In general, the present invention relates to syringes that are used to make injections through a needle or cannula. More particularly, the present invention relates to safety syringes that are designed to shield the needle after use and to minimize the amount of injection material retained within the syringe after the syringe is used.
Healthcare professionals perform millions of injections each year. The injections are typically performed using a hypodermic needle and a syringe. The length of the hypodermic needle and the gauge of the needle depend upon the application and whether the injection is intramuscular, subcutaneous, intravenous, or intradermal. The compounds being injected also vary widely. Some injection materials, such as saline, are very inexpensive. However, many pharmaceutical compounds, such as certain gene therapy compounds, can cost tens of thousands of dollars per injection. As such, a fraction of a milliliter of the pharmaceutical can be worth hundreds of dollars.
When a traditional hypodermic needle and syringe are used to perform an injection, there is inevitably some volume of injection material that remains within the needle and syringe after the injection is complete. The pharmaceutical material remaining is thrown away with the needle and syringe after the injection. This wasted pharmaceutical material adds up to billions of dollars in wasted pharmaceuticals, when all injections are considered.
In the prior art, thought is rarely given to the volume of residual material that inherently remains within a hypodermic syringe and needle. Some needle and syringe assemblies have been designed where a syringe plunger and a needle head make flush contact. Such prior art designs are exemplified by U.S. Pat. No. 6,616,636 to Lee and U.S. Pat. No. 5,902,270 to Jentzen. However, in a real healthcare environment, such as a hospital, different syringes are used with many different needle heads, depending upon the specific medical application. Some needle head and syringe combinations are efficient in the discharge of pharmaceutical compounds and some are not.
The problem becomes more complicated when a needle head and syringe are part of a safety syringe assembly. Safety syringe assemblies are designed to both perform an injection and to provide some mechanism for minimizing the likelihood of a needle stick injury. Needle stick injuries are commonplace among healthcare workers. Needle stick injuries are defined by the United States National Institute of Occupational Safety and Health as injuries caused by needles such as hypodermic needles, blood collection needles, intravenous (IV) stylets, and needles used to connect parts of IV delivery systems. Needle stick injuries can transfer blood-borne pathogens such as Hepatitis B virus, Hepatitis C virus, Human Immunodeficiency Virus (HIV) and Covid-19. For healthcare workers, needle stick injuries are responsible for a significant proportion of these diseases in the healthcare workforce.
It has been estimated by the Centers for Disease Control, that in the United States of America, that more than three million healthcare workers are exposed to blood and bodily fluids via needle mishaps each year. Most healthcare workers are trained in procedures for using and disposing of used needles. For example, needles should not be recapped, in order to prevent the potential for needle stick injuries. However, many studies have revealed that recapping is still prevalent among healthcare workers.
In an attempt to reduce the number of needle stick injuries, various safety needles have been developed that act to automatically cover a needle the instant the needle is retracted from the skin. This is typically accomplished by advancing a tubular sheath along the shaft of the needle until the sheath covers the tip of the needle. Such prior art is exemplified by U.S. Pat. No. 6,626,863, U.S. Patent Application Publication No. 2007/0016140, U.S. Patent Application Publication No. 2007/0016145, and U.S. Patent Application Publication No. 2008/009808. However, integrating a safety mechanism within a needle head typically takes additional room within the needle head. More room in the needle head means that there is more dead space in the needle head where residual pharmaceutical compounds can collect. As a consequence, there are often opposing concerns that must be balanced in a design. The safety features of a design are balanced with the wasted pharmaceutical retained because of the safety features.
A need therefore exists for an improved hypodermic needle and syringe assembly where the needle is automatically shielded after an injection and wherein the assembly does not retain any significant volume of the material being injected. This need is met by the present invention as described and claimed below.
The present invention is a needle and syringe system, wherein a needle head is attached to a syringe assembly. The syringe assembly includes a syringe barrel. A plunger rod is provided with a plunger head that can reciprocally move within the syringe barrel.
A needle base is affixed to the syringe barrel. The needle base has a first end and a second end at opposite points along a central axis. A tubular cavity is formed in the needle base and a post extends through the tubular cavity. The tubular cavity is accessible from the first end of the needle base.
A needle extends into the needle base along the central axis. The needle extends through the post and is open at the first end of the needle base to receive the contents of the syringe barrel. A spacer is provided. The spacer is displaced into the tubular cavity within the needle base as the plunger head is advanced within the syringe barrel.
A protective cover is disposed about the needle base. The spacer moves the protective cover between a first position and a second position as the spacer is displaced into the tubular cavity. As the protective cover moves between positions, the protective cover surrounds the needle and prevents the needle from causing any inadvertent needle stick injuries.
For a better understanding of the present invention, reference is made to the following description of an exemplary embodiment thereof, considered in conjunction with the accompanying drawings, in which:
The present invention needle and syringe system can be configured in many ways and can be adapted for use in many applications. However, only one exemplary embodiment is selected for the purposes of description and illustration. The illustrated embodiment, however, is merely exemplary and should not be considered a limitation when interpreting the scope of the appended claims.
Referring to
The syringe subassembly 14 includes a syringe barrel 16 and a plunger rod 18 that extends into the syringe barrel 16. The plunger rod 18 can be manually advanced through the syringe barrel 16 toward the head subassembly 12. The plunger rod 18 terminates with an elastomeric piston head 20. The elastomeric piston head 20 seals against the interior of the syringe barrel 16 as the plunger rod 18 moves within the syringe barrel 16. The piston head 20 has a flat front surface 22 that faces the piston head 20 in the syringe barrel 16.
