Implants such as stents and occlusive coils have been used in patients for a wide variety of reasons. One of the most common “stenting” procedures is carried out in connection with the treatment of atherosclerosis, a disease which results in a narrowing and stenosis of body lumens, such as the coronary arteries. At the site of the narrowing (i.e., the site of a lesion) a balloon is typically dilatated in an angioplasty procedure to open the vessel. A stent is set in apposition to the interior surface of the lumen in order to help maintain an open passageway. This result may be affected by means of scaffolding support alone or by virtue of the presence of one or more drugs carried by the prosthesis to aid in the prevention of restenosis.
Various stent designs exist and are in use today, but self-expandable and balloon-expandable stent systems and their related deployment techniques are now predominant. Examples of currently available self-expandable stents are the Magic WALLSTENT® stents and Radius stents (Boston Scientific). The Cypher® stent (Cordis Corporation) is a commonly used balloon-expandable stent. Additional self-expanding stent background is presented in: “An Overview of Superelastic Stent Design,” Min. Invas Ther & Allied Technol 822: 9(3/4) 235-246, “A Survey of Stent Designs,” Min. Invas Ther & Allied Technol 822: 11(4) 137-147, and “Coronary Artery Stents: Design and Biologic Considerations,” Cardiology Special Edition, 823: 9(2) 9-14, “Clinical and Angiographic Efficacy of a Self-Expanding Stent” Am Heart J 823: 145(5) 868-874.
Because self-expanding prosthetic devices need not be set over a balloon (as with balloon-expandable designs), self-expanding stent delivery systems can be designed to a relatively smaller outer diameter than their balloon-expandable counterparts. As such, self-expanding stents may be better suited to reach the smallest vasculature or achieve access in more difficult cases. To realize such benefits, however, there continues to be a need in developing improved stents and stent delivery systems.
The present invention offers a stent and system having a space-efficient mode of stent delivery.
Variations of the invention hold a radially-expandable prosthesis (such as a stent) in a compressed configuration for delivery either with or without the use of a tubular restraint covering at least a portion of the prosthesis body. By employing a twist-down mode for collapsing the diameter of the stent, the system does not require a sleeve to retain the stent or, if a sleeve is provided, the stent does not strain against it as would otherwise be the case. As discussed herein, stents used in the inventive systems have projections that include interface features for mating or seating with complimentary features on the delivery device that allow for the stent to be delivered in a collapsed (twisted-down) state and, when desired, expanded for implantation.
Delivery systems according to the present invention may include use-manipulable element(s) that allow for actuation of the subject system. These elements may include handles, finger actuators, or other means as commonly known and used for such devices. They may allow for rotation, axial movement, withdrawal of a sheath, or other manipulations required to deploy or load a prosthesis as discussed herein.
Stents employed in the systems are tubular-type members (i.e., they are not coil stents). The stents are lattice, cage or successive linked ring type structures or they are mesh-like woven or assembled bodies. Most often, the stents are produced by cutting round tubing. However, other means or modes of manufacture are possible as well.
In one variation of the delivery system, a body or shaft of a delivery guide is provided in the form of a tube or sleeve that includes projections in the form of hooks at a distal end (where the hook portion extends out-of-plane). The body is advantageously made of hypotubing in order to manufacture hooks integral thereto. Complementary hooks may be formed distal thereto and supported by a core member over which the sleeve rides. The distal hooks may be formed in connection with a ring or be provided otherwise.
Similar construction may be employed in another variation of the invention, in which the hooks or hook-type projection features are oriented substantially circumferentially. In this fashion, interlocking ends of the stent and hooks lie next to one another or occupy the same circumferential region. In any case, the hooks (typically numbering at least two per side of the implant to balance forces) are dimensioned with a prong and recess suited for receipt of a stent. The hooks may be J-shaped, T-shaped or otherwise configured as elaborated upon below.
In yet another variation of the invention, one or more ends of the stent and interfacing delivery system may include axially-directed interface features. Rather than utilizing an interlocking interface, the projections employed in these variations of the invention provide lateral capture and axial disengagement without a requirement for out-of-plane movement.
Irregardless of the manner in which the respective interface or mating portions are configured, a twisting mode of stent compression and retention is employed. Stent release is accomplished by releasing the twist or torque (possibly tension as well) that holds a given stent in a collapsed profile or by other means including radial release and foreshortening of the stent to pull out of the interface member to allow it to then unwind from the twisted, collapsed profile.
The combination of interfacing stent and delivery system features may work alone, or in conjunction with supplemental hold-down features. Sleeve and band type members are discussed herein, though other options are possible as well. For example, generic concepts expressed herein may be supported and/or practiced employing variations of the invention as set forth in U.S. patent application Ser. No. 11/265,999, entitled “Indirect-Release Implant Delivery Systems,” filed on even date herewith and incorporated by reference in its entirety for this or any other purpose.
Methodology described in association with the devices disclosed and implicit to their use also forms part of the invention. Such methodology may include that associated with completing an angioplasty, bridging an aneurysm, deploying radially-expandable anchors for pacing leads or an embolic filter, or placement of a prosthesis within neurovasculature, an organ selected from the kidney and liver, within reproductive anatomy such as selected vasdeferens and fallopian tubes or other applications.
The term “stent” as used herein includes any stent, such as coronary artery stents, other vascular prosthesis, or other radially expanding or expandable prosthesis or scaffold-type implant suitable for the noted treatments or otherwise. Exemplary structures include wire mesh or lattice patterns and coils, though others may be employed in the present invention.
A “self-expanding” stent as used herein is a scaffold-type structure (serving any of a number of purposes) that expands from a reduced-diameter (be it circular or otherwise) configuration to an increased-diameter configuration. The mechanism for shape recover may be elastic or pseudoelastic. While it is generally desireable to employ an alloy (such as nickel-titanium, or Nitinol alloy) set for use as a superelastic alloy, it may alternatively employ thermal shape memory properties to drive expansion upon release.
A “wire” as used herein generally comprises a common metallic member. However, the wire may be coated or covered by a polymeric material (e.g., with a lubricious material such as TEFLON®, i.e., PolyTetraFluoroEthelyne or PTFE) or otherwise. Still further, the “wire” may be a hybrid structure with metal and a polymeric material (e.g., Vectran™, Spectra™, Nylon, etc.) or composite material (e.g., carbon fiber in a polymer matrix). The wire may be a filament, bundle of filaments, cable, ribbon or in some other form. It is generally not hollow.
A “corewire” or “core member” may be use interchangeably and, as referred to herein, has a wire form and may be made from any biocompatible material including; but not limited to, stainless steel and any of its alloys; titanium alloys, e.g., Ni—Ti alloys; other shape memory alloys (i.e., SMAs); tantalum; polymers, e.g., polyethylene and copolymers thereof, polyethylene terephthalate or copolymers thereof, nylon, silicone, polyurethane fluoropolymers, poly (vinylchloride), and combinations thereof.
An “inner member” as disclosed herein includes a core member or a corewire and a cladding, cladding sections or a cladding layer which covers or surrounds at least a portion of the core member or corewire. The two may be bonded together or otherwise connected/interconnected.
