This invention relates to a novel architecture for a CMOS-based image sensor, and in particular to an architecture suitable for use at ultra-low voltages (eg below 1V).
CMOS-based image sensors have a wide range of potential applications since they may be integrated into a number of electronic products such as personal computers, cellular telephones, personal digital assistants and many others. CMOS active pixel sensors (APS) exploit the mature CMOS industry and can compete with charge coupled devices for low power, high levels of integration and functionality.
In recent years much effort has been made into reducing the required voltage supply to facilitate the incorporation of APS devices in portable applications such as mobile phones, and personal digital assistants which all need to minimize power consumption in order to maximize battery life. However, if the voltage supply goes below 1V, this has an enormous impact on the signal-to-noise ratio and the dynamic range of the pixels, not only because of the lower allowable signal voltages, but also because of the presence of larger noise voltages due to lower currents. In order to maximize the signal-to-noise ratio and dynamic range of the pixel, the signals have to be as large as possible, preferably from rail-to-rail, and so the pixel has to be equipped with a rail-to-rail input as well as a rail-to-rail output stage.
a) shows the structure of a conventional APS design. In this structure the highest available output voltage Vout is limited by the VT drop of the NMOS reset transistor M1 and the source follower M2, and therefore the maximum available output swing is only VDD−2VT−VDsat and this significantly limits the dynamic range of the CMOS APS of
According to a first aspect of the present invention there is provided a pixel element for an image sensor comprising, a photodiode and a reset transistor connected to an input node, wherein said reset transistor is a PMOSFET connected between said input node and the supply voltage. The topology can also be reversed such that the photodiode is connected between the input node and the supply voltage while the reset transistor is a NMOSFET connected to ground.
According to a second aspect of the present invention there is provided a pixel element for an image sensor comprising, a photodiode and a reset transistor connected to an input node, wherein said reset transistor is a NMOSFET connected between said input node and ground, and wherein said pixel further comprises parallel complementary signal paths.
Preferably the pixel element may comprise parallel complementary signal paths. In a preferred embodiment one said path includes an NMOS source follower, and the other said path includes a PMOS source follower, and the NMOS and PMOS source followers have a common gate connected to the input node. The outputs of the paths are combined to form a pixel output.
According to another aspect, the present invention provides a pixel element for an image sensor comprising, a photodiode and a reset transistor connected to an input node, and wherein the pixel element comprises parallel complementary signal paths, one path including an NMOS source follower and the other signal path including a PMOS source follower, with both the source followers having a common gate connected to the input node.
According to a still further aspect the present invention provides an optical sensor comprising at least one pixel wherein the pixel generates an output voltage that falls at a rate dependent on the light intensity incident on the pixel, and wherein means are provided for measuring the time for the pixel output voltage to drop from a first predefined level to a second predefined level so as to produce an output indicative of the incident light intensity.
According to still further aspect the present invention also provides a method of generating an output from a pixel of an optical sensor wherein the pixel generates an output voltage that falls at a rate dependent on the light intensity incident on the pixel, the method comprising measuring the time for the pixel output voltage to drop from a first predefined level to a second predefined level.
Some embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:
a) and (b) illustrate (a) a conventional APS architecture and (b) the available output voltage swing,
a), (b) and (c) show (a) the architecture of a sensor according to an embodiment of the invention, (b) the available output voltage swing and (c) the same structure with the reset transistor changed to NMOSFET and the photodiode connected to the power supply,
a) and (b) show outputs from an embodiment of the invention and, in
a), (b), (c) and (d) show cross-sectional views of four possible structures of the embodiments of the invention, (a) on bulk silicon with light coming from the top, (b) on SOI with light coming from the top, (c) on SOI with light coming from the bottom, and (d) on bulk silicon with light coming from the bottom after thinning the silicon substrate
Referring firstly to
As mentioned above, a PMOS reset transistor is used to eliminate the threshold voltage drop between VDD and the node N1. In addition, two complementary source followers M2 and M5 are used to amplify the signal on node N1 and the two complementary paths are combined to give the pixel output.
The input and output swing of the NMOS source follower M2 is given by:
Vdsat+VTN<VNinput<VDD
Vdsat<VNoutput<VDD−VTN
Where VNinput and VNoutput are the input and output swings of the node N1 respectively. VTN is the threshold voltage of the N-type source follower M2 and Vdsat is the voltage across the current source.
The input swing of the PMOS source follower M5 is given by:
0<VPinput<VDD−Vdsat−VTP
VTP<VPoutput<VDD−Vdsat
In order to ensure a full rail-to-rail input, the supply voltage VDD has to be at least VTN+VTP+2Vdsat. At the same time, the available output swing is close to rail-to-rail:
Vdsat<Voutput<VDD−Vdsat
This maximum available output swing is shown schematically in
c) shows the complementary structure derived from the pixel architecture given in
It will also be understood that in the embodiment of
An active pixel sensor according to an embodiment of this invention could be implemented through bulk silicon technology, but could also be implemented using silicon-on-insulator (SOI) technology.
In
The voltage output of the active pixel sensor element will have a slope which depends on the illumination intensity with the slope increasing with increasing intensity. The slope, and thus the intensity, may be extracted from the output using known double sampling (DS) or correlated double sampling (CDS) techniques.
Number | Name | Date | Kind |
---|---|---|---|
6130713 | Merrill | Oct 2000 | A |
6215113 | Chen et al. | Apr 2001 | B1 |
6380572 | Pain et al. | Apr 2002 | B1 |
6429413 | Kawahara et al. | Aug 2002 | B1 |
6583440 | Yasukawa | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040031905 A1 | Feb 2004 | US |