The present invention relates to a tyre production method and system.
The present invention may be used to advantage in producing truck tyres, to which the following description refers purely by way of example.
Worn truck tyres are normally retreaded, i.e. the worn tread is removed and replaced with a new one. Retreading a truck tyre comprises removing the worn tread from the tyre to expose the tyre casing, and applying a new pre-cured tread (PCT) strip to the casing. To apply the new PCT strip to the casing, a green-rubber intermediate strip or cushion and a PCT strip are wound about the casing; and the casing is cured further in an autoclave, so the bonding action of the cushion grips the tread firmly to the casing.
Examples of tyre retreading systems are to be found in Patent U.S. Pat. No. 6,368,439 B1 and Patent Application US2005194077A1. In particular, US2005194077A1 discloses a tyre retreading process comprising the steps of: selecting which worn tires fit for retreading; removing the treads of the worn tyres; mechanically buffing the tyre surfaces to the correct size, shape and texture; cementing the casings with a rubber compound; preparing new treads to fit the casings; mechanically buffing the new treads using buffing means; attaching the buffed treads to the casings using tyre-building means; and placing the retreaded tyres in a curing chamber.
Because of the large number of used tyres with damaged casings, truck tyre retreaders are faced with a shortage of retreadable casings, and are often unable to complete retreading orders. Moreover, in some markets, demand for retreaded tyres exceeds the supply of retreadable tyres (i.e. not too worn or damaged), thus resulting in lost income, due to failure to meet demand. To solve the shortage of retreadable casings, it has been proposed to use a certain number of new casings, which are cured without the tread and “retreaded” later by applying a new PCT strip.
Because the new casings and PCT strips are cured before “retreading”, the casing and strip surfaces that were in contact with the curing mold walls during the curing process are left with a film of release agent (normally a silicone solution) that is sprayed onto the inside of the curing mold to facilitate the demolding (i.e. removing the cured piece easily from the mold). The release agent obviously serves to prevent, or at least partly prevent, the rubber from sticking to the curing mold walls during the curing process, and must therefore be removed from the new casing and/or PCT strip surfaces which eventually adhere to the cushion during the “retreading” process. In other words, prior to “retreading”, the lateral surface of the new casing and/or the inner surface of the PCT strip must be cleaned to remove the release agent film.
This is currently done by mechanical buffing, normally using wire brushes, which serves both to eliminate the release agent and to improve grip by roughening the surface and so increasing its specific surface area.
Mechanical wire brush buffing, however, has various drawbacks. First and foremost, it mechanically removes small particles of rubber that form rubber dust, which must be removed using special extractors to avoid contaminating the workplace and fouling both the tyre and machinery.
Moreover, by its very nature, mechanical buffing does not permit accurate, constant adjustment of the amount of rubber removed, or even very uniform rubber removal, with the result that, very often, either some of the release agent is left on, or holes are created. For the same reason, mechanical buffing fails to provide for an even casing or PCT strip, thus resulting in humps or dips in the retreaded tyre, which result in annoying vertical vibrations as the tyre rolls along. The unevenness of mechanical brush buffing is particularly apparent when the lateral surface of the new casing and/or the inner surface of the PCT strip, as opposed to being flat, have longitudinal grooves, which are formed by appropriately shaping the curing mold, and serve to improve grip of the new casing or PCT strip to the cushion, and so enhance performance of the retreaded tyre (this is achieved both by increasing the specific contact area, and by producing “mutual penetration” of the casing and PCT strip, with the cushion in between, to form a mechanical joint.
When mechanical wire brush buffing, pieces of wire may work loose from the brushes and become embedded in the lateral surface of the casing or the inner surface of the PCT strip, thus locally impairing grip of the PCT strip to the casing, and reducing performance of the retreaded tyre.
Mechanical wire brush buffing produces a rough surface with an uneven, purely random score pattern, as opposed to a predetermined desired pattern.
Finally, the wire brushes are subject to severe wear and must be changed frequently, thus resulting in frequent maintenance holdups of the retreading system.
GB2435231A discloses a removing device for removing rubber material from vehicle tyres in a tyre recycling process: removing rubber from used tyres allows them to be stored far more efficiently at garages and tyre bays because once the rubber (which can be sold for reuse) has been removed, the remaining tyre casing can simply be removed from the wheel and crushed. Most garages or tyre bays currently stack used tyres one on top of another, however the majority of the volume occupied by these stacks of tyres is empty space; by removing the rubber, and crushing the casings, garages can store far more used tyres in a much smaller space. The removing device of GB2435231A includes a supporting device for supporting a used tyre, and cutting means of any type (even a suitable laser device) which cut the rubber from the tyre.