A “cladding” as referred to herein means an outer layer of material which is bonded to a core member or a core wire. As with the “wire” discussed above, the material defining the cladding may be metallic, polymeric or a hybrid of thereof or a composite material. The cladding material may have the same flexibility or greater flexibility than the member to which it is bonded to so as not impeded the member's flexibility.
A “hypotube” or “hypotubing” as referred to herein means small diameter tubing in the size range discussed below, generally with a thin wall. The hypotube may specifically be hypodermic needle tubing. Alternatively, it maybe wound or braided cable tubing, such as provided by Asahi Intec Co., Ltd. or otherwise. As with the “wire” discussed above, the material defining the hypotube may be metallic, polymeric or a hybrid of metallic and polymeric or composite material.
A “sleeve” as referred to herein may be made of hypotubing or otherwise constructed. The sleeve may be a tubular member, or it may have longitudinal opening(s). It is an outer member, able to slidingly. receive and hold at least a portion of an inner member.
An “atraumatic tip” may comprise a plurality of spring coils attached to a tapered wire section. At a distal end of the coils typically terminate with a bulb or ball that is often made of solder. In such a construction, the coils and/or solder are often platinum alloy or another radiopaque material. The coils may also be platinum, or be of another material. In the present invention, the wire section to which the coils are attached may be tapered, but need not be tapered. In addition, alternate structures are possible. In one example, the atraumatic tip may comprise a molded tantalum-loaded 35 durometer Pebax™ tip. However constructed, the atraumatic tip may be straight or curved, the latter configuration possibly assisting in directing or steering the delivery guide to a desired intravascular location.
To “connect” or to have or make a “connection” between parts refers to fusing, bonding, welding (by resistance, laser, chemically, ultrasonically, etc.), gluing, pinning, crimping, clamping or otherwise mechanically or physically joining, attaching or holding components together (permanently or temporarily).
To “bond” or form a “bonding” between structures refers to forming an intimate contact between the structures, typically where the contanct is intended to be permanent. The bond or bonding may be achieved by any known means and process including, but not limited to, pressure rolling, extruding, drawing, swaging and adhesion.
“Radiopaque markers” are understood to be markers or features of the various delivery system components, corewire or implant that may be employed to facilitate visualization of the system components. As such, various platinum (or other radiopaque material) bands or other markers (such as tantalum plugs) may be variously incorporated into the system. Alternatively, or additionally, the stent may be made of radiopaque material or incorporate them. Especially where the stent employed may shorten somewhat upon deployment, it may also be desired to align radiopaque features with the expected location (relative to the body of the inner member) of the stent upon deployment. A filter used with the subject devices may also be made of radiopaque material for the same reasons.
“Releaseably locked” or “lockable” is understood to mean that the lockable components may be prevented from accidentally moving. For example, a handle may be releasably locked to a delivery guide by use of some mechanical stop or fitting (e.g., such as a collet that must be loosened, a latch that must be disengaged, a key that must be removed, etc.). Many common examples of mechanical stops or fittings are found in medical devices where pre-mature actuation of one or more components has the potential to cause trauma to a patient.
The Figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity. Each of the Figures diagrammatically illustrates aspects of the invention. Of these:
Various exemplary embodiments of the invention are described below. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the present invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
In light of this framework,
Features of the present invention are uniquely suited for a system able to reach small vessels (though use of the subject systems s not limited to such a setting.) By “small” coronary vessels, it is meant vessels having an inside diameter from between about 1.5 to 2 mm and up to about 3 mm in diameter. These vessels include, but are not limited to, the Posterior Descending Artery (PDA), Obtuse Marginal (OM) and small diagonals. Conditions such as diffuse stenosis and diabetes produce situations that represent other access and delivery challenges that can be addressed with a delivery system according to the present invention. Other extended treatment areas addressable with the subject systems include vessel bifurcations, chronic total occlusions (CTOs), and prevention procedures (such as in stenting of vulnerable plaque).
It may be preferred to use a drug eluting stent (DES) in such an application to aid in preventing restenosis. A review of suitable drug coatings and available vendors is presented in “DES Overview: Agents, release mechanism, and stent platform” a presentation by Campbell Rogers, MD incorporated by reference in its entirety. However, bare-metal stents may be employed in the present invention.
Examples of various therapeutic agents that may be used in or on the subject prosthesis include, but are not limited to, antibiotics, anticoagulants, antifungal agents, anti-inflammatory agents, antineoplastic agents, antithrombotic agents, endothelialization promoting agents, free radical scavengers, immunosuppressive agents, antiproliferative agents, thrombolytic agents, and any combination thereof. The therapeutic agent may be coated onto the implant, mixed with a biodegradable polymer or other suitable temporary carrier and then coated onto the implant, or, when the implant is made from a polymeric material dispersed throughout the polymer. The agent can be directly applied to the stent surface(s), or introduced into pockets or an appropriate matrix set over at least an outer portion of the stent.
While some might argue that the particular role and optimal usage of self expanding stents has yet to be defined, they offer an inherent advantage over balloon expandable stents. The latter type of devices produce “skid mark” trauma (at least when delivered uncovered upon a balloon) and are associated with a higher risk of end dissection or barotraumas caused at least in part by high balloon pressures and related forces when deforming a balloon-expandable stent for deployment.
Yet, with an appropriate deployment system, self-expanding stents may offer one or more of the following advantages over balloon-expandable models: 1) greater accessibility to distal, tortuous and small vessel anatomy—by virtue of decreasing crossing diameter and increasing compliance relative to a system requiring a deployment balloon, 2) sequentially controlled or “gentle” device deployment, 3) use with low pressure balloon pre-dilatation (if desirable) to reduce barotraumas, 4) strut thickness reduction in some cases reducing the amount of “foreign body” material in a vessel or other body conduit, 5) opportunity to treat neurovasculature—due to smaller crossing diameters and/or gentle delivery options, 6) the ability to easily scale-up a successful treatment system to treat larger vessels or vice versa, 7) a decrease in system complexity, offering potential advantages both in terms of reliability and system cost, 8) reducing intimal hyperplasia, and 9) conforming to tapering anatomy—without imparting complimentary geometry to the stent (though this option exists as well).
At least some of these noted advantages may be realized using a stent 10 as shown in
In use, the stent will be sized so that it is not fully expanded when fully deployed against the wall of a vessel in order to provide a measure of radial force thereto (i.e., the stent will be “oversized” as discussed above). The force will secure the stent and offer potential benefits in reducing intimal hyperplasia and vessel collapse or even pinning dissected tissue in apposition.
Stent 10 preferably comprises NiTi that is superelastic at or below room temperature (i.e., as in having an Af as low as 15 degrees C. or even 0 degrees C.). Also, the stent is preferably electropolished to improve biocompatibility and corrosion and fatigue resistance. The stent may be a DES unit as referenced above. The stent may be coated with gold and/or platinum to provide improved radiopacity for viewing under medical imaging.
