG) based crosslinking agent. The polyethylene glycol based crosslinker agent (or crosslinker) may be bifunctional, meaning it has a PEG backbone with two reactive groups for linking to the hyaluronic acid chains. Or, the polyethylene glycol based crosslinking agent (or crosslinker) may be “multifunctional,” having a PEG backbone with more than two reactive groups for linking to hyaluronic acid chains. The process may additionally include contacting the hyaluronic acid with a non-polyethylene glycol based crosslinking agent, including but not limited to BDDE or divinyl sulfone (DVS). According to some of the processes of the present invention for making a crosslinked hyaluronic acid, the polyethylene based crosslinking agent may be tetrafunctional and the hyaluronic acid may be brought into contact with the tetrafunctional crosslinking agent and with a bifunctional crosslinking agent, such as, for example, BDDE.


The present invention also relates to a process for the preparation of crosslinked hyaluronic acid, the process comprising contacting hyaluronic acid with a multifunctional crosslinking agent. The multifunctional crosslinking agent may be tri, tetra, penta, hexa, etc. functional (having more than two functional groups for reaction). In one embodiment of the present invention, the process comprises contacting hyaluronic acid with a tetrafunctional crosslinking agent, such as a 4-Arm Star PEG epoxide which is further described herein. The process may further comprise contacting the hyaluronic acid with a bifunctional crosslinking agent as well. The hyaluronic acid may be contacted with a variety of bifunctional and multifunctional crosslinking agents, and such contact may occur sequentially in any order, or the hyaluronic acid may be reacted with the various crosslinking agents in one step.


The processes of the present invention may also comprise coating hyaluronic acid compositions with polyethylene glycol based pendants. The polyethylene glycol based coating may be applied to crosslinked or uncrosslinked hyaluronic acid. In one preferred embodiment, the crosslinked hyaluronic acid compositions made according to the present invention are further coated with polyethylene glycol based pendants.


The present invention also includes compositions for soft tissue augmentation, and in particular for dermal fillers, which are prepared according to the processes of the present invention. More specifically, the present invention includes a composition for soft tissue augmentation, and particularly for use as a dermal filler, the composition comprising hyaluronic acid that has been crosslinked with at least one type of polyethylene glycol crosslinking agent. The polyethylene glycol based crosslinking agent(s) may be bifunctional, multifunctional, or a combination thereof. In one embodiment, a hyaluronic acid composition of the present invention has been crosslinked with a 4-Arm Star PEG epoxide. The compositions of the present invention may also comprise crosslinked hyaluronic acid compositions that have been prepared using more than one type of PEG crosslinking agent. For example, the compositions of the present invention may be prepared using a combination of polyethylene glycol based crosslinkers with varying numbers of functional groups and/or with varying lengths of ethylene glycol in their polymer chains or arms. The compositions of the present invention may further comprise a polyethylene glycol based coating.


The present invention further relates to dermal filler compositions comprising hyaluronic acid that has been crosslinked using at least one multifunctional crosslinking agent. The multifunctional crosslinking agent may be a multifunctional polyethylene glycol based crosslinking agent, such as a tetrafunctional polyethylene glycol based crosslinking agent, including, but not limited to, a 4-Arm Star PEG epoxide. The dermal fillers of the present invention may also comprise hyaluronic acid that has been crosslinked with a multifunctional crosslinking agent, such as a tetrafunctional polyethylene glycol, and also with a bifunctional crosslinking agent, such as BDDE, DVS, or a bifunctional polyethylene glycol.


In yet another aspect, the present invention relates to methods for repair or augmentation of the soft tissue of a patient comprising the steps of selecting the soft tissue to be repaired or augmented and injecting a composition comprising a crosslinked hylauronic acid of the present invention, as described herein, into the selected soft tissue.


The foregoing and other aspects, features, details, utilities, and advantages of the present invention will be apparent from reading the following description and claims, and from reviewing the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts crosslinking of two hyaluronic acid chains with a bifunctional crosslinking agent.



FIG. 2 depicts crosslinking of four hyaluronic acid chains with a multifunctional crosslinking agent.



FIG. 3 depicts two chemical formulas for the tetrafunctional polyethylene glycol based crosslinking agent and its precursor of the present invention.