The head subassembly 12 holds a needle 24. The needle 24 is supported in the head subassembly 12 by a plastic needle base 26. The needle base 26 has a complex shape. The needle base 26 is symmetrically formed around a central axis 28, wherein the needle 24 is aligned with the central axis 28. Along the central axis 28, the needle base 26 has a first end 30 and an opposite second end 32. The first end 30 of the needle base 26 extends into the syringe barrel 16 and faces the piston head 20.
A flange 34 is formed near the first end 30 on the exterior of the needle base 26. The flange 34 is either mechanically connected, or adhered to, the syringe barrel 16. This joins the needle base 26 to the syringe barrel 16. Two locking depressions 36, 38 are formed on the exterior of the needle base 26. The first locking depression 36 is positioned near the first end 30 of the needle base 26 and the second locking depression 38 is positioned near the second end 32 of the needle base 26.
A tubular cavity 40 is formed in the first end 30 of the needle base 26. The tubular cavity 40 is accessible through two side slots 42 that are formed in opposite sides of the needle base 26. The slots 42 extend from the flange 34 to the distal end of the tubular cavity 40. The tubular cavity 40 is also accessible from within the syringe barrel 16. The tubular cavity 40 creates a central post 44 within the needle base 26, wherein the central post 44 is concentric with the central axis 28. The needle 24 extends through the central post 44, therein enabling the needle 24 to access the contents of the syringe barrel 16. The central post 44 has a length, which is longer than the length of the tubular cavity 40. As a result, the central post 44 partially extends into the syringe barrel 16.
An annular spacer 46 and an activation ring 48 are provided. In the shown embodiment, the annular spacer 46 and the activation ring 48 are shown as separate components. This is an optional configuration. The annular spacer 46 and the activation ring 48 can be molded as a single piece. In the shown two-piece construction, the annular spacer 46 is tubular in shape, with inner and outer diameters that enables the annular spacer 46 to fit within the tubular cavity 40 of the needle base 26. The activation ring 48 has an annular body 49 and two radial supports 50 that extend outwardly from the annular body 49. The annular body 49 has the same inner diameter and outer diameter as the annular spacer 46. The radial supports 50 are wide enough to extend into the side slots 42 of the needle base 26. The combined length of the annular spacer 46 and the activation ring 48 are exactly the same as the length of the central post 44. The annular spacer 46 and the activation ring 48 are free to slide along the length of the central post 44, as limited by the movement of the radial supports 50 in the side slots 42.
The head subassembly 12 includes a protective cover 52 that is in place over the needle base 26. The protective cover 52 has a safety sheath 54 that surrounds part of the needle 24. The protective cover 52 can reciprocally move along the exterior of the needle base 26. However, the protective cover 52 contains an inwardly extending locking protrusion 56 that can engage the locking depressions 36, 38 on the exterior of the needle base 26. When the locking protrusion 56 moves into one of the locking depressions 36, 38, the protective cover 52 becomes biased into a set position.
Prior to use, the head subassembly 12 has the configuration shown in
As the plunger rod 18 is advanced, the plunger rod 17 contacts and moves the annular spacer 46. The annular spacer 46 moves the activation ring 48. The radial supports 50 on the activation ring 48 extend into the side slots 42 in the protective cover 52. As the activation ring 48 is pressed forward by the advancing annular spacer 46, the radial supports 50 move the protective cover 52 forward on the needle base 26. As the protective cover 52 moves forward, the safety sheath 54 also moves forward, wherein the safety sheath 54 covers the tip of the needle 24. The activation ring 48 and the radial supports 50 move along the needle 24 during the injection. As a result, the safety sheath 54 also moves forward during the injection. By the time the injection is complete, the safety sheath 54 is fully advanced and the needle 24 becomes fully shielded. As a consequence, there is no opportunity after the injection for a healthcare provider to contact the tip the needle 24.
A colored indictor may be provided on the exterior of the needle base 26 to provide a color-coded indication that the needle and syringe system 10 has moved from its full first position to its discharged second position.
It will be understood that the embodiment of the present invention that is illustrated and described is merely exemplary and that a person skilled in the art can make many variations to that embodiment. All such embodiments are intended to be included within the scope of the present invention as defined by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/867,815 filed Jun. 27, 2019.
Number | Name | Date | Kind |
---|---|---|---|
4559043 | Whitehouse et al. | Dec 1985 | A |
4986813 | Blake, III et al. | Jan 1991 | A |
5104384 | Parry | Apr 1992 | A |
5205826 | Chen | Apr 1993 | A |
5306258 | de la Fuente | Apr 1994 | A |
5314503 | Bobrove et al. | May 1994 | A |
5370628 | Allison et al. | Dec 1994 | A |
5385555 | Hausser | Jan 1995 | A |
5460611 | Alexander | Oct 1995 | A |
5733264 | Flowers | Mar 1998 | A |
5891092 | Castellano | Apr 1999 | A |
5902270 | Jentzen | May 1999 | A |
6616636 | Lee | Sep 2003 | B2 |
6626863 | Berler | Sep 2003 | B1 |
20070016140 | Berler | Jan 2007 | A1 |
20070016145 | Berler | Jan 2007 | A1 |
20080009808 | Berler | Jan 2008 | A1 |
20080097337 | Judd et al. | Apr 2008 | A1 |
20080319346 | Crawford et al. | Dec 2008 | A1 |
20160279333 | Russo et al. | Sep 2016 | A1 |
20160279344 | Shluzas et al. | Sep 2016 | A1 |
20160367764 | Doyle | Dec 2016 | A1 |
20170319791 | Giambattista et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2236049 | Jul 2006 | CA |
1 645 302 | Feb 2007 | EP |
WO 9112841 | Sep 1991 | WO |
WO 2004035120 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20200405975 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62867815 | Jun 2019 | US |