For a stent able to collapse to an outer diameter of about 0.012 inches and expand to about 3.5 mm, the thickness of the NiTi is about 0.0025 inch (0.64 mm). Such a stent is designed for use in a 3 mm vessel or other body conduit, thereby providing the desired radial force in the manner noted above. Further information regarding radial force parameters in coronary stents may be noted in the article, “Radial Force of Coronary Stents: A Comparative Analysis,” Catheterization and Cardiovascular Interventions 46: 380-391 (1999), incorporated by reference herein in its entirety.
In one manner of production, the stent in
Regarding the finer details of the subject stent, as readily observed in the detail view provided in
In certain variations of the invention, however, the bridge sections can be strategically separated or opened as indicated by the broken lines in
As for the optional double-concave profile of each strut bridge 12 shown, this form is advantageous in that it reduces material width (relative to what would otherwise be presented by a parallel side profile) to improve flexibility and thus trackability and conformability of the stent within the subject anatomy while still maintaining the option for separating/breaking the cells apart. Whether cut to provide rounded end portions or adjoined by a bridge section 12, strut junction sections 28 connect circumferentially or vertically adjacent struts (as illustrated). Where no bridge sections are provided, the junction sections can be unified between horizontally adjacent stent struts as indicated in region 30.
Further optional features of stent 10 are employed in the strut junction sections 28 of the design. Specifically, strut ends 20 increase in width relative to medial strut portions 22. Such a configuration distributes bending (during collapse of the stent) preferentially toward the mid region of the struts. For a given stent diameter and deflection, longer struts allow for lower stresses within the stent (and, hence, a possibility of higher compression ratios). Shorter struts allow for greater radial force (and concomitant resistance to a radially applied load) upon deployment.
In order to increase stent compliance so that it collapses as much as possible, accommodation is made for the stiffer strut ends 20 provided in the design shown in
In addition, it is noted that gap 24 an angle β may actually be configured to completely close prior to fully collapsing angle α. The stent shown is not so-configured. Still, the value of doing so would be to limit the strains (and hence, stresses) at the strut ends 22 and cell end regions 18 by providing a physical stop to prevent further strain.
In the detail view of
Additional features of interest in the stent design include near and far delivery system interface mating portions 208 and 210, respectively. These elements are formed within-projections 212 that may be integral to the prosthesis 82 (e.g., when the prosthesis is constructed from a single tube of material, or when a number of wire-type elements are woven to form the body where the ends of the elements form the prosthesis). Alternatively, the projections may be affixed or connected to the stent (e.g., via welding, adhesive bonding, fastening, etc.). In another variation of the invention, the projections may comprise polymeric material that is coated onto the prosthesis 82. Other modes of construction are possible as well. Further details of the projections and respective mating portions are discussed in detail below. Suffice it to say here that elements are sufficiently “floppy” and/or rounded to offer an atraumatic interface with opposing tissue.
The stent pattern shown in
Furthermore, the bridge sections 42 of stent 82 can be separated for compliance purposes. In addition, they may be otherwise modified (e.g., as described above) or even eliminated. Also, in each design, the overall dimensions of the cells and indeed the number of cells provided to define axial length and/or diameter may be varied (as indicated by the vertical and horizontal section lines in
Like the previous stent design, strut ends 50 may offer some increase in width relative to medial strut portions 52. However, as shown in
The “S” curves defined by the struts are produced in a stent cut to a final or near final size (as shown in
For use in the present invention, it has been discovered that the design in
However derived, in order that the stent pack cleanly when twisted, it may be desired to pre-curve its shape. That is to say, the stent may be configured so that when it is twisted, its members go from a pre-twisted shape to a straightened configuration as shown. The amount of shaping to account for hold-down twist, may be in the form of a simple bias or helix, S-curves or other shape(s).
Since each of the above stent designs account for problematic strain (and in the latter case actually uses the same to provide an improved compressed profile), very high compression ratios of the stent may be achieved from about 5× to about 10× or above. Moreover, they can be twisted a number of times to maintain a compressed delivery profile. The number of twists required for such action will vary depending on stent diameter and length. For a 28 mm stent sized to treat 3.0 mm vessels, between three and four twists may be desired. Similar diameter, shorter stents will require proportionally fewer rotations, as will generally smaller diameter stents.
Regardless of the design selected, it is noted that each of them exhibit significant foreshortening when expanding from a compressed profile. Essentially, the angle change of the struts relative to the central axis of the tubular body accounts for change in length. The amount of foreshortening experienced will, thus, depend on a combination of factors: strut length and angle as well as the number of repeating units within the design. The manner in which the resultant foreshortening is put to use in the present invention is elaborated upon below.
Before this discussion, however, it is noted that systems according to the present invention are advantageously sized to correspond to existing guidewire sizes. For example, the system may have about a 0.014 (0.36 mm), 0.018 (0.46 mm), 0.022 (0.56 mm), 0.025 (0.64 mm) inch crossing profile. Of course, intermediate sizes may be employed as well, especially for full-custom systems. Still further, it is contemplated that the system sizing may be set to correspond to French (FR) sizing. In that case, system sizes contemplated range at least from about 1 to about 2 FR, whereas the smallest known balloon-expandable stent delivery systems are in the size range of about 3 to about 4 FR. In instances where the overall device crossing profile matches a known guidewire size, they may be used with off-the-shelf components such as balloon and microcatheters.
At least when produced in the smallest sizes (whether in an even/standard guidewire or FR size, or otherwise), the system enables a substantially new mode of stent deployment in which delivery is achieved through an angioplasty balloon catheter or small microcatheter lumen. Further discussion and details of “through the lumen” delivery is presented in U.S. patent application Ser. No. 10/746,455 “Balloon Catheter Lumen Based Stent Delivery Systems” filed on Dec. 24, 2003 and its PCT counterpart US2004/008909 filed on Mar. 23, 2004, each incorporated by reference in its entirety.
In larger sizes (i.e., up to about 0.035 inch crossing profile or more), the system is most applicable to peripheral vessel applications as elaborated upon below. Yet, even in “small vessel” cases or applications (where the vessel to be treated has a diameter up to about 3.0 mm), it may also be advantageous to employ a stent delivery system sized at between about 0.022 to about 0.025 inch in diameter. Such a system can be used with catheters compatible with 0.022 and/or 0.025 inch diameter guidewires.
While such a system may not be suitable for reaching the very smallest vessels, this variation of the invention is quite advantageous in comparison to known systems in reaching the larger of the small vessels (i.e., those having a diameter of about 2.5 mm or larger). By way of comparison, among the smallest known over-the-guidewire delivery systems are the Micro-Driver™ by Medtronic and Pixel™ systems by Guidant. These are adapted to treat vessels between 2 and 2.75 mm, the latter system having a crossing profile of 0.036 inches (0.91 mm). A system described in U.S. Patent Publication No. 2002/0147491 for treating small vessels is supposedly capable of downsizing to 0.026 inch (0.66 mm) in diameter. Furthermore, because the core member of the subject device can be used as a guidewire (in one fashion or another) after stent delivery, the present invention offers further advantages in use as elaborated upon below.
