Tuning screw assembly

Information

  • Patent Grant
  • 7227434
  • Patent Number
    7,227,434
  • Date Filed
    Monday, July 9, 2001
    23 years ago
  • Date Issued
    Tuesday, June 5, 2007
    17 years ago
Abstract
The present invention relates to a tuning screw assembly comprising a sleeve (100) with internal threads for engaging a tuning screw (200) having external threads. The sleeve comprises a first threaded portion (32) which is axially displaced in relation to a second threaded portion (34) for frictionally locking said screw body in said sleeve. The invention also relates to a method of manufacturing said friction locking sleeve and to a resonator comprising said friction locking sleeve.
Description
FIELD OF THE INVENTION

The present invention relates to a tuning screw assembly, to a method of manufacturing said tuning screw assembly and to a resonator comprising said tuning screw assembly.


DESCRIPTION OF THE RELATED ART

In many applications there is a need for mounting a tuning screw with the ability to later on easily adjust the position of the tuning screw. For example, in dielectric resonators, a commonly used method is to secure the tuning screw by using an ordinary locking nut which is tightened to an adjacent surface. This way of securing the tuning screw is rather time consuming and, therefore, some alternative ways of locking such a screw have been provided.


In U.S. Pat. No. 4,305,113, there is described a screw body forming a rotary part of a capacitor including an outer sleeve forming a hollow cylindrical stationary part of the capacitor. The massive screw body has externally threaded portions. These external threaded portions are axially separated by an unthreaded intermediate portion of reduced diameter. The intermediate portion is provided with three deep slots extending inwardly passed the central axis, leaving three angularly displaced web portions. The intermediate portion is slightly deformed axially to misalign the two threaded portions of the screw body. When the screw is screwed into an outer sleeve, the misaligned threaded portions are forced into axial alignment in order to frictionally lock the screw in said sleeve.


Now, the problem to be solved with the present invention is to provide a tuning screw assembly, an which the tuning screw can be properly adjusted, if needed a relatively long axial distance, while retaining a well-defined frictional locking of the screw within the surrounding sleeve. In many practical cases involving the tuning of high frequency resonators, it is necessary to allow for a long axial range of movement of the tuning screw. Hereby, it is possible to compensate for tolerances in the design and manufacture of the resonator.


A drawback with the frictionally locking device as described in said U.S. patent (as far as it can be understood from the specification) is that it may not be possible to frictionally lock a relatively long screw and to enable a long axial movement of the screw within the sleeve. One possible solution, although not mentioned in the US patent specification, could be to provide the screw with a plurality of misaligned portions along the screw. Alternatively, both the sleeve and the screw could be made relatively long, so that the axially spaced threaded portions on both sides of the intermediate, slotted portion are always in threaded engagement with the sleeve.


Furthermore, it seems difficult to obtain a cost-effective way of manufacturing the screw described in said U.S. patent specification, especially with regard to forming the deep slots after cutting the external thread.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide an improved tuning screw assembly, a method of manufacturing said assembly and a resonator, which overcome or at least reduce the above mentioned problems with the prior art devices.


According to a first aspect of the present invention, there is provided a tuning screw assembly as claimed in claim 1.


According to a second aspect of the present invention, there is provided a method for manufacturing said tuning screw assembly, as claimed in claim 13.


According to a third aspect of the present invention, there is provided a resonator as claimed in claim 17.


One advantage with the tuning screw assembly according to the present invention is that the same sleeve can be used for any length of the screw to be locked.


Another advantage with the tuning screw assembly according to the present invention is that it is relatively easy and inexpensive to manufacture.


Yet another advantage with the tuning screw assembly according to present invention is that the internal forces will keep the screw in position during the lifetime of the assembly or until the position of the tuning screw has to be changed.


Still another advantage with the tuning screw assembly according to the present invention is that the tuning screw can be adjusted precisely to another position within a relatively long axial range.


A further advantage with the tuning screw assembly according to the present invention is that it can be mounted onto a frame or a top wall of a resonator in a quick and easy manner, making the production inexpensive. The effective resiliency of the intermediate part of the sleeve will ensure a good and lasting electrical contact between the sleeve and the screw, especially at the bottom end of the sleeve, which is very important for high frequency applications.


The invention will now be described in more detail with regard to preferred embodiments thereof and also with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a first perspective view of an embodiment of a sleeve forming part of a tuning screw assembly according to the invention before a deformation is made in a direction parallel to its central axis.



FIG. 2 shows a second perspective view of the embodiment of the sleeve shown in FIG. 1.



FIG. 3 shows a cross sectional side view of the sleeve shown in FIGS. 1 and 2.



