The present invention relates to the field of semiconductor processes, and more particularly to a tunneling field effect transistor structure and a method for forming the same.
The semiconductor integrated circuit industry has experienced rapid growth in the past several decades. Technological advances in semiconductor materials and design have produced increasingly smaller and more complex circuits. These material and design advances have been made possible as the technologies related to processing and manufacturing have also undergone technical advances. In the course of semiconductor evolution, the number of interconnected devices per unit of area has increased as the size of the smallest component that can be reliably created has decreased.
However, as the size of the smallest component has decreased, numerous challenges have risen. As features become closer, current leakage can become more noticeable, signals can crossover more easily, and power usage has become a significant concern. The semiconductor integrated circuit industry has produced numerous developments in its effort to continue the process of scaling. One of the developments is the potential replacement or supplementation of the conventional MOS field-effect transistor by the tunneling field-effect transistor (TFET).
Tunneling FETs are promising devices that may enable further scaling of power supply voltage without substantially increasing off-state leakage currents due to its sub-60 mV/dec subthreshold swing. However, existing TFETs have not been satisfactory in every respect.
The present invention provides a tunnel field-effect transistor (TFET) structure, the TFET structure includes a substrate comprising a fin structure disposed thereon, the fin structure has a first conductivity type, a dielectric layer disposed on the substrate and the fin structure, the dielectric layer having a gate trench, a gate structure disposed in the gate trench, the gate structure comprising a gate conductive layer and a work function metal layer, the work function metal layer comprises a left portion, a right portion, and a central portion disposed between the right portion and the right portion, the material of the central portion is different from that of the left portion and the right portion, and a source and a drain, disposed on both sides of the fin structure on the substrate respectively.
The present invention provides a method of making a tunneling effect transistor (TFET), the method includes: a substrate is provided having a fin structure disposed thereon, the fin structure includes a first conductive type, a dielectric layer is then formed on the substrate and on the fin structure, a gate trench is formed in the dielectric layer, and a first work function metal layer is formed in the gate trench, the first work function metal layer defines at least a left portion, a right portion and a central portion, an etching process is performed to remove the central portion of the first work function metal layer, and to form a recess between the left portion and the right portion of the first work function metal layer, afterwards, a second work function metal layer is formed and filled in the recess.
In summary, one feature of the present invention is that using the TFET structure combining with the conventional fin transistor process, and the gate of the TFET structure is made of different work function materials, which can greatly reduce the sub-threshold swing slope (SS) of the TFET structure, it also apply to existing process environments.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
To provide a better understanding of the present invention to users skilled in the technology of the present invention, preferred embodiments are detailed as follows. The preferred embodiments of the present invention are illustrated in the accompanying drawings with numbered elements to clarify the contents and the effects to be achieved.
Please note that the figures are only for illustration and the figures may not be to scale. The scale may be further modified according to different design considerations. When referring to the words “up” or “down” that describe the relationship between components in the text, it is well known in the art and should be clearly understood that these words refer to relative positions that can be inverted to obtain a similar structure, and these structures should therefore not be precluded from the scope of the claims in the present invention.
Please refer to
It is noteworthy that, prior to the subsequent steps to form the tunneling field effect transistor (TFET), the specific ions may be doped into the fin structure 101 according to the type of the subsequent tunneling effect transistor (N type or P type). In the embodiment, the fin structure 101 may be doped to have an n-type resistivity before fabricating an n-type TFET; or the fin structure 101 may be doped to have a p-type resistivity before fabricating a p-type TFET. In the embodiment, when fabricating the n-type TFET, phosphorus atoms or arsenic atoms may be doped into the single-crystal silicon substrate to have a doping concentration within a range of 1013-1018 cm−3; when fabricating the p-type TFET, boron atoms may be doped into the single-crystal silicon substrate to have a doping concentration within 1013-1018 cm−3. In fact, the TFET does not have a specific restriction on doping type of the substrate as the conventional MOSFET does, since the MOSFET relies on an inversion of channel charge due to the field effect while a principle of the TFET is based on band-to-band tunneling of MOS-gated inverse biased p-i-n junction. For the p-i-n junction, the “i” layer may be a lightly doping layer or an intrinsic layer.