As referenced above, it may be desired to design a variation of the subject system for use in deploying stents in larger, peripheral vessels, biliary ducts or other hollow body organs. Such applications involve a stent being emplaced in a region having a diameter from about 3.5 to 13 mm (0.5 inch). In which case, a 0.035 to 0.039 inch (3 FR) diameter crossing profile system is advantageously provided in which the stent expands (unconstrained) to a size between about roughly 0.5 mm and about 1.0 mm greater than the vessel or hollow body organ to be treated. Sufficient stent expansion is easily achieved with the exemplary stent patterns shown in FIGS. 2A/2B or 3A/3B.
Again, as a matter of comparison, the smallest delivery systems known to applicants for stent delivery in treating such larger-diameter vessels or biliary ducts is a 6 FR system (nominal 0.084 inch outer diameter), which is suited for use in an 8 FR guiding catheter. Thus, even in the larger sizes, the present invention affords opportunities not heretofore possible in achieving delivery systems in the size range of a commonly used guidewire, with the concomitant advantages discussed herein.
As for the manner of using the inventive system as optionally configured,
Turning to
As illustrated in
Next, for compatible systems (i.e., systems able to pass through a balloon catheter lumen) the balloon is at least partially deflated and passed forward, beyond the dilate segment 62′ as shown in
However, it should be appreciated that such an exchange need not occur. Rather, the original guidewire device inside the balloon catheter (or any other catheter used) may be that of item 80, instead of the standard guidewire 70 shown in
Alternatively, the exchange of the guidewire for the delivery system may be made before the dilatation step. Yet another option is to exchange the balloon catheter used for predilatation for a fresh one to effect postdilatation.
In addition, there may be no use in performing the step in
Once placement of the stent across from dilated segment 62′ is accomplished, stent deployment commences. The manner of deployment is elaborated upon below. Upon deployment, stent 82 assumes an at least partially expanded shape in apposition to the compressed plaque as shown in
Naturally, the balloon need not be reintroduced for postdilatation, but it may be preferred. Regardless, once the delivery device 80 and balloon catheter 72 are withdrawn as in
Furthermore, it is to be recognized that the subject invention may be practiced to perform “direct stenting.” That is, a stent may be delivered alone to maintain a body conduit, without preceding balloon angioplasty. Likewise, once one or more stents are delivered with the subject system (either by a single system, or by using multiple systems) the post-dilatation procedure(s) discussed above are merely optional. In addition, other endpoints may be desired such as implanting an anchoring stent in a hollow tubular body organ, closing off an aneurysm, delivering a plurality of stents, etc. In performing any of a variety of these or other procedures, suitable modification will be made in the subject methodology. The procedure shown is depicted merely because it illustrates a preferred mode of practicing the subject invention, despite its potential for broader applicability.
Returning to
A given implant may have a number of projections 212, each having various shapes rather than having a single configuration. Typically, at least two projections will be provided on each side of the stent. When not every stent crown is capped by a projection, the projections are advantageously spaced substantially equally about the perimeter of the stent to evenly distribute loads upon the stent. In which case, the projections may be aligned with one another along the axis of the stent as shown in
The projections may vary in length, especially depending on the form of interface or mating portion they carry or form. The projections advantageously have a length that allow for efficiently transitioning or transferring the twisting load to the stent while occupying minimal space. Though not necessarily excluded from the invention, projections longer than about one cell's length may have a tendency either warp or twist about the delivery device body in attempted use. This feature can introduce undesirable sizing effects and/or difficulty in handling.
Turning to
In any case, there will be at least a sufficient number of projections 212 extending from each end of the prosthesis 82 to balance the force required to maintain the prosthesis 82 in a reduced diameter upon twisting. For smaller designs (i.e., delivery systems with 0.014 to 0.016 inch crossing profiles) in certain systems, as few as two mating features may be provided on each side of the implant. With an increased compressed size, space is made available for more projections/mating features.
The stent 82 may be secured on the delivery system by twisting (or at least partially twisting) the stent 82 prior to loading on the delivery system. Alternatively, the expanded stent 82 may be placed over a delivery system core member, and the ends of the stent 82 then twisted to constrict the stent 82 about the delivery system. Further, appropriate fixturing or preloading into a sleeve or multiple sleeve portions that may be twisted relative to one another may assist in loading of the stent about the delivery system as described in U.S. patent application Ser. No. 11/265,999, entitled “Indirect-Release Implant Delivery Systems,” incorporated by reference for this purpose. Naturally, the approach described there may be modified to accommodate differences between the system referenced therein and those of the present invention.
As for a general overview of the subject delivery systems as provided in
As elaborated upon below, alternative stent hold-down features or means may be provided in accordance with the present invention. Regardless, the delivery guide preferably includes/comprises a flexible atraumatic distal tip 108 of one variety or another.
On the other end of the delivery device, a handle 110 may be provided. A body 112 of the handle may include one or more of a lever or slider 114 or other means (such as a trigger, knob or wheel) for actuating optional sheath/restraint or core member withdrawal. The delivery device handle may include a lock 116 to prevent inadvertent actuation. Similarly, handle 110 may include various safety or stop features and/or ratchet or clutch mechanisms to ensure one-way actuation. The handle 110 further includes a knob 124 that permits twisting/untwisting of the stent. Of course, other alternative interface means may be provided to effect such action.
Furthermore, a removable interface member 118 may be provided to facilitate taking the handle off of the delivery system proximal end 120. The interface may be lockable with respect to the body and preferably includes internal features for disengaging the handle from the delivery guide. Once accomplished, it will be possible to attach or “dock” a secondary length of wire 122 on the delivery system proximal end, allowing the combination to serve as an “exchange length” guidewire, thereby facilitating changing-out the balloon catheter or performing another procedure. Alternatively, a core member within the system may be an exchange-length wire.
In support of such use, it is to be understood that various radiopaque markers or features may be employed in the system to 1) locate stent position and length, 2) indicate device actuation and stent delivery and/or 3) locate the distal end of the delivery guide. As such, various platinum (or other radiopaque material) bands or other markers (such as tantalum plugs) may be incorporated into the system. Especially where the stent employed may shorten somewhat upon deployment, it may also be desired to align radiopaque features with the expected location (relative to the body of the guide member) of the stent upon deployment. For such purposes, radiopaque features may be set upon the core member of the delivery device proximal and distal of the stent.
While
Accordingly,
Prosthesis 82 further comprises projections that permit retention of the prosthesis 82 on delivery system 100 when the ends are rotated relative to one another. The projections shown comprise a near key, interface or mating portion 208 and a far key, interface or mating portion 210. The various structures described for the seats and mating portions that interface or compliment one another to retain the stent to the elongate member may be regarded as the various means for retaining the prosthesis to the elongate member disclosed herein. An exemplary representation of the stent-side mating/interface features is presented in
Complimentary seats are shown in the various delivery guide portions. For example, In
The near seat 162 includes a receptacle form 166 that is shaped to receive the near mating portion of the prosthesis. As illustrated, the near seat 162 is formed from the distal end of an outer member 174 that extends over at least a portion of the core member 170. In this variation, the core member 170 may be moveable relative to the outer member 174. In one variation, the core member 170 may be rotatable relative to the outer member 174. Alternatively, or additionally, the core member 170 and the outer member 174 may be axially moveable relative to each other. Such features are useful to retain and/or deploy the prosthesis as discussed below.