FIG. 4 is a graph showing the difference in mechanical strength between a sample a hyaluronic acid composition that was crosslinked with BDDE, and a hyaluronic acid composition that was crosslinked with a combination of BDDE and a 4-Arm Star PEG epoxide crosslinking agent of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention generally relates to hyaluronic acid compositions that are crosslinked using a multifunctional crosslinking agent, methods of using such compositions, and to the novel crosslinking agents used to make such hyaluronic acid compositions. Such crosslinked hyaluronic acid compositions are useful for soft tissue augmentation, and particularly as dermal filler agents.


One aspect of this invention relates to novel catalysts for the crosslinking of hyaluronic acid. In one embodiment, the crosslinkers of the present invention are polyethylene glycol (PEG) based crosslinkers. PEG is a biocompatible polymer which is hydrophilic and inert. Because it is a polymer itself, its size (length) can be altered. Thus, the size of the PEG based crosslinker can be tuned based on the desired properties of the crosslinked hyaluronic acid. As shown in FIG. 1, in one embodiment of the present invention, the PEG based crosslinker 200 is bifunctional—both ends of the polymer chain are reactive (typically having epoxide ends) and thus capable of binding to strands of hyaluronic acid 100. In another embodiment of the present invention, the PEG based crosslinker comprises PEG of a plurality of chain lengths. The PEG based crosslinker can be made according to any PEG synthesis methods known to one of ordinary skill in the art.


The PEG based crosslinkers of the present invention may be used on their own or in combination with any another crosslinking agent suitable for making crosslinked hyaluronic acid. In one embodiment of the present invention, a combination of PEG based crosslinkers of the present invention and BDDE is used to make a crosslinked hyaluronic acid composition.


In another embodiment, the crosslinker of the present invention is a multifunctional crosslinker. As used herein, multifunctional means having more than two reactive sites on the crosslinking agent. As shown in FIG. 2, the multifunctional crosslinker 300 is able to bind more chains of hyaluronic acid 100 to one another than a bifunctional crosslinker. Thus, the multifunctional crosslinker results in hyaluronic acid compositions with greater mechanical strength (G′). The multifunctional crosslinkers of the present invention also improve the degradation of the resulting hyaluronic acid composition. Moreover, the multifunctional crosslinkers of the present invention increase the probability of each crosslinking molecule reacting with at least one hyaluronic acid strand, thereby facilitating purification and removal of unreacted crosslinking agents from the final hyaluronic acid composition.


In one embodiment of the present invention, the multifunctional crosslinker is trifunctional (contains 3 active sites). In another embodiment, the multifunctional crosslinker is tetrafunctional. In yet another embodiment, the multifunctional crosslinker is pentafunctional. In still another embodiment, the multifunctional crosslinker is hexafunctional or more. Indeed, the number of functional sites on the crosslinker of the present invention is limited only by the ability of the hyaluronic acid chains to bind to the resulting active sites on the crosslinker due to, e.g., geometry and steric hindrance. In another embodiment of the present invention, a crosslinker composition comprises multifunctional crosslinkers of at least two different functionalities (e.g. a combination of tetrafunctional crosslinkers with hexafunctional crosslinkers). In still a further embodiment, a multifunctional crosslinker is combined with a bifunctional crosslinker in varying ratios to create hyaluronic acid compositions with varying mechanical strength. Table 1 shows a few sample bifunctional to multifunctional crosslinker ratios and the mechanical strengths of the resulting hyaluronic acid gels.


In a further aspect, the multifunctional crosslinker of the present invention may be a multifunctional PEG based crosslinker. A tetrafunctional PEG based crosslinker of the present invention is shown in FIG. 3. As shown in FIG. 3, in one embodiment, the present invention relates to a tetrafunctional PEG crosslinker precursor. As further shown in FIG. 3, the tetrafunctional PEG crosslinker precursor may further be reacted with an epoxide to create a novel 4-Arm Star PEG epoxide crosslinker. The epoxide tetrafunctional PEG crosslinker shown in FIG. 3 may be made from a base poly-alcohol molecule (i.e. pentaerythritol) by attaching epoxide groups and reacting with hydroxyl-PEG chains of the desired length and branching. Epoxide groups can be attached to the base poly-alcohol molecule by deprotonating the hydroxyl groups and reacting with epichlorohydrin. The epoxide rings can subsequently react with the hydroxyl groups of the PEG chains under basic conditions. In the final step of the cross-linker preparation, epoxide groups can be attached to each end of the PEG chains, thus enabling the reaction of the crosslinker with the polysaccharide molecule.


