This invention relates to the field of integrated circuits. More particularly, this invention relates to bipolar transistors in integrated circuits.
It may be desirable to reduce the emitter-base junction depth in a polysilicon emitter bipolar transistor in an integrated circuit. Reducing dopant diffusion from the polysilicon emitter may undesirably lead to encroachment of the emitter-base junction depletion region on the polysilicon in the emitter.
The following presents a simplified summary in order to provide a basic understanding of one or more aspects of the invention. This summary is not an extensive overview of the invention, and is neither intended to identify key or critical elements of the invention, nor to delineate the scope thereof. Rather, the primary purpose of the summary is to present some concepts of the invention in a simplified form as a prelude to a more detailed description that is presented later.
The instant invention provides an integrated circuit containing a bipolar transistor with an emitter diffused region doped higher than 1·1020 atoms/cm3, and an emitter-base junction less than 40 nanometers deep in a base layer, and a process of forming the bipolar transistor.
The present invention is described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One skilled in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
The instant invention provides an integrated circuit containing a bipolar transistor with an emitter diffused region doped higher than 1·1020 atoms/cm3, and an emitter-base junction less than 40 nanometers deep in a base layer, and a process of forming the bipolar transistor.
In one embodiment, the integrated circuit 1000 is exposed to a hydrogen containing ambient 1010 at 750 to 950° C. for 30 to 120 seconds to remove impurities from the top surface of the base layer 1004 in the emitter opening 1008. The hydrogen containing ambient 1010 may have a total pressure between 10 torr and atmospheric pressure. Other methods of removing impurities from the top surface of the base layer 1004 in the emitter opening 1008 are within the scope of the instant invention. In one embodiment, the integrated circuit is not exposed to an atmospheric ambient between the process of removing impurities described in reference to
Referring to
In one embodiment, the emitter dopant atom layer 1012 may be formed using an atomic layer deposition (ALD) process. In an ALD process, the integrated circuit 1000 is heated to between 300 and 600° C. An existing top surface of the integrated circuit 1000 is exposed to an ambient containing gaseous precursors of the dopant atoms in the emitter dopant atom layer 1012. For example, in embodiments in which the emitter dopant atom layer 1012 includes boron, the ALD ambient may include diborane (B2H6). In another example, in embodiments in which the emitter dopant atom layer 1012 includes phosphorus, the ALD ambient may include phosphine (PH3). In a further example, in embodiments in which the emitter dopant atom layer 1012 includes arsenic, the ALD ambient may include arsine (AsH3). The precursor containing ALD ambient may have a total pressure between 10 and 150 torr.
It is within the scope of the instant invention to form the emitter dopant atom layer 1012 using another process than ALD. For example, the emitter dopant atom layer 1012 may be formed by a physical vapor deposition (PVD) process.
Referring to
Referring to
Forming the emitter diffused region 1016 to have a doping density above 1·1021 atoms/cm3 may advantageously reduce a capacitance density of an emitter-base junction 1018, compared to emitter diffused regions with lower doping densities. Forming the emitter diffused region 1016 to have a doping density above 1·1021 atoms/cm3 may also advantageously reduce a depletion region near the emitter layer 1014 at corners 1020 of the emitter opening 1008 as compared to emitter diffused regions with lower doping densities. Forming the emitter diffused region 1016 to have a depth in the base layer 1004 less than 20 nanometers may advantageously reduce a series resistance of the bipolar transistor, compared to emitter diffused regions with greater depths.
In one embodiment, the anneal step may be performed using a flash anneal process. A flash anneal process heats the entire top surface of the integrated circuit 1000 simultaneously, to a temperature between 1050 and 1350° C. for a time period between 1 millisecond and 100 milliseconds. A temperature profile of a flash anneal process is depicted in
In another embodiment, the anneal step may be performed using a laser anneal process. A laser anneal process sequentially heats portions of the top surface of the integrated surface 1000 to a temperature greater than 1250° C. for a period of time less than 500 microseconds. In a further embodiment, the bipolar transistor may be annealed using repeated thermal pulses from a laser anneal tool. A thermal profile of repeated thermal pulses from a laser anneal tool is depicted in
In a further embodiment, the anneal step may be performed in a flash anneal tool which is programmed to heat the integrated circuit to a temperature between 850 and 1050° C. for a time period between 1 and 5 seconds, subsequently heat the wafer to a temperature between 1050 and 1350° C. for a time period between 1 millisecond and 100 milliseconds, and then heat the integrated circuit to a temperature between 850 and 1050° C. for a time period between 1 and 5 seconds. Such a thermal profile is depicted in
Number | Date | Country | |
---|---|---|---|
61157969 | Mar 2009 | US |