The core member 170 may be elongate and have a comparatively small effective diameter. It has the function of permitting delivery of the prosthesis to a selected site and supporting the prosthesis in a collapsed form during positioning and implantation. The core member may be solid, or may have a lumen extending therethrough, depending on such factors as the degree of flexibility required, the type of associated release mechanism, the constituent material, and the like. The tip of the core member (i.e., the distal end of the delivery system) may include an atraumatic tip and be tapered and/or straight, curved, or J-shaped, depending on factors such as physician preference the anatomy of the tubular organ or region of interest, degree of stiffness required, and the like.
As noted herein, the subject delivery system 100 employs a prosthesis 82 that reduces in diameter when the ends of the prosthesis are rotated relative to each other in a first direction. Accordingly, when the mating portions 208, 210 of the prosthesis are nested with the near and far seats 162, 164, the near and far ends 202, 204 of the prosthesis 82 are restrained or prevented from rotating in a second direction to expand the prosthesis until desired by the medical practitioner. To assist in restraining the prosthesis, the core member 170 may be releasably locked relative to the outer member 174 to prevent relative movement. Therefore, when desired, the core member 170 and outer member 174 may be released so that the prosthesis may untwist to expand in diameter (e.g., where the prosthesis self expands). In some variations of the invention, the medical practitioner may assist in expanding the prosthesis by rotating the core member 170 relative to the outer member 174.
The ability to axially move the outer member 174 relative to the core member 170 may assist in restraining or assist in deploying the prosthesis. For example, variations of the invention described herein may rely upon moving the far seat 164 distally relative to the near seat 162 to disengage the projections of the prosthesis from the seats. Alternatively, when the projections are hook or L-shaped, movement of the far seat 164 distally relative to the near seat 162 causes axial “extension” of the prosthesis which counteracts any internal bias within the prosthesis to expand. It should be noted that movement of the seats may be accomplished in any number of ways. For example, the core member may advance relative to the near seat. Alternatively, the near seat (or outer member) may be withdrawn relative to the distal seat.
As mentioned above, the near and far seats 162, 164 each define a receptacle form 166, 168 shaped to receive the mating portions 208, 210 of the prosthesis. The receptacle geometries may comprise a plurality of openings (as illustrated) shaped to receive one or more projection(s) of the prosthesis. The openings may extend partially to a certain depth (i.e., forming a pocket). Alternatively, the openings may extend through the entire member. As noted above with respect to the projections, the shapes of the openings may include, but are not limited to: “L” shapes, “T” shapes, “V” shapes, circular, rectangular, square, polygonal, diamond, triangular, and slot shapes.
Alternatively, region 216 may be left open in order to provide a mating portion defined by negative space. In such fashion, the mating portion of the projection comprises the receptacle for receiving a pin or another member (the seating interface on the delivery system). A similar approach is shown in
In addition, a single prosthesis or stent may have any number of projections of various shapes so long as the projections do not unacceptably interfere or contact on another when compressing the stent. Accordingly, it is understood that the shape and configuration of the projection may vary for any number of factors (e.g., the particular application, the size of the stent, the tortuousity of the vasculature, etc.). As a result, the projections may comprise any hook, prong, opening, socket, key, grasper, tooth, bar or slot shaped configuration (whether the shape is nearly planar or significantly extends in three dimensions) in addition to those shapes discussed herein. In accordance with the above, it follows that the corresponding seating features will be selected to accommodate the shape of the respective projection.
In any case, the shapes of the projections will be selected so as not to create undue risk of injury to the patient. For example, for vascular applications, the shape of the projections must be chosen so as not to create undue trauma to the vessel wall. On the other hand, non-vascular applications may not present the same risks. Accordingly, the design of the projections may be more aggressive in stents intended for such applications.
As discussed above, the invention contemplates the use of one or more sleeves completely covering the implant as shown in
In
The release may occur simultaneously between the ends, or it may be staged. To stage the release when using elongate members that pull out of their respective seats, the length of the projections may vary from one side of the implant to the other. Assuming an equal rate of withdrawal, this can cause the shorter one(s) to withdraw relatively sooner, leaving at least a portion of the longer members engaged. Alternatively, the longer one(s) may remain stationary due to higher static friction than the shorter one(s), while the shorter members are first withdrawn. In either case, the remaining side of the implant may be released by manipulating the position of the delivery system (e.g., moving it proximally to release a proximal side or distally to release a distal side). Alternatively, expansion of the stent from the first side released can cause foreshortening and/or an angle change at the second end of the stent causing it to self-deploy in sequential fashion. In yet another approach in support of sequential end release, the projections may differ in shape from one side to the other such that one side is retained by an interlocking interface while the other is withdrawn. Such systems are discussed further below.
Accordingly, the sleeves or caps in the variation show in
With the device shown in
Each of
In the alternative, delivery systems as shown in
In any case,
In another mode of operation, the everting portion 184 may evert when the sleeve 180 is withdrawn. As shown, the everting portion may comprise a plurality of separate members. Alternatively, sleeve 180 may be whole such that the outer sleeve portion and the everting portion roll past one another. Still further, it is contemplated that (especially for small-diameter delivery systems) that the everting portion tears open into individual segments as the near end of sleeve 180 is withdrawn. The material may be pre-scored or notched to facilitate such action as may be desirable for lowering forces or accommodating substantially inelastic material rolling from a smaller diameter to a relatively larger diameter.
Addition delivery system designs are shown in
Near and far mating portions of the stent may be provided in openings within the cell structure or recesses formed within stent projections (see, e.g.,
Regardless, in the configuration shown where the hooks have no overhang (so as to facilitate stent release), the system relies on friction between the stent and hooks to hold the stent in place when the stent is axially stretched. Still, interference features between the stent and hooks may be provided to facilitate hold-down. Whatever the case, stent release is accomplished by releasing the tension and/or torque holding the stent in its collapsed profile.
In the variation of the invention shown in
As shown in
As in other one of the subject delivery systems, the stent is collapsed or at least held in collapsed state for delivery by imparting a torque to the system. In addition, the stent may be placed under tension as indicated—pushing the core wire forward relative to the hypotube (or vice versa). Naturally, release will be effected upon removal of the wind-up and/or pull-down forces. In which case, the stent will be able to expand and free its keys 1314 from slots 1314 by way of radial expansion.