As with the bifunctional PEG based crosslinkers, described above, tetrafunctional PEG based crosslinkers (including the 4-Arm Star PEG epoxide) are of tunable size. As shown in FIG. 3, the crosslinkers may have a variety of polymer lengths in their arms, thereby affecting their mechanical properties. Moreover, by mixing the tetrafunctional based PEG crosslinkers of the present invention with a bifunctional crosslinker, such as, for example, the bifunctional PEG crosslinkers of the present invention, BDDE, DVS, and/or 1,2,7,8-diepoxyoctane, in varying ratios, the mechanical strength and hardness of the final hyaluronic acid composition may be tuned as desired.


The present invention also relates to crosslinked hyaluronic acid compositions that are made using the crosslinking agents of the present invention. In one embodiment, the hyaluronic acid compositions of the present invention comprise a PEG based crosslinker. In a further embodiment, the hyaluronic acid compositions of the present invention comprise a multifunctional PEG based crosslinker. In yet a further embodiment, the hyaluronic acid compositions comprise a tetrafunctional PEG based crosslinker. And in still a further embodiment, the hyaluronic acid compositions comprise a 4-Arm Star PEG epoxide cross linker. In other embodiments, the hyaluronic acid compositions comprise multifunctional crosslinkers as well as bifunctional crosslinkers. The hyaluronic acid compositions of the present invention may be fairly uniform gels or they may be ground into particles which can be further suspended in a gel. In one embodiment of the present invention, the hyaluronic acid composition comprises hyaluronic acid that is made with a multifunctional crosslinking agent and then ground into particles, and a gel of hyaluronic acid made with a multifunctional and/or bifunctional crosslinking agent in which the particles are suspended.


In yet another aspect of the present invention, hyaluronic acid compositions are further coated in PEG based pendant. As a biocompatible, inert, and hydrophilic polymer, PEG offers good degradation resistance to hyaluronic acid. Crosslinked or noncrosslinked hyaluronic acid particles can be coated with PEG based pendants to enhance their in vivo longevity. In one embodiment, the crosslinked hyaluronic acid compositions of the present invention are ground into particles and the particles are coated with PEG based pendants. The particles may typically be about 100 μm to 1000 μm and the coating may typically range from 2 nm to 50 nm in thickness.


The present invention also relates to methods of making hyaluronic acid compositions that are crosslinked with a PEG based crosslinker. In one embodiment, hyaluronic acid is brought into contact with a bifunctional PEG based crosslinker and allowed to react. In a further embodiment, hyaluronic acid is brought into contact with a quantity of a bifunctional crosslinker, and is then brought into contact with a quantity of a multifunctional crosslinker. The hyaluronic acid may be reacted with more than one crosslinker in either a step-wise fashion, with a lower functionality crosslinker being brought into contact first or with a higher functionality crosslinker being brought into contact first. Or, the hyaluronic acid may be reacted with a plurality of crosslinkers in one step.


Another aspect of the present invention is methods of using the novel hyaluronic acid compositions of the present invention to augment soft tissue. In one embodiment, the novel hyaluronic acid compositions of the present invention are used as dermal fillers to fill undesired lines, wrinkles, and/or folds in a patient's skin.


The following examples provide further detail regarding some of the embodiments of the present invention.


EXAMPLE 1

A multifunctional crosslinker of the present invention may be prepared from a base polyalcohol. For example, 136 mg of pentaerythritol (i.e. for the tetrafunctional PEG crosslinker) may be reacted with 100 mg of sodium hydride and subsequently with 370 mg of epichlorohydrin to attach the epoxide groups. 5000 mg of hydroxyl PEG chains (i.e. MW=1.25k) may be reacted with the epoxide terminated poly-alcohol under basic conditions (i.e. in a NaOH solution) to yield a tetrafunctional PEG hydroxyl terminated crosslinker precursor. The precursor can be reacted with an equimolar amount of epichlorohydrin as described above to produce the tetrafunctional crosslinker.