FIG. 4 shows a side view of the sleeve shown in FIGS. 1–3.



FIG. 5 shows a side view of the sleeve of FIG. 4 upon being deformed in a direction parallel to its central axis.



FIG. 6 shows a side view of the sleeve of FIG. 5 after partially resuming its original configuration.



FIG. 7 shows a cross sectional side view of the embodiment of a tuning screw assembly including a sleeve as shown in FIGS. 1–4.



FIG. 8 shows a cross sectional view of the tuning screw assembly of FIG. 7 being mounted in the lid of a resonator body.





DESCRIPTION OF A PREFERRED EMBODIMENT

In accordance with the present invention, a cylindrical sleeve is provided with two axially displaced, internally threaded portions which engage with the external thread of a tuning screw so as to effect frictional locking thereof and electrical coupling in high frequency applications.



FIG. 1 and 2 show two different perspective views of a sleeve 100, forming part of a tuning screw assembly 100,200 (shown in FIGS. 7 and 8) according to the invention, before being deformed in a direction parallel to its central axis. The sleeve 100 comprises a first axial part 1, an intermediate axial part 2 and a second axial part 3. A first slot 10 and a second slot 12 are located in said intermediate axial part 2. There is an optional flange 20 in said first axial part 1. Internally, threads 30 are provided, including a first threaded portion 32 in said first axial part 1 and a second threaded portion 34 in said second axial part 3, and there is an unthreaded portion 40 in said intermediate axial part 2.


In this embodiment, the outer shape of the sleeve 100 is cylindrical. Alternatively the outer shape of the sleeve may have any shape, for example a splined cylindrical outer surface or a hexagonal outer surface (like an ordinary nut).


The first threaded portion 32 and the second threaded portion 34 are axially separated from each other by said unthreaded portion 40 in the intermediate axial part 2 of the sleeve 100. The unthreaded portion 40 comprises in this embodiment said first slot 10 and said second slot 12. As appears from FIGS. 3 and 4, the first and second slots 10,12 extend substantially circumferentially in the cylindrical wall of the sleeve and are located in planes oriented essentially at right angle to a central axis of the sleeve.


The threaded portions 32, 34 can be formed by first making a continuous, uniform internal thread in the sleeve 100 and cutting out, e.g. in a turning process, an intermediate recess 40, whereupon through-going circumferential slots 10 and 12 are made in the cylindrical wall (FIGS. 3 and 4). Thereupon, in order to displace the threaded portions 32, 34 axially in relation to each other, the sleeve is deformed axially so as to slightly change the axial distance between the first and second threaded portions 32, 34.



FIG. 5 shows the sleeve 100 upon being deformed in a direction parallel to its central axis. During the deformation, which in this case is a compression, the slots 10,12 are totally compressed in the outer surface 25 of the sleeve 100. Accordingly, each slot is deformed, as seen in the side view in FIG. 5, into a tapered section forming an elongated triangle with an acute angle.


Then, as illustrated in FIG. 6, the sleeve 100 is unloaded so as to freely change its shape and to partially resume its original geometrical configuration due to the elastic-plastic behaviour of the metallic material of the sleeve. Accordingly, the slots will not remain totally compressed. Furthermore, by choosing a specific width of the slot, one can predict the final free width of the slot after the compression stage. The first and second threaded portions 32,34 will be permanently displaced axially after the compression stage. The displacement will cause a frictional locking effect if and only if the original width of the slot minus said free width of the slot after compression and relation differs from the pitch of the thread (the distance between two adjacent threads).


As explained above, the axially displaced first and second threaded portions 32,34 will give rise to an axial force therebetween upon engagement with the uniform external thread of the associated tuning screw and will therefore function as a friction lock for the assembly (FIG. 7).


In the illustrated embodiment, only two slots are shown. Of course, any suitable number of slots may be formed in the intermediate unthreaded portion 40.


In an alternative embodiment, the slots may be formed in the threaded portion in addition to the slot(s) in the unthreaded portion or, as a further alternative, instead of the slots in the unthreaded portion 40. When using slots in the threaded portions only, the unthreaded portion may be excluded.


In order to reduce the frictional forces and facilitate the tuning process, it has turned out to be very advantageous to apply a frictional reducing agent in the threads, as for example grease, silicon spray or some other suitable material. In this way, the starting friction will be drastically reduced, and the tuning operation can be effected smoothly and with an even torque applied to the tuning screw.


In order to accomplish the axial displacement of the threaded portions, one can expand the sleeve instead of compressing it. When expanding the sleeve, however, there is no easy way to know exactly what the result will be, i.e. it is difficult to control the magnitude of the permanent elongation.


