The present invention relates to an ultrasonic cleaning apparatus and, more particularly, to an ultrasonic cleaning apparatus suitable for an object to be cleaned, such as a semiconductor substrate or a glass substrate for an LCD (liquid crystal display) or a photomask, which may have a scratch or damage at the time of cleaning as a quality defect detrimental to it.
As a cleaning method for removing contamination such as small particles attached to a semiconductor substrate or a glass substrate for an LCD or a photomask, brush-scrub cleaning comprising scrubbing an object to be cleaned with a rotating brush, high-pressure-jet cleaning comprising applying a cleaning liquid at a high pressure to an object to be cleaned and ultrasonic cleaning comprising applying to an object to be cleaned a cleaning liquid to which ultrasonic waves are applied are known. Among these cleaning methods, ultrasonic cleaning free from a dust generation problem as that with a rotating brush and superior in cleaning power than high-pressure-jet cleaning is most suitable and being widely used.
Two functions are known as contamination removal functions of ultrasonic cleaning. One of them is a physical cleaning function using cavitation impulse waves to separate and remove a contamination such as particles (solid material) attached to the surface of an object to be cleaned. The other is a chemical cleaning function using radicals generated by ultrasonic waves to decompose and remove a contamination. Effectively performing these two function is a point in improving the effect of ultrasonic cleaning. As the effects of these physical cleaning and chemical cleaning, higher effects can be obtained if the power of applied ultrasonic waves is higher. In actuality, however, conventional ultrasonic cleaning apparatuses are incapable of irradiating an object to be cleaned with ultrasonic wave energy higher than that radiated per unit surface area from an ultrasonic vibrator and do not have satisfactorily high cleaning.
The applicant of the present invention has developed, as a technique using ultrasonic waves, an ultrasonic wave irradiation apparatus capable of locally obtaining high ultrasonic wave energy. It is possible to pulverize calculi such as renal calculus, urinary calculus and biliary calculus more effectively by using this ultrasonic wave irradiation apparatus (Japanese Patent Laid-Open No. 2004-33476).
Application of the ultrasonic wave irradiation apparatus disclosed in Japanese Patent Laid-Open No. 2004-33476 to the above-described cleaning of a semiconductor substrate or a glass substrate, however, requires a further improvement in the apparatus arrangement.
That is, in the case of cleaning of a semiconductor substrate or a glass substrate, it is extremely important to avoid scratching or damaging the surface of the semiconductