This invention relates to a system and method related to a game play environment.
Conventional methods of tracking an object (e.g. golf ball, basketball, baseball, etc.) employ various types of sensors including Doppler radar technology, camera based technology, high speed 3D camera based technology, and stereoscopic sensors. The sensors can be configured to track the object and with the aid of a computer can recreate the movement of the object in a computerized virtual environment. In athletic application, these tracking systems have been used to provide feedback for coaching, player development, and other training/improvement applications, with focus on the movement of a virtual object relative to a virtual environment. The prior art is principally focused on providing analysis about the player's technique and the resulting effect on the flight path of the object. These systems have found a particular benefit in the area of golf instruction.
Conventional indoor golf simulators utilize sensors, as mentioned above, and represent data points in an indoor virtual space. Such simulators monitor the ball with sensors, which capture the XYZ data points and relay those data points to a computer system that creates a representation of the data points in a virtual space, such as a virtualized hole on a golf course. The prior art focuses on capturing the data points and incorporating the data points into a purely virtual environment, with no identifiable links to the physical environment where the golf ball was actually hit.
It is apparent that there is a need for a system and method of tracking a ball, or other object, and rendering the flight path of that ball in a virtual gaming environment that is coordinated with the physical environment in which the ball is struck. The present invention is focused on solving such a need and providing the techniques thereby to fulfill that need.
Described herein is a game-play environment that includes a tee box, a range surface, and a monitor. The tee box is configured to allow a player to hit a golf ball onto the range surface. The range surface has a plurality of physical markers. The monitor is positioned so that the player can see the monitor while in the tee box. The monitor depicts a virtual environment that corresponds to a desired virtual game. Depending on the particular game selected, a set of virtual components are displayed on the monitor. Some of these virtual components are visual cues that correspond to the physical markers on the range surface. The player can achieve the game's objectives by targeting the appropriate physical marker that corresponds to the desired visual cue.
a depicts a top view of a second preferred embodiment of a virtual environment.
b depicts a top view of the second preferred embodiment from
c depicts a top view of the second preferred embodiment from
In accordance with a preferred embodiment of the present invention, a game-play environment 10 includes a tee box 100 and a range surface 200. The tee box 100 includes a ball 110 and a monitor 400. The range surface 200 includes a plurality of physical markers 210, 220, 230, and 240.
Turning to
Some of these visual components correspond with physical aspects of the range surface 200 and tee box 100. For example, the visual cues 450, 460, 470, and 480 correspond with the physical markers 210, 220, 230, and 240 respectively. Importantly, the relative positions and distances between the physical markers 210, 220, 230, and 240 are the same relative positions and distances depicted between the visual cues 450, 460, 470, and 480. It will be understood that by depicting a plurality of visual cues in the virtual environment that correspond to a plurality of physical markers on the range surface 200, various desirable features of the golf game become possible. It will be further understood that other games can benefit from the correspondence of physical markers with visual cues, including without limitation baseball, football, ultimate frisbee, tennis, and others.
One such benefit is that after a player 300 strikes the golf ball 110, the place that the golf ball 110 comes to rest on the range surface 200 can be depicted within the virtual environment as being in a position and distance from each of the plurality of visual cues that corresponds to position and distance of the golf ball 110 from each of the plurality of physical markers on the range surface. For example, if the resting place of the golf ball 110 is 10 feet north of physical marker 220, 15 feet west of physical marker 230, and 40 feet south of physical marker 240, the monitor 400 will display a virtual golf ball 490 as being 10 feet north of visual cue 450, 15 feet west of visual cue 460, and 40 feet south of 470.
Another benefit of depicting a plurality of visual cues in the virtual environment that correspond to a plurality of physical markers on the range surface 200, is that the actual path that the golf ball 110 travels from the tee box 110 to the range surface 200 can be depicted within the virtual environment and displayed on the monitor 400.
Yet another benefit of depicting a plurality of visual cues in the virtual environment that correspond to a plurality of physical markers on the range surface 200 is that the player 300 can use the plurality of physical markers as targets that correspond to particular visual components depicted within the virtual environment. For example turning to
It will be understood that the virtual environment may also be adjusted so that the visual cues 450, 460, 470, and 480 that correspond to physical markers 210, 220, 230, and 240 are better aligned with the desired visual components. For example,
It will be further understood that other visual components can be displayed to assist the player 300 in aiming. For example, in
It will be understood that other visual components appropriate to a golf game, if desired, may be used in the preferred embodiment, including without limitation fairways, sand traps, virtual tee boxes, water hazards, and out of bounds markers. In addition, it may be desirable to include other visual components to be depicted within the virtual environment that do not necessarily affect the play of the virtual golf game, but rather fill the background of the virtual environment, including without limitation, rivers, lakes, houses and other structures, mountains, trees, oceans, cliffs, clouds, and other weather-related constructs.
Turning back to
It is understood that the various embodiments of the game have different objectives and goals. In the first preferred embodiment, the objective is to get the virtual golf ball 490 to the cup on the golf green 498 taking the fewest number of golf shots possible. In an alternative embodiment of the game, the player 300 is awarded points in successive rounds of the game based upon the how close the resting position of the virtual golf ball 490 is to virtual concentric rings depicted within the virtual environment. In yet another preferred embodiment, the player's goal is to acquire precisely 21 points in each round by causing the path 495 of the virtual golf ball 490 to intercept virtual playing cards, wherein each playing card has a particular value.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.
This U.S. Non Provisional Patent Application claims priority from, and is a divisional of, U.S. patent application Ser. No. 14/321,333, filed on Jul. 1, 2014 with the same title and inventors as the present application. That application claims the benefit of U.S. Provisional Patent Application No. 61/841,544, filed on Jul. 1, 2013 with the same title and inventors as the present application.
Number | Date | Country | |
---|---|---|---|
61841544 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14321333 | Jul 2014 | US |
Child | 14876457 | US |