The final example of twist-based stent hold down provided herein is illustrated in
The number of extension for the seat will depend on the stent 1408 with which the member is designed to interface. As shown in
In more general terms, the invention includes methods that may be performed using the subject devices or by other means. The methods may all comprise the act of providing a suitable device. Such provision may be performed by the end user. In other words, the “providing” (e.g., a delivery system) merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
Exemplary aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally know or appreciated by those with skill in the art. For example, one with skill in the art will appreciate that a lubricious coating (e.g., hydrophilic polymers such as polyvinylpyrrolidone-based compositions, fluoropolymers such as tetrafluoroethylene, hydrophilic gel or silicones) may be placed on the core member of the device, if desired to facilitate low friction manipulation. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.
In addition, though the invention has been described in reference to several examples, optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as the claims below. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in the claims shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in the claim, or the addition of a feature could be regarded as transforming the nature of an element set forth n the claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of the claim language.
This filing is a continuation-in-part of U.S. patent application “Implant Delivery Technologies” (Ser. No. 10/550,707) filed Sep. 26, 2005, which is a continuation of PCT Patent Application, “Implant Delivery Technologies” (U.S. 2004/008909) filed Mar. 23, 2004, which claims the benefit of U.S. Provisional Patent Applications “Implant Delivery Device” (Ser. No. 60/458,323), filed Mar. 26, 2003 and “Implant Delivery Device II” (Ser. No. 60/462,219), filed Apr. 10, 2003 as well as U.S. patent applications “Implant Delivery Technologies” (Ser. No. 10/745,778), “Multiple Joint Implant Delviery Systems for Sequentially-Controlled Implant Deployment” (Ser. No. 10/746,452), and “Balloon Catheter Lumen Based Stent Delivery Systems” (Ser. No. 10/746,455), each filed Dec. 24, 2003, and “Sliding Restraint Stent Delivery Systems” (Ser. No. 10/792,684), filed Mar. 2, 2004 now abandoned. Each of the above-referenced applications is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4503569 | Dotter | Mar 1985 | A |
4512338 | Balko et al. | Apr 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4562596 | Kornberg | Jan 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4655771 | Wallsten | Apr 1987 | A |
4665918 | Garza et al. | May 1987 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4771773 | Kropf | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4830003 | Wolff et al. | May 1989 | A |
4848343 | Wallsten et al. | Jul 1989 | A |
4875480 | Imbert | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4893623 | Rosenbluth | Jan 1990 | A |
4913141 | Hillstead | Apr 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4990151 | Wallsten | Feb 1991 | A |
4990155 | Wilkoff | Feb 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5019085 | Hillstead | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5089006 | Stiles | Feb 1992 | A |
5092877 | Pinchuk | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5160341 | Brenneman et al. | Nov 1992 | A |
5180367 | Kontos et al. | Jan 1993 | A |
5192297 | Hull | Mar 1993 | A |
5201757 | Heyn et al. | Apr 1993 | A |
5221261 | Termin et al. | Jun 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5242452 | Inoue | Sep 1993 | A |
5246445 | Yachia et al. | Sep 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5266073 | Wall | Nov 1993 | A |
5290305 | Inoue | Mar 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5320635 | Smith | Jun 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5354295 | Guglielmi et al. | Oct 1994 | A |
5360401 | Turnland et al. | Nov 1994 | A |
5372600 | Beyar et al. | Dec 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5407432 | Solar | Apr 1995 | A |
5415664 | Pinchuk | May 1995 | A |
5423829 | Pham et al. | Jun 1995 | A |
5433723 | Lindenberg et al. | Jul 1995 | A |
5443477 | Marin et al. | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5476505 | Limon | Dec 1995 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5486195 | Myers et al. | Jan 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5522836 | Palermo | Jun 1996 | A |
5522883 | Slater et al. | Jun 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5540680 | Guglielmi et al. | Jul 1996 | A |
5554181 | Das | Sep 1996 | A |
5569245 | Guglielmi et al. | Oct 1996 | A |
5571135 | Fraser et al. | Nov 1996 | A |
5578074 | Mirigian | Nov 1996 | A |
5591196 | Marin et al. | Jan 1997 | A |
5601600 | Ton | Feb 1997 | A |
5618300 | Marin et al. | Apr 1997 | A |
5634928 | Fischell et al. | Jun 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5643254 | Scheldrup et al. | Jul 1997 | A |
5653748 | Strecker | Aug 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5690643 | Wijay | Nov 1997 | A |
5690644 | Yurek et al. | Nov 1997 | A |
5702364 | Euteneuer et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5725549 | Lam | Mar 1998 | A |
5725551 | Myers et al. | Mar 1998 | A |
5733267 | Del Toro | Mar 1998 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5772668 | Summers et al. | Jun 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5776141 | Klein et al. | Jul 1998 | A |
5776142 | Gunderson | Jul 1998 | A |
5782838 | Beyar et al. | Jul 1998 | A |
5788707 | Del Toro et al. | Aug 1998 | A |
5797857 | Obitsu | Aug 1998 | A |
5797952 | Klein | Aug 1998 | A |
5800455 | Palermo et al. | Sep 1998 | A |
5800517 | Anderson et al. | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5810837 | Hofmann et al. | Sep 1998 | A |
5817101 | Fiedler | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5824054 | Khosravi et al. | Oct 1998 | A |