Another way to bring said first and said second threaded portions axially displaced relative to each other is to form said first threaded portion from one end of the sleeve and stop before reaching the opposite end. Thereafter, the second threaded portion is formed from the opposite end, possibly in a separate step. By stopping the threading before reaching the first threaded portion, an unthreaded portion is obtained therebetween. Of course, the distance between the threaded portions has to differ from a multiple number of the distance between two adjacent threads in order to achieve the desired axial displacement.



FIG. 7 shows the tuning screw assembly with a tuning screw 200 in threaded engagement with a surrounding sleeve 100 of the kind described above. The tuning screw 200 has a uniform external thread 230, which corresponds in terms of pitch etc. to the threads 30 in the sleeve 100. The screw 200 has a transversal groove 210 at its outer, upper end portion to receive a screwdriver for rotating the screw 200. As explained above, the displaced internally threaded portions of the sleeve 100 will frictionally lock the tuning screw in any set position.



FIG. 8 illustrates a practical application, where the tuning screw assembly 100,200 is mounted in the lid 410 of a resonator body 400. The assembly may be attached by means of press fit, soldering or some other kind of fastening. Of course, a press fit will enable a very quick and inexpensive manufacturing process with a low number of parts to be assembled.


The resonator body 400 defines a cavity inside said lid 410, a bottom wall 420 and side walls 430, 440. By changing the rotary position of the tuning screw 200, the resonating frequency of said resonator may be adjusted.


The tuning screw assembly may be modified within the scope of the appended claims. For example, there may be more than two displaced threaded portions. Moreover, each threaded portion does not have to be uniform, e.g. in case the cylindrical wall of the sleeve is not uniformly thick and is deformed by a strong compressive or expansive force in the part provided with the internal threaded portion.