EXAMPLE 2

One embodiment of a hyaluronic acid gel according to the present invention may be prepared as follows.


One gram of sodium hyaluronate fibers (NaHA, Mw=0.5-3 MDa) is mixed with 5-10 grams of 0.01-1% sodium hudroxide solution and the mixture is left to hydrate for 1 to 5 hours. Then 20-200 mg of 1,4 butanediol diglycidyl ether (BDDE) and 0.05-2 g of 4-Arm star PEG epoxide (Mw=200-10,000 Da) are added to the NaHA gel. The mixture is mechanically homogenized, then placed in a 40-70° C. oven for 1 to 10 hours. The resulting crosslinked hydrogel is neutralized with an equimolar amount of hydrochloric acid and swelled in a phosphate buffer (PBS, pH=7.4). This hydrogel may then be mechanically homogenized.


EXAMPLE 3

To compare the characteristics of a crosslinked hyaluronic acid of the present invention to a prior art type of crosslinked hyaluronic acid, the method disclosed in Example 2 was used to prepare a batch of the novel tunably crosslinked hyaluronic acid. A similar method was used to prepare a batch of a known crosslinked hyaluronic acid, using BDDE as the only crosslinking agent (not adding any of the novel 4-Arm Star PEG epoxide) such that the molar ratio of HA to crosslinker was the same as in Example 2.


Samples from the two batches were then compared using strain sweep tests to determine gel hardness as an indicator of the degree of crosslinking of each sample. The strain sweep tests were performed on an ARES rheometer using a 50 mm parallel plate set-up. Approximately 2 to 3 ml of each sample was placed at the center of the lower plate and the gap was set to 1 mm. The test was performed at 5 Hz frequency for a range of 1-250% strain. At low values of strain, the plateau in the elastic or storage modulus G′ quantifies the gel hardness.



FIG. 4 demonstrates graphically the results of measurements made on the filling gels prepared according to the invention in comparison to prior art hydrogels. As shown in FIG. 4, the G′ plateau for the hydrogel of the present invention is significantly higher than that of the prior art gel. The hydrogel of the present invention is harder and is more highly cross-linked than the prior art gel.


EXAMPLE 4

Six samples of crosslinked hyaluronic acid were prepared using bifunctional PEG and 4-Arm Star PEG epoxide crosslinkers. In each sample, the ratio of bifunctional PEG to 4-Arm Star PEG epoxide was varied, such that the molar ratio of HA to total crosslinker remained the same for all six samples. The mechanical strength of each sample was tested using the same method described above. The plateau in G′ at low strain values is reported in the Table 1 below. As shown in Table 1, the plateau G′ value at low strain increases as bifunctional crosslinker is replaced by equimolar amounts of the tetrafunctional crosslinker, indicating an increased degree of crosslinking.











TABLE 1





% Bifunctional PEG
% 4-Arm Star PEG Epoxide
G′ (Pa)

















100
0
180


90
10
190


85
15
205


75
25
252


50
50
360


25
75
400









EXAMPLE 5

PEG based pendant coated hydrogel particles may be prepared by mixing 380 mg of hydrogel particles, such as Captique®, with 0-100 mg of epoxide terminated monofunctional PEG 2000 Da and 0.5 ml of sodium hydroxide (0.01-1% wt) and left to react for 1-10 hrs at 40-70° C. The resulting PEG based pendant coated particles may be neutralized with an equimolar amount of hydrochloric acid.


Coated particles may be compared to non-coated particles using an enzymatic degradation assay. A 0.1-10 mg quantity of hyaluronidase may be added to the hyaluronic acid particles for 10-250 mins at 37° C. followed by 0.1 ml of a 0.8 M potassium tetraborate solution and heating at 100° C. for 10 mins. The samples may be supplemented with 3 ml of a 10% wt p-dimethylaminobenzaldehyde solution in acetic acid and incubated at 37° C. for 10-120 mins. The absorbance at 585 nm may be used to quantify the hyaluronic acid degradation in each sample. The optical density (OD) values are reported in Table 2. As more PEG based pendant is used to coat the hyaluronic acid particles, the system becomes less susceptible to enzymatic degradation.