Afterwards, please still refer to
Next, please refer to
In the steps mentioned above, the mask layer 120 or the mask layer 130 may be a single layer or a multi-layer structure. In the present embodiment, the mask layer 120 includes a bottom anti-reflection layer 120A and a photoresist layer 120B. The mask layer 130 includes a bottom anti-reflective layer 130A and a photoresist layer 130B. In addition, in this embodiment, taking an N-type TFET as an example, the source region 122 is doped with boron ions, therefore the source region 122 has a P-conductivity type, and the substrate (for example, the fin structure 101) and the drain region 132 are doped with phosphorus ions or arsenic ions, and they have an N conductivity type. When the N-type TFET is actuated, the source region 122 is grounded and a positive voltage is applied to the gate (subsequently formed). On the other hand, in the case of a P-type TFET, the source region 122 contains an N conductivity type, and the substrate (e.g., the fin structure 101) and the drain region 132 includes P conductivity type. When the P-type TFET is actuated, the source region 122 is grounded and a negative voltage is applied to the gate.
In addition, when the above-mentioned ion doping is completed, the doped ions are activated. Specifically, referring to
In addition, the formation sequence of the source region 122 and the drain region 132 may be reversed. In other words, the source region 122 may be formed after the drain region 132 is formed, which is also within the scope of the present invention.
Next, as shown in
As shown in
In the steps mentioned above, the high-k dielectric layer 154 can include high-k material such as rare earth metal oxide. The high-k dielectric layer 104 can include material selected from the group consisting of hafnium oxide (HfO2), hafnium silicon oxide (HfSiO4), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al2O3), lanthanum oxide (La2O3), tantalum oxide (Ta2O5), yttrium oxide (Y2O3), zirconium oxide (ZrO2) , strontium titanate oxide (SrTiO3) , zirconium silicon oxide (ZrSiO4), hafnium zirconium oxide (HfZrO4), strontium bismuth tantalate, (SrBi2Ta2O9, SBT), lead zirconate titanate (PbZrxTi1-xO3, PZT), and barium strontium titanate (BaxSr1-xTiO3, BST). In the preferred embodiment, the bottom barrier layer 156 can include titanium nitride (TiN). The first work function metal layer 158 includes an N-type work function metal layer such as titanium aluminide (TiAl), zirconium aluminide (ZrAl), tungsten aluminide (WAl), tantalum aluminide (TaAl), or hafnium aluminide (HfAl), but not limited to this. The first work function metal layer 158 may also be a P-type work function metal layer having a P conductivity type. In the present embodiment, the first work function metal layer 158 is a TiAl layer having a work function of about 4.1 electron volts (eV).
Next, as shown in
In addition, in other embodiments of the present invention, it is also possible to omit the photoresist layer 160, and directly remove the portion of the work function metal layer 158 and to form the recess 162 through a vertical etching process, or to adjust the work function of parts of area of the work function metal layer 158 by ion doping. It should also be within the scope of the present invention.
Thereafter, as shown in
As shown in
According to an embodiment of the present invention, the gate of the TFET structure 190 contains different work function materials that can control and influence the potential diagram of the TFET structure 190. Taking an N-type TFET structure 190 as an example, the work function metal layer near the source of the source and drain terminals has a lower work function, and the work function metal layer near the channel portion has a higher work function. Therefore, the TFET with a gate made of different materials can be formed.
In summary, one feature of the present invention is that using the TFET structure combining with the conventional fin transistor process, and the gate of the TFET structure is made of different work function materials, which can greatly reduce the sub-threshold swing slope (SS) of the TFET structure and also apply to existing process environments.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201710442176.6 | Jun 2017 | CN | national |