5824058 | Ravenscroft et al. | Oct 1998 | A |
RE35988 | Winston et al. | Dec 1998 | E |
5843090 | Schuetz | Dec 1998 | A |
5851206 | Guglielmi et al. | Dec 1998 | A |
5855578 | Guglielmi et al. | Jan 1999 | A |
5873907 | Frantzen | Feb 1999 | A |
5891128 | Gia et al. | Apr 1999 | A |
5919187 | Guglielmi et al. | Jul 1999 | A |
5919204 | Lukic et al. | Jul 1999 | A |
5919225 | Lau et al. | Jul 1999 | A |
5920975 | Morales | Jul 1999 | A |
5941888 | Wallace et al. | Aug 1999 | A |
5944726 | Blaeser et al. | Aug 1999 | A |
5948017 | Taheri | Sep 1999 | A |
5957930 | Vrba | Sep 1999 | A |
5968052 | Sullivan et al. | Oct 1999 | A |
5980485 | Grantz et al. | Nov 1999 | A |
5980514 | Kupiecki et al. | Nov 1999 | A |
5980530 | Willard et al. | Nov 1999 | A |
5984929 | Bashiri et al. | Nov 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
5989280 | Euteneuer et al. | Nov 1999 | A |
6004328 | Solar | Dec 1999 | A |
6015429 | Lau et al. | Jan 2000 | A |
6019737 | Murata | Feb 2000 | A |
6019779 | Thorud et al. | Feb 2000 | A |
6027516 | Kolobow et al. | Feb 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042588 | Munsinger et al. | Mar 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6042605 | Martin et al. | Mar 2000 | A |
6048360 | Khosravi et al. | Apr 2000 | A |
6053940 | Wijay | Apr 2000 | A |
6056759 | Fiedler | May 2000 | A |
6059779 | Mills | May 2000 | A |
6059813 | Vrba et al. | May 2000 | A |
6063101 | Jacobsen et al. | May 2000 | A |
6063104 | Villar et al. | May 2000 | A |
6068634 | Lorentzen Cornelius et al. | May 2000 | A |
6068644 | Lulo et al. | May 2000 | A |
6071286 | Mawad | Jun 2000 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6093194 | Mikus et al. | Jul 2000 | A |
6096034 | Kupiecki et al. | Aug 2000 | A |
6096045 | Del Toro et al. | Aug 2000 | A |
6102942 | Ahari | Aug 2000 | A |
6113608 | Monroe et al. | Sep 2000 | A |
6117140 | Munsinger | Sep 2000 | A |
6120522 | Vrba et al. | Sep 2000 | A |
6123714 | Gia et al. | Sep 2000 | A |
6123720 | Anderson et al. | Sep 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6139524 | Killion | Oct 2000 | A |
6139564 | Teoh | Oct 2000 | A |
6156061 | Wallace et al. | Dec 2000 | A |
6156062 | McGuinness | Dec 2000 | A |
6161029 | Spreigl et al. | Dec 2000 | A |
6165178 | Bashiri et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6168592 | Kupiecki et al. | Jan 2001 | B1 |
6168616 | Brown, III | Jan 2001 | B1 |
6168618 | Frantzen | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6183481 | Lee et al. | Feb 2001 | B1 |
6183505 | Mohn, Jr. et al. | Feb 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6200305 | Berthiaume et al. | Mar 2001 | B1 |
6203550 | Olson | Mar 2001 | B1 |
6206888 | Bicek et al. | Mar 2001 | B1 |
6214036 | Letendre et al. | Apr 2001 | B1 |
6221081 | Mikus et al. | Apr 2001 | B1 |
6221097 | Wang et al. | Apr 2001 | B1 |
6228110 | Munsinger | May 2001 | B1 |
6231598 | Berry et al. | May 2001 | B1 |
6238410 | Vrba et al. | May 2001 | B1 |
6238430 | Klumb et al. | May 2001 | B1 |
6241758 | Cox | Jun 2001 | B1 |
6245097 | Inoue | Jun 2001 | B1 |
6248122 | Klumb et al. | Jun 2001 | B1 |
6254609 | Vrba et al. | Jul 2001 | B1 |
6254611 | Vrba | Jul 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6264671 | Stack et al. | Jul 2001 | B1 |
6264683 | Stack et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6270504 | Lorentzen Cornelius et al. | Aug 2001 | B1 |
6273881 | Kiemeneij | Aug 2001 | B1 |
6280465 | Cryer | Aug 2001 | B1 |
6287331 | Heath | Sep 2001 | B1 |
6302893 | Limon et al. | Oct 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6306162 | Patel | Oct 2001 | B1 |
6319275 | Lashinski et al. | Nov 2001 | B1 |
6342066 | Toro et al. | Jan 2002 | B1 |
6344041 | Kupiecki et al. | Feb 2002 | B1 |
6346118 | Baker et al. | Feb 2002 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6350278 | Lenker et al. | Feb 2002 | B1 |
6361637 | Martin et al. | Mar 2002 | B2 |
6368344 | Fitz | Apr 2002 | B1 |
6371962 | Ellis et al. | Apr 2002 | B1 |
6375660 | Fischell et al. | Apr 2002 | B1 |
6379365 | Diaz | Apr 2002 | B1 |
6380457 | Yurek et al. | Apr 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6391050 | Broome | May 2002 | B1 |
6391051 | Sullivan, III et al. | May 2002 | B2 |
6395017 | Dwyer et al. | May 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6413269 | Bui et al. | Jul 2002 | B1 |
6416536 | Yee | Jul 2002 | B1 |
6416545 | Mikus et al. | Jul 2002 | B1 |
6423090 | Hancock | Jul 2002 | B1 |
6425898 | Wilson et al. | Jul 2002 | B1 |
6425914 | Wallace et al. | Jul 2002 | B1 |
6425915 | Khosravi et al. | Jul 2002 | B1 |
6428489 | Jacobsen et al. | Aug 2002 | B1 |
6428566 | Holt | Aug 2002 | B1 |
6432080 | Pederson et al. | Aug 2002 | B2 |
6432129 | DiCaprio | Aug 2002 | B2 |
6447540 | Fontaine et al. | Sep 2002 | B1 |
6448700 | Gupta et al. | Sep 2002 | B1 |
6451025 | Jervis | Sep 2002 | B1 |
6451052 | Burmeister et al. | Sep 2002 | B1 |
6454795 | Chuter | Sep 2002 | B1 |
6458092 | Gambale et al. | Oct 2002 | B1 |
6468266 | Bashiri et al. | Oct 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6468301 | Amplatz et al. | Oct 2002 | B1 |
6482227 | Solovay | Nov 2002 | B1 |
6485515 | Strecker | Nov 2002 | B2 |
6488700 | Klumb et al. | Dec 2002 | B2 |
6517548 | Lorentzen Cornelius et al. | Feb 2003 | B2 |
6517569 | Mikus et al. | Feb 2003 | B2 |
6520986 | Martin et al. | Feb 2003 | B2 |
6530947 | Euteneuer et al. | Mar 2003 | B1 |
6533805 | Jervis | Mar 2003 | B1 |
6533807 | Wolinsky et al. | Mar 2003 | B2 |
6537295 | Petersen | Mar 2003 | B2 |
6558415 | Thompson | May 2003 | B2 |
6562063 | Euteneuer et al. | May 2003 | B1 |
6562064 | deBeer | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6579308 | Jansen et al. | Jun 2003 | B1 |
6582460 | Cryer | Jun 2003 | B1 |
6602226 | Smith et al. | Aug 2003 | B1 |
6602272 | Boylan et al. | Aug 2003 | B2 |
6607539 | Hayashi et al. | Aug 2003 | B1 |
6607551 | Sullivan et al. | Aug 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6620152 | Guglielmi | Sep 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6626938 | Butaric et al. | Sep 2003 | B1 |