TABLE 2







Sample (PEG:HA ratio)
Optical Density (OD) at 585 nm









A (0:1)
0.750



B (2:1)
0.400



C (10:1)
0.260










Although only a few embodiments of this invention have been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail may be made without departing from the spirit of the invention as defined in the appended claims.

Claims
  • 1. A process for preparing a degradation resistant crosslinked hyaluronic acid hydrogel, said process comprising: a) hydrating sodium hyaluronate fibers in a sodium hydroxide solution to produce hydrated sodium hyaluronate fibers;b) mixing the sodium hyaluronate fibers with a tetrafunctional polyethylene glycol-based-epoxide crosslinking agent to create a sodium hyaluronate fiber mixture;c) heating the sodium hyaluronate fiber mixture at a temperature between 40° C. to 70° C. for a time period of between 1 to 10 hours to produce a crosslinked hyaluronic acid hydrogel; andd) reacting the crosslinked hyaluronic acid hydrogel with a monofunctional polyethylene glycol-based pendant to provide a coating; wherein the polyethylene glycol-based pendant coating provides degradation resistance to the crosslinked hyaluronic acid hydrogel, thereby enhancing in vivo longevity the crosslinked hyaluronic acid hydrogel, andwherein the process uses the tetrafunctional polyethylene glycol-based epoxide crosslinking agent as the only crosslinking agent for preparing the degradation resistant crosslinked hyaluronic acid hydrogel.
  • 2. The process of claim 1, wherein the tetrafunctional polyethylene glycol based epoxide crosslinking agent has a molecular weight of about 200 Da to about 10,000 Da.
  • 3. A composition for soft tissue augmentation, said composition comprising a crosslinked hyaluronic acid hydrogel obtained by the process according to claim 1 and ground into particles.
  • 4. A process for preparing a degradation resistant crosslinked hyaluronic acid hydrogel, said process comprising: a) hydrating sodium hyaluronate fibers in a sodium hydroxide solution to produce hydrated sodium hyaluronate fibers;b) mixing the sodium hyaluronate fibers with a multifunctional polyethylene glycol-based epoxide crosslinking agent to create a sodium hyaluronate fiber mixture wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent has more than two functional groups;c) heating the sodium hyaluronate fiber mixture at a temperature between 40° C. to 70° C. for a time period of between 1 to 10 hours to produce a crosslinked hyaluronic acid hydrogel; andd) reacting the crosslinked hyaluronic acid hydrogel with a monofunctional polyethylene glycol-based pendant to provide a coating; wherein the polyethylene glycol-based pendant coating provides degradation resistance to the crosslinked hyaluronic acid hydrogel, thereby enhancing the in vivo longevity the crosslinked hyaluronic acid hydrogel, andwherein the process uses the multifunctional polyethylene glycol-based epoxide crosslinking agent as the only crosslinking agent for preparing the degradation resistant crosslinked hyaluronic acid hydrogel.
  • 5. The process of claim 4, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is tetrafunctional.
  • 6. The process of claim 4, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is 4-Arm Star PEG epoxide.
  • 7. The process of claim 4, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is trifunctional.
  • 8. The process of claim 4, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is pentafunctional.
  • 9. The process of claim 4, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is hexafunctional.
  • 10. A composition for soft tissue augmentation, said composition comprising a crosslinked hyaluronic acid hydrogel obtained by the process according to claim 4 and ground into particles.