Claims
  • 1. A tuning screw assembly in combination with a resonator having a resonator cavity inside a frame or housing (400), comprising a stationary, internally threaded sleeve member (100) being in threaded engagement with a central, externally threaded tuning screw member (200), which extends into said resonator cavity and is rotatable within said sleeve member against a frictional locking force exerted between the mutually engaging threads so as to adjust the resonating frequency of said resonator, characterized in that the sleeve member (100) comprises a first axial part (1) provided with a first threaded portion (32), an unthreaded intermediate axial part (2), and a second axial part (3), which is provided with a second threaded portion (34), wherein said sleeve member (100) has a substantially uniform cylindrical outer shape, is formed of a single integral piece, and is provided with at least one tapered slot (10, 12) through the wall thereof in said unthreaded intermediate axial part (2), so as to make the unthreaded intermediate axial part (2) resilient in the axial direction,said first and second threaded portions (32, 34) of the sleeve member (100) are axially misaligned relative to each other in such a way that they do not fit exactly with the external thread (23) of the tuning screw (200),said first axial part (1) of the sleeve member (100) is attached to said resonator frame or a housing (400), whereassaid second axial part (3) of the sleeve member is resiliently movable in the axial direction, because of the resiliency of the intermediate axial part (2), so as to engage with the external thread (230) of the screw member (200) and achieve said frictional locking force upon adjustment of the resonating frequency of said resonator.
  • 2. The tuning screw assembly in combination with a resonator according to claim 1, wherein a frictional reducing agent is applied to any of the mutually engaging threads.
  • 3. The tuning screw assembly in combination with a resonator according to claim 1, wherein said unthreaded intermediate axial part (2) comprises an internal recess (40) in the wall of the sleeve member (100).
  • 4. The tuning screw assembly in combination with a resonator according to claim 1, wherein said slot (10, 12) extends substantially circumferentially in said wall.
  • 5. The tuning screw assembly in combination with a resonator according to claim 1, wherein the sleeve member (100) is axially shorter than the central screw member (200).
  • 6. The tuning screw assembly in combination with a resonator according to claim 1, wherein said first axial part (1) of the sleeve member (100) is shaped so as to enable mounting thereof in said frame or housing (410) with a press fit.
  • 7. The tuning screw assembly of claim 1, wherein the sleeve member (100) is provided with more than one slot (10, 12).
  • 8. A resonator comprising a tuning screw assembly (100, 200) as defined in claim 1, said sleeve member (100) being securely fastened to a said frame or housing (400) of the resonator.
  • 9. The resonator according to claim 8, wherein said sleeve member (100) is fastened to a wall (410) of said housing (400) by a press fit.
  • 10. The tuning screw assembly in combination with a resonator according to claim 1, wherein said intermediate axial part (2) of the sleeve (100) is permanently deformed axially.
  • 11. The tuning screw assembly in combination with a resonator according to claim 10, wherein said intermediate axial part (2) is permanently compressed axially.
  • 12. The tuning screw assembly in combination with a resonator according to claim 10, wherein said intermediate axial part (2) is permanently expanded axially.
  • 13. A method for manufacturing an internally threaded sleeve member (100) forming a part of a tuning screw assembly (100, 200) in combination with a resonator having a resonator cavity inside a frame or housing (400), said assembly also including an externally threaded tuning screw member (200) for adjusting the resonating frequency of said resonator, said screw member extending into said resonator cavity, characterized by the steps of providing first and second axial parts (1, 3) of said sleeve member (100) with first and second internally threaded portions (32, 34),providing the sleeve member (100) formed of a single integral piece with an unthreaded intermediate resilient axial part (2) between said first and second internally threaded portions (32, 34) and having at least one tapered slot (10, 12) through the wall thereof in said unthreaded intermediate axial part (2) so as to make the unthreaded intermediate axial part resilient in the axial direction,providing a relative axial misalignment of said first and second internally threaded portions (32, 34) in such a way that they do not fit exactly with the external thread (230) of said tuning screw member (200), whereby a frictional locking of said tuning screw member is achieved when being in threaded engagement with said sleeve member, because of the resiliency of said intermediate axial part (2) of the sleeve member (100) and the axial deformation of said intermediate part, andmounting said first axial part (1) of said sleeve member in said resonator frame or housing (400) so that said tuning screw member extends into said resonator cavity and enables a sustainable adjustment of the resonating frequency of said resonator.