6629981 | Bui et al. | Oct 2003 | B2 |
6645237 | Klumb et al. | Nov 2003 | B2 |
6645238 | Smith | Nov 2003 | B2 |
6656212 | Ravenscroft et al. | Dec 2003 | B2 |
6660031 | Tran et al. | Dec 2003 | B2 |
6660032 | Klumb et al. | Dec 2003 | B2 |
6663660 | Dusbabek et al. | Dec 2003 | B2 |
6666881 | Richter et al. | Dec 2003 | B1 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6676666 | Vrba et al. | Jan 2004 | B2 |
6679910 | Granada | Jan 2004 | B1 |
6689120 | Gerdts | Feb 2004 | B1 |
6692521 | Pinchasik | Feb 2004 | B2 |
6699274 | Stinson | Mar 2004 | B2 |
6702843 | Brown et al. | Mar 2004 | B1 |
6709425 | Gambale et al. | Mar 2004 | B2 |
6716238 | Elliott | Apr 2004 | B2 |
6726714 | DiCaprio et al. | Apr 2004 | B2 |
6733519 | Lashinski et al. | May 2004 | B2 |
6736839 | Cummings | May 2004 | B2 |
6802858 | Gambale et al. | Oct 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6818014 | Brown et al. | Nov 2004 | B2 |
6830575 | Stenzel et al. | Dec 2004 | B2 |
6833002 | Stack et al. | Dec 2004 | B2 |
6833003 | Jones et al. | Dec 2004 | B2 |
6843802 | Villalobos et al. | Jan 2005 | B1 |
6858034 | Hijlkema et al. | Feb 2005 | B1 |
6860899 | Rivelli, Jr. | Mar 2005 | B1 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6936058 | Forde et al. | Aug 2005 | B2 |
6936065 | Khan et al. | Aug 2005 | B2 |
6989024 | Hebert et al. | Jan 2006 | B2 |
7011673 | Fischell et al. | Mar 2006 | B2 |
7172620 | Gilson | Feb 2007 | B2 |
7300460 | Levine et al. | Nov 2007 | B2 |
7393357 | Stelter et al. | Jul 2008 | B2 |
20010020173 | Klumb et al. | Sep 2001 | A1 |
20010034548 | Vrba et al. | Oct 2001 | A1 |
20010047185 | Satz | Nov 2001 | A1 |
20010049547 | Moore | Dec 2001 | A1 |
20010049550 | Martin et al. | Dec 2001 | A1 |
20020002397 | Martin et al. | Jan 2002 | A1 |
20020032431 | Kiemeneij | Mar 2002 | A1 |
20020035393 | Lashinski et al. | Mar 2002 | A1 |
20020040236 | Lau et al. | Apr 2002 | A1 |
20020045928 | Boekstegers | Apr 2002 | A1 |
20020045930 | Burg et al. | Apr 2002 | A1 |
20020049490 | Pollock et al. | Apr 2002 | A1 |
20020068966 | Holman et al. | Jun 2002 | A1 |
20020072729 | Hoste et al. | Jun 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020095147 | Shadduck | Jul 2002 | A1 |
20020095168 | Griego et al. | Jul 2002 | A1 |
20020099433 | Fischell et al. | Jul 2002 | A1 |
20020120322 | Thompson et al. | Aug 2002 | A1 |
20020120323 | Thompson et al. | Aug 2002 | A1 |
20020120324 | Holman et al. | Aug 2002 | A1 |
20020138129 | Armstrong et al. | Sep 2002 | A1 |
20020147491 | Khan et al. | Oct 2002 | A1 |
20020151967 | Mikus et al. | Oct 2002 | A1 |
20020161342 | Rivelli et al. | Oct 2002 | A1 |
20020169494 | Mertens et al. | Nov 2002 | A1 |
20020188341 | Elliott | Dec 2002 | A1 |
20020188344 | Bolea et al. | Dec 2002 | A1 |
20030014103 | Inoue | Jan 2003 | A1 |
20030018319 | Kiemeneij | Jan 2003 | A1 |
20030036768 | Hutchins et al. | Feb 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030055377 | Sirhan et al. | Mar 2003 | A1 |
20030065375 | Eskuri | Apr 2003 | A1 |
20030069521 | Reynolds et al. | Apr 2003 | A1 |
20030105508 | Johnson et al. | Jun 2003 | A1 |
20030135266 | Chew et al. | Jul 2003 | A1 |
20030149467 | Linder et al. | Aug 2003 | A1 |
20030163156 | Hebert et al. | Aug 2003 | A1 |
20030163189 | Thompson et al. | Aug 2003 | A1 |
20040010265 | Karpiel | Jan 2004 | A1 |
20040049547 | Matthews et al. | Mar 2004 | A1 |
20040093063 | Wright et al. | May 2004 | A1 |
20040097917 | Keane | May 2004 | A1 |
20040127912 | Rabkin et al. | Jul 2004 | A1 |
20040193178 | Nikolchev | Sep 2004 | A1 |
20040193179 | Nikolchev | Sep 2004 | A1 |
20040193246 | Ferrera | Sep 2004 | A1 |
20040220585 | Nikolchev | Nov 2004 | A1 |
20040260377 | Flomenblit et al. | Dec 2004 | A1 |
20050049668 | Jones et al. | Mar 2005 | A1 |
20050049669 | Jones et al. | Mar 2005 | A1 |
20050049670 | Jones et al. | Mar 2005 | A1 |
20050080430 | Wright, Jr. et al. | Apr 2005 | A1 |
20050096724 | Stenzel et al. | May 2005 | A1 |
20050209670 | George et al. | Sep 2005 | A1 |
20050209671 | Ton et al. | Sep 2005 | A1 |
20050209672 | George et al. | Sep 2005 | A1 |
20050209675 | Ton et al. | Sep 2005 | A1 |
20050220836 | Falotico et al. | Oct 2005 | A1 |
20050246010 | Alexander et al. | Nov 2005 | A1 |
20060085057 | George et al. | Apr 2006 | A1 |
20060136037 | DeBeer et al. | Jun 2006 | A1 |
20060247661 | Richards et al. | Nov 2006 | A1 |
20060270948 | Viswanathan et al. | Nov 2006 | A1 |
20060271097 | Ramzipoor et al. | Nov 2006 | A1 |
20060276886 | George et al. | Dec 2006 | A1 |
20070027522 | Chang et al. | Feb 2007 | A1 |
20070043419 | Nikolchev et al. | Feb 2007 | A1 |
20070073379 | Chang et al. | Mar 2007 | A1 |
20070100414 | Licata et al. | May 2007 | A1 |
20070100415 | Licata | May 2007 | A1 |
20070100416 | Licata | May 2007 | A1 |
20070100417 | Licata | May 2007 | A1 |
20070100418 | Licata | May 2007 | A1 |
20080015541 | Rosenbluth et al. | Jan 2008 | A1 |
20080071309 | Mazzocchi et al. | Mar 2008 | A1 |
20080221666 | Licata et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
4420142 | Dec 1995 | DE |
0667 132 | Aug 1995 | EP |
0 747 021 | Dec 1996 | EP |
1 157 673 | Nov 2001 | EP |
1518515 | Mar 2005 | EP |
2002-538938 | Nov 2002 | JP |
WO 9712563 | Apr 1997 | WO |
WO 9748343 | Dec 1997 | WO |
WO 9823241 | Jun 1998 | WO |
WO 9904728 | Feb 1999 | WO |
WO 9908740 | Feb 1999 | WO |
WO 0018330 | Apr 2000 | WO |
WO 0056248 | Sep 2000 | WO |
WO 0178627 | Oct 2001 | WO |
WO 03073963 | Sep 2003 | WO |
WO 2004087006 | Oct 2004 | WO |
WO 2005092241 | Oct 2005 | WO |
WO 2005094727 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060111771 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60458323 | Mar 2003 | US | |
60462219 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10550707 | US | |
Child | 11266587 | US | |
Parent | 10745778 | Dec 2003 | US |
Child | 10550707 | US | |
Parent | 10746452 | Dec 2003 | US |
Child | 10745778 | US | |
Parent | 10746455 | Dec 2003 | US |
Child | 10746452 | US | |
Parent | 10792684 | Mar 2004 | US |
Child | 10746455 | US |