  • 11. A composition for soft tissue augmentation, said composition comprising degradation resistant crosslinked hyaluronic acid hydrogel particles, wherein said degradation resistant crosslinked hyaluronic acid hydrogel particles are prepared by a process comprising: a) hydrating sodium hyaluronate fibers in a sodium hydroxide solution to produce hydrated sodium hyaluronate fibers;b) mixing the sodium hyaluronate fibers with a tetrafunctional polyethylene glycol-based epoxide crosslinking agent to create a sodium hyaluronate fiber mixture;c) heating the sodium hyaluronate fiber mixture at a temperature between 40° C. to 70° C. for a time period of between 1 to 10 hours to produce a crosslinked hyaluronic acid hydrogel;d) grinding the crosslinked hyaluronic acid hydrogel ground into particles; ande) reacting the crosslinked hyaluronic acid hydrogel particles with a monofunctional polyethylene glycol-based pendant to provide a coating; wherein the polyethylene glycol-based pendant coating provides degradation resistance to the crosslinked hyaluronic acid hydrogel particles, thereby enhancing in vivo longevity the crosslinked hyaluronic acid hydrogel particles, andwherein the process uses the tetrafunctional polyethylene glycol-based epoxide crosslinking agent as the only crosslinking agent for preparing the degradation resistant crosslinked hyaluronic acid hydrogel particles.
  • 12. The composition of claim 11, wherein said tetrafunctional polyethylene glycol based epoxide crosslinking agent is a 4-Arm Star PEG epoxide.
  • 13. The composition of claim 11 for use as a dermal filler.
  • 14. A dermal filler composition comprising degradation resistant crosslinked hyaluronic acid hydrogel particles, wherein said degradation resistant crosslinked hyaluronic acid hydrogel particles are prepared by a process comprising: a) hydrating sodium hyaluronate fibers in a sodium hydroxide solution to produce hydrated sodium hyaluronate fibers;b) mixing the sodium hyaluronate fibers with a multifunctional polyethylene glycol-based epoxide crosslinking agent to create a sodium hyaluronate fiber mixture wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent has more than two functional groups;c) heating the sodium hyaluronate fiber mixture at a temperature between 40° C. to 70° C. for a time period of between 1 to 10 hours to produce a crosslinked hyaluronic acid hydrogel;d) grinding the crosslinked hyaluronic acid hydrogel ground into particles; ande) reacting the crosslinked hyaluronic acid hydrogel particles with a monofunctional polyethylene glycol-based pendant to provide a coating; wherein the polyethylene glycol-based pendant coating provides degradation resistance to the crosslinked hyaluronic acid hydrogel particles, thereby enhancing in vivo longevity the degradation resistance crosslinked hyaluronic acid hydrogel particles, andwherein the process uses the multifunctional polyethylene glycol-based epoxide crosslinking agent as the only crosslinking agent for preparing the degradation resistant crosslinked hyaluronic acid hydrogel particles.
  • 15. The composition of claim 14, wherein said multifunctional polyethylene glycol-based epoxide crosslinking agent is a trifunctional polyethylene glycol-based epoxide crosslinking agent.
  • 16. The dermal filler composition of claim 14, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is a tetrafunctional polyethylene glycol-based epoxide crosslinker.
  • 17. The composition of claim 14, wherein said multifunctional polyethylene glycol-based epoxide crosslinking agent is a pentafunctional polyethylene glycol-based epoxide crosslinking agent.
  • 18. The composition of claim 14, wherein the multifunctional polyethylene glycol-based epoxide crosslinking agent is a hexafunctional polyethylene glycol-based epoxide crosslinking agent.
RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 60/952,770 filed on Jul. 30, 2007, which is incorporated herein by reference.