  • 14. The method of claim 13, wherein the sleeve member (100) is provided with more than one slot (10, 12).
  • 15. The method according to claim 13, wherein said sleeve member (100) is first provided with a uniform internal thread, whereuponsaid intermediate, resilient axial part (2) of the sleeve member (100) is permanently deformed axially so as to displace said first and second internally threaded portions (32, 34) relative to each other.
  • 16. The method according to claim 15, wherein at least one slot (10, 12) is made in said intermediate axial part (2) of the sleeve member (100) before it is deformed axially.
  • 17. The method according to claim 13, wherein said first and second threaded portions (32, 34) are formed separately.
  • 18. The method according to claim 17, wherein said misalignment is provided when forming said first and second threaded portions (32, 34).
Priority Claims (1)
Number Date Country Kind
0002665 Jul 2000 SE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/SE01/01595 7/9/2001 WO 00 9/9/2003
Publishing Document Publishing Date Country Kind
WO02/06686 1/24/2002 WO A
US Referenced Citations (135)
Number Name Date Kind
134489 Rouse Dec 1872 A
327773 Crane Oct 1885 A
1033778 Bonness Jul 1912 A
1052601 Luyties Feb 1913 A
1123505 Eilers Jan 1915 A
1291114 Pickin Jan 1919 A
1299702 Glass Apr 1919 A
1561119 Smith Nov 1925 A
1561679 Woodring et al. Nov 1925 A
1760113 Brown May 1930 A
1833563 Easter Nov 1931 A
RE20915 Bergstrom Nov 1938 E
2142819 Olson Jan 1939 A
2142820 Olson Jan 1939 A
2213353 Whitcombe Sep 1940 A
2231130 Lehre Feb 1941 A
2235405 Markey Mar 1941 A
2243515 Van Sant May 1941 A
2260531 Luce Oct 1941 A
2267935 Markey Dec 1941 A
2271267 Lehre Jan 1942 A
2286895 Carlson Jun 1942 A
2304310 Luce Dec 1942 A
2306806 Hoopes Dec 1942 A
2367259 Beach Jan 1945 A
2381111 Chandler Aug 1945 A
2390662 Perry Dec 1945 A
2391513 Randall Dec 1945 A
2391712 King et al. Dec 1945 A
2391902 Hosking Jan 1946 A
2421254 Froelich May 1947 A
2422833 King et al. Jun 1947 A
2472421 Hamill et al. Jun 1949 A
2486129 De Walt et al. Oct 1949 A
2487219 Butler Nov 1949 A
2533912 Bels Dec 1950 A
2716222 Smullin Aug 1955 A
2790151 Riblet Apr 1957 A
3152312 Johnson Oct 1964 A
3160825 Derr Dec 1964 A
3261043 Guthmann Jul 1966 A
3265109 Hanfland Aug 1966 A
3311839 Rutulis Mar 1967 A
3385339 Dahl May 1968 A
3404596 Ryder Oct 1968 A
3417801 Berberian Dec 1968 A
3444486 Stepura et al. May 1969 A
3623146 Kaneko et al. Nov 1971 A
3733567 Johnson May 1973 A
3929023 Ambruoso, Sr. Dec 1975 A
4001737 Scott Jan 1977 A
4035749 Slocum et al. Jul 1977 A
4127834 Stringfellow et al. Nov 1978 A
4178562 Torma et al. Dec 1979 A
4205286 Parish May 1980 A
4206060 Yamamoto et al. Jun 1980 A
4287494 Hashimoto et al. Sep 1981 A
4306816 Folland Dec 1981 A
4345863 Mochida et al. Aug 1982 A
4380747 Curtinot et al. Apr 1983 A
4400650 Giebeler, Jr. Aug 1983 A
4477788 Collinet et al. Oct 1984 A
4521754 Ranghelli et al. Jun 1985 A
4535308 Znojkiewicz Aug 1985 A
4564375 Munk et al. Jan 1986 A
4565979 Fiedziuszko Jan 1986 A
4613264 McIntyre et al. Sep 1986 A
4618836 Gannon et al. Oct 1986 A
4628283 Reynolds Dec 1986 A
4647883 Oxley Mar 1987 A
4661790 Gannon et al. Apr 1987 A
4686496 Syrett et al. Aug 1987 A
4746883 Sauvage et al. May 1988 A
4766398 Kiedrowski Aug 1988 A
4769620 Nicotra Sep 1988 A
4775847 Epsom et al. Oct 1988 A
4794340 Ogasawara Dec 1988 A
4814729 Becker Mar 1989 A
4862111 Mettoudi et al. Aug 1989 A
4926142 Mettoudi May 1990 A
4954032 Morales Sep 1990 A
4956617 Bowlds Sep 1990 A
4963841 Sparagna Oct 1990 A
4984946 Phillips, II Jan 1991 A
5039966 Schmid et al. Aug 1991 A
5157337 Neel et al. Oct 1992 A
5237299 Chandler et al. Aug 1993 A
5495145 Pingree, Jr. Feb 1996 A
5634753 Goellner Jun 1997 A
5662443 Dziaba Sep 1997 A
5712723 Lee Jan 1998 A
5782597 Meyer Jul 1998 A
5825267 Smith Oct 1998 A
5859576 Winandy Jan 1999 A
5915902 Patterson et al. Jun 1999 A
5986526 Kopal et al. Nov 1999 A
6107900 Satoh et al. Aug 2000 A
6198366 Dahl et al. Mar 2001 B1
6222428 Akesson et al. Apr 2001 B1
6255922 Malmstrom et al. Jul 2001 B1
6337611 Hult Jan 2002 B1
6353373 Liang et al. Mar 2002 B1
6362707 Reinhardt Mar 2002 B1
6362708 Woods Mar 2002 B1
6367580 Chang Apr 2002 B1
6384699 Henningsson et al. May 2002 B1
6404307 Wulff Jun 2002 B1
6435565 Potts et al. Aug 2002 B2
6441705 Costa et al. Aug 2002 B1
6464421 Kiefer Oct 2002 B1
6522225 Liang et al. Feb 2003 B2
6559656 Doi May 2003 B2
6600393 Pahlman et al. Jul 2003 B1
6600394 Wang et al. Jul 2003 B1
6649821 Inoue Nov 2003 B2
6669424 Bauer Dec 2003 B1
7005951 Motooka et al. Feb 2006 B2
7012488 Beis et al. Mar 2006 B2
20010011937 Satoh et al. Aug 2001 A1
20010018014 Ito Aug 2001 A1
20020084874 Liang et al. Jul 2002 A1
20030090336 Radzikowski et al. May 2003 A1
20030117229 Remillard Jun 2003 A1
20030137368 Saito et al. Jul 2003 A1
20030147716 Nagawa et al. Aug 2003 A1
20030193379 Lye et al. Oct 2003 A1
20040005125 Anderson Jan 2004 A1
20040036557 Yamakawa et al. Feb 2004 A1
20040113723 Motooka et al. Jun 2004 A1
20040145432 Yamakawa et al. Jul 2004 A1
20040263289 Cobb Dec 2004 A1
20050113258 Kai et al. May 2005 A1
20050212623 Ala-Kojola Sep 2005 A1
20050219013 Kumar et al. Oct 2005 A1
20060071737 Puoskari Apr 2006 A1
Foreign Referenced Citations (2)
Number Date Country
0174646 Sep 1984 EP
2077876 Dec 1981 GB
Related Publications (1)
Number Date Country
20040028501 A1 Feb 2004 US