It is an object of the present invention to provide a tyre production method and system designed to eliminate the above drawbacks, and which in particular are cheap and easy to implement.
According to the present invention, there are provided a tyre production method and system, as claimed in the accompanying Claims.
A non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which:
Number 1 in
At preparation station 3, the worn tread (not shown) is removed mechanically from tyre 2, by cutters or similar, to expose the old casing 6a (shown in
It is important to note that the new casing 6b is cured prior to “retreading”, so the surfaces of the new casing that were in contact with the walls of curing mold 8 during the curing process are left with a film of release agent 9 (normally a silicone solution and shown schematically in
At preparation station 3, the lateral surface 10 of old casing 6a is buffed to remove all traces of the old tread (without damaging the belts underneath) and increase the specific surface area and hence grip; and the lateral surface 10 of new casing 6b is also buffed to substantially remove release agent 9 and any other extraneous substances (dust, dirt and similar) from lateral surface 10, and also to improve grip by roughening lateral surface 10 and so increasing its specific surface area.
To buff lateral surface 10 of old casing 6a or new casing 6b, preparation station 3 comprises a buffing device 11 described in detail below.
At preparation station 3, the buffed lateral surface 10 of old casing 6a is then skived by hand to remove any preexisting local damage, and, finally, is filled by hand to fill any holes in lateral surface 10 of old casing 6a with green rubber. Lateral surface 10 of new casing 6b obviously has no local damage, so does not need skiving or filling with green rubber.
The chosen casing 6 (i.e. old casing 6a or new casing 6b) is then transferred from preparation station 3 to winding station 4 where a green-rubber intermediate strip or cushion 12 and a pre-cured tread (PCT) strip 13 are wound about casing 6.
As shown in
PCT strip 13 is cured in a curing mold (not shown) prior to “retreading”, so the surfaces of the strip that were in contact with the curing mold walls during the curing process are left with a film of release agent 9 (normally a silicone solution and shown in
Winding station 4 also comprises a buffing device 20, which is located upstream from feed conveyor 16, downstream from feed conveyor 16 (as shown in
In a different embodiment not shown but no less important, as opposed to forming part of winding station 4, buffing device 20 for buffing inner surface 19 of PCT strip 13 is located at a work station where PCT strip 13 is formed (and which may even be completely separate and independent of production system 1); in which case, inner surface 19 of PCT strip 13 is buffed simultaneously with the manufacture of PCT strip 13, and may therefore be buffed days or weeks before winding PCT strip 13 about casing 6.
In actual use, at winding station 4, casing 6 of tyre 2 is mounted on drum 15, which is then rotated to wind green-rubber cushion 12 and PCT strip 13 about casing 6.
In a preferred embodiment, building machine 14 is operated to wind green-rubber cushion 12 manually about casing 6, independently of PCT strip 13, and then to wind PCT strip 13 separately about casing 6 and on top of the previously wound green-rubber cushion 12. In which case, buffing device 20 buffs inner surface 19 of PCT strip 13 before PCT strip 13 is wound about casing 6 and on top of the previously wound green-rubber cushion 12.
In an alternative, lesser used embodiment, green-rubber cushion 12 is superimposed on PCT strip 13 by means of two known mutually cooperating pressure rollers (not shown) off building machine 14, and green-rubber cushion 12 and PCT strip 13 are then wound together about casing 6 using building machine 14. In which case, buffing device 20 buffs inner surface 19 of PCT strip 13 before green-rubber cushion 12 is coupled to PCT strip 13.
Winding green-rubber cushion 12 and PCT strip 13 about casing 6 forms a retreaded tyre 2, which must be cured for use. So, after winding on green-rubber cushion 12 and PCT strip 13, the retreaded tyre 2 is transferred to curing station 5 (shown schematically in
In a preferred embodiment shown in
In a preferred embodiment shown in
As shown in
Each buffing device 11, 20 also comprises an electronically controlled deflecting device 24 connected to emitter 23 to change the emission direction of laser beam B, and which typically only changes the emission direction of laser beam B in a deflection direction D1 (
To sublimate a given mass of rubber (i.e. convert it directly from a solid to a gaseous state), it must be subjected to a given constant amount of energy depending on the latent sublimation heat of the rubber. The amount of energy supplied to a given point on lateral surface 10 of casing 6 or inner surface 19 of PCT strip 13 can be regulated by simply adjusting (increasing or reducing) the length of time the point is exposed to laser beam B and/or by adjusting the power of laser beam B. Therefore, by adjusting the exposure time to laser beam B from one point to another and/or adjusting the power of laser beam B, the amount of rubber sublimated (i.e. the etching depth of laser beam B) can be adjusted accurately from one point to another.