US Referenced Citations (126)
Number Name Date Kind
2128827 Killian Aug 1938 A
3763009 Suzuki Oct 1973 A
4582865 Balazs et al. Apr 1986 A
4605691 Balazs et al. Aug 1986 A
4636524 Balazs Jan 1987 A
4713448 Balazs Dec 1987 A
4716154 Malson et al. Dec 1987 A
4886787 De Belder et al. Dec 1989 A
4896787 Delamour et al. Jan 1990 A
5009013 Wiklund Apr 1991 A
5087446 Suzuki et al. Feb 1992 A
5091171 Yu et al. Feb 1992 A
5143724 Leshchiner et al. Sep 1992 A
5246698 Leshchiner et al. Sep 1993 A
5314874 Miyata et al. May 1994 A
5356883 Kuo et al. Oct 1994 A
5399351 Leshchiner et al. Mar 1995 A
5531716 Luzio et al. Jul 1996 A
5571503 Mausner Nov 1996 A
5616568 Pouyani et al. Apr 1997 A
5616611 Yamamoto Apr 1997 A
5633001 Agerup May 1997 A
5643464 Rhee et al. Jul 1997 A
5824333 Scopelianos et al. Oct 1998 A
5827529 Ono et al. Oct 1998 A
5843907 Sakai Dec 1998 A
5880107 Buenter Mar 1999 A
5886042 Yu et al. Mar 1999 A
5935164 Iversen Aug 1999 A
5980930 Fenton et al. Nov 1999 A
6013679 Kuo et al. Jan 2000 A
6066325 Wallace et al. May 2000 A
6224857 Romeo et al. May 2001 B1
6335035 Drizen et al. Jan 2002 B1
6372494 Naughton et al. Apr 2002 B1
6383218 Sourdille et al. May 2002 B1
6383219 Telandro et al. May 2002 B1
6418934 Chin Jul 2002 B1
6521223 Calias et al. Feb 2003 B1
6544503 Vanderhoff et al. Apr 2003 B1
6627620 Nielsen Sep 2003 B1
6630486 Royer Oct 2003 B1
6685963 Taupin et al. Feb 2004 B1
6716251 Asius et al. Apr 2004 B1
6767924 Yu et al. Jul 2004 B2
6767928 Murphy et al. Jul 2004 B1
6893466 Trieu May 2005 B2
6921819 Piron et al. Jul 2005 B2
6924273 Pierce Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6979440 Shefer et al. Dec 2005 B2
7119062 Alvis et al. Oct 2006 B1
7192984 Berg Mar 2007 B2
7314636 Caseres et al. Jan 2008 B2
7741476 Lebreton Jun 2010 B2
7902171 Reinmuller et al. Mar 2011 B2
20020102311 Gustavsson et al. Aug 2002 A1
20020160109 Yeo et al. Oct 2002 A1
20030031638 Joshi et al. Feb 2003 A1
20030093157 Casares et al. May 2003 A1
20030148995 Piron et al. Aug 2003 A1
20040032056 Vang et al. Feb 2004 A1
20040101959 Marko et al. May 2004 A1
20040127698 Tsai et al. Jul 2004 A1
20040127699 Zhao et al. Jul 2004 A1
20040199241 Gravett et al. Oct 2004 A1
20040265389 Yui et al. Dec 2004 A1
20050101582 Lyons et al. May 2005 A1
20050136122 Sadozai et al. Jun 2005 A1
20050142152 Leshchiner et al. Jun 2005 A1
20050181007 Hunter Aug 2005 A1
20050186261 Avelar Aug 2005 A1
20050226936 Agerup Oct 2005 A1
20050271729 Wang Dec 2005 A1
20050287180 Chen Dec 2005 A1
20060040894 Hunter et al. Feb 2006 A1
20060095137 Chung et al. May 2006 A1
20060122147 Wohlrab Jun 2006 A1
20060141049 Lyons et al. Jun 2006 A1
20060194758 Lebreton Aug 2006 A1
20060246137 Hermitte et al. Nov 2006 A1
20060257488 Hubbard Nov 2006 A1
20060286769 Tsuchiya et al. Dec 2006 A1
20070026070 Vonwiller et al. Feb 2007 A1
20070066816 Tsai et al. Mar 2007 A1
20070077292 Pinsky Apr 2007 A1
20070203095 Sadozai et al. Aug 2007 A1
20070212385 David Sep 2007 A1
20070224247 Chudzik Sep 2007 A1
20070224278 Lyons et al. Sep 2007 A1
20070298005 Thibault Dec 2007 A1
20080044476 Lyons et al. Feb 2008 A1
20080089918 Lebreton Apr 2008 A1
20080188416 Bernstein Aug 2008 A1
20080193538 Kitazono et al. Aug 2008 A1
20080200430 Bitterman et al. Aug 2008 A1
20080207794 Wright et al. Aug 2008 A1
20080241252 Lyons Oct 2008 A1
20080268051 Lyons Oct 2008 A1
20080274946 Gimpapa Nov 2008 A1
20080279806 Cho Nov 2008 A1
20090018102 Moutet Jan 2009 A1
20090022808 Champion Jan 2009 A1
20090028817 Niklason et al. Jan 2009 A1
20090036403 Stroumpoulis Feb 2009 A1
20090042834 Karageozian et al. Feb 2009 A1
20090093755 Schroeder Apr 2009 A1
20090110671 Miyata et al. Apr 2009 A1
20090110736 Boutros Apr 2009 A1
20090143331 Stroumpoulis et al. Jun 2009 A1
20090143348 Tezel Jun 2009 A1
20090148527 Robinson Jun 2009 A1
20090155314 Tezel Jun 2009 A1
20090169615 Pinsky Jul 2009 A1
20090263447 Asius et al. Oct 2009 A1
20090291986 Pappas et al. Nov 2009 A1
20090297632 Waugh Dec 2009 A1
20100004198 Stroumpoulis et al. Jan 2010 A1
20100028437 Lebreton Feb 2010 A1
20100035838 Heber et al. Feb 2010 A1
20100041788 Voigts et al. Feb 2010 A1
20100098764 Stroumpoulis et al. Apr 2010 A1
20100099623 Schroeder et al. Apr 2010 A1
20100111919 Abuzaina et al. May 2010 A1
20100136070 Dobak et al. Jun 2010 A1
20100226988 Lebreton Sep 2010 A1
Foreign Referenced Citations (68)
Number Date Country
949965 Jun 1974 CA
0273823 Jul 1988 EP
0416250 Mar 1991 EP
0416846 Mar 1991 EP
1247522 Oct 2002 EP
141792 Apr 2003 EP
1419792 Apr 2003 EP
1398131 Mar 2004 EP
1726299 Nov 2006 EP
2236523 Oct 2010 EP
2733427 Oct 1996 FR
2920000 Feb 2009 FR
2924615 Jun 2009 FR
55-153711 Nov 1980 JP
2007063177 Mar 2007 JP
WO 8600079 Jan 1986 WO
WO 8600912 Feb 1986 WO
WO 9200105 Jan 1992 WO
WO 9220349 Nov 1992 WO
WO 9401468 Jan 1994 WO
WO 9402517 Feb 1994 WO
WO 9633751 Jan 1996 WO
WO 9704012 Feb 1997 WO
WO 9835639 Aug 1998 WO
WO 9835640 Aug 1998 WO
WO 0001428 Jan 2000 WO
WO 0205753 Jan 2002 WO
WO 0206350 Jan 2002 WO
WO 0209792 Feb 2002 WO
WO 0217713 Mar 2002 WO
WO 03007782 Jan 2003 WO
WO 2004020473 Mar 2004 WO
WO 2004022603 Mar 2004 WO
WO 2004073759 Sep 2004 WO
WO 2004092223 Oct 2004 WO
WO 2005040224 May 2005 WO
WO 2005067944 Jul 2005 WO
WO 2005074913 Aug 2005 WO
WO 2005112888 Dec 2005 WO
WO 2006023645 Mar 2006 WO
WO 2006067608 Jun 2006 WO
WO 2007018124 Feb 2007 WO
WO 2007070617 Jun 2007 WO
WO 2007077399 Jul 2007 WO
WO 2007128923 Nov 2007 WO
WO 2008034176 Mar 2008 WO
WO 2008068297 Jun 2008 WO
WO 2008072230 Jun 2008 WO
WO 2008077172 Jul 2008 WO
WO 2008098019 Aug 2008 WO
WO 2008139122 Nov 2008 WO
WO 2008148967 Dec 2008 WO
WO 2008157608 Dec 2008 WO
WO 2009024719 Feb 2009 WO
WO 2009026158 Feb 2009 WO
WO 2009028764 Mar 2009 WO
WO 2009034559 Mar 2009 WO
WO 2009073437 Jun 2009 WO
WO 2010003797 Jan 2010 WO
WO 2010015900 Feb 2010 WO
WO 2010027471 Mar 2010 WO
WO 2010028025 Mar 2010 WO
WO 2010029344 Mar 2010 WO
WO 2010038771 Apr 2010 WO
WO 2010051641 May 2010 WO
WO 2010052430 May 2010 WO
WO 2010053918 May 2010 WO
WO 2010061005 Jun 2010 WO
Related Publications (1)
Number Date Country
20090036403 A1 Feb 2009 US
Provisional Applications (1)
Number Date Country
60952770 Jul 2007 US