In actual use, casing 6 is rotated or PCT strip 13 fed past respective emitter 23 to allow laser beam B from emitter 23 to sublimate the rubber surface layer (together with release agent 9 and any other extraneous substances) on lateral surface 10 of casing 6 and inner surface 19 of PCT strip 13. This process of removal by sublimating the rubber surface layer provides for both even removal, to obtain a smooth finish surface, as well as differential removal, to obtain an uneven finish surface with a predetermined pattern, which may be either two-dimensional (i.e. with grooves of constant depth) or three-dimensional (i.e. with grooves of varying depth).
When grooves 21 in lateral surface 10 of casing 6 and/or grooves 22 in inner surface 19 of PCT strip 13 are preformed (i.e. when curing casing 6 and/or PCT strip 13, by appropriately shaping the curing mold), laser beam B merely serves to clean lateral surface 10 of casing 6 and inner surface 19 of PCT strip 13. In which case, emitter 23 of buffing device 11 and/or buffing device 20 may be equipped with a low-power, e.g. excimer, laser with a low rubber sublimation rate, to simply remove a thin film of rubber (of a few microns or few tens of microns).
As shown in the
However, even supplying different amounts of energy to the slopes, ridges and bottom of grooves 21 and 22, removal of release agent 9 is never perfect, particularly on account of the very small horizontal extension and uncertain location, due to manufacturing tolerances, of the slopes of grooves 21 and 22 (casing 6 and PCT strip 13 are made of rubber, which does not allow very precise location of grooves 21 and 22). To eliminate this drawback, it has been proposed to form grooves 21 and/or 22, not when curing casing 6 and PCT strip 13, but by means of laser beams B during the buffing process. In other words, after curing, lateral surface 10 of casing 6 and/or inner surface 19 of PCT strip 13 are smooth, and grooves 21 and/or 22 are “etched” afterwards by laser beams B during the buffing process. Alternatively, a halfway solution may be adopted, in which grooves 21 and/or 22 are formed partly during curing, and completed later during the buffing process, by “etching” by laser beams B. In this way, it is possible to ensure release agent 9 is fully removed evenly from lateral surface 10 of casing 6 and/or inner surface 19 of PCT strip 13.
It is important to note that the pattern etched on lateral surface 10 of casing 6 and/or inner surface 19 of PCT strip 13 can be altered rapidly, if necessary from one casing 6 to another and/or from one PCT strip 13 to another, by simply software altering electronic control of deflecting devices 24.
Obviously, as opposed to a low-power, e.g. excimer, laser with a low rubber sublimation rate, “etching” grooves 21 and/or 22 calls for a high-power CO2 laser with a high rubber sublimation rate, on account of the thick layer of rubber (about one or more millimetres) to be removed from lateral surface 10 of casing 6 and/or inner surface 20 of PCT strip 13.
Using a rubber-removing laser beam B, the rubber (and obviously release agent 9 and any other extraneous substances), as opposed to being removed mechanically, is sublimated (i.e. passes directly from the solid to the gaseous state), so buffing devices 11, 20 described produce no rubber dust, but only vapour and fumes, which obviously tend to rise and can be aspirated completely and easily by extractors (unlike rubber dust which tends to be expelled in all directions, settles by force of gravity, and is much more difficult to extract). What is more, the vapour and fumes produced by buffing devices 11, 20 in no way foul casing 6 of tyre 2, PCT strip 13, or the machinery.
Not being subject to wear or material castoff during use, buffing devices 11, 20 in no way contaminate casing 6 of tyre 2 or PCT strip 13, and need no maintenance (unless at extremely long intervals that have no real negative impact on the output of production system 1).
Tests show that buffing devices 11, 20 described provide for reducing buffing time and so increasing the output of production system 1.
In the embodiment described above, both buffing devices 11, 20 employ a rubber-removing laser beam B. In other variations not shown, only one of buffing devices 11, 20 employs a rubber-removing laser beam B, and the other is a traditional wire brush type.
Number | Date | Country | Kind |
---|---|---|---|
TO2009A000199 | Mar 2009 | IT | national |
09155776.9 | Mar 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/053651 | 3/19/2010 | WO | 00 | 1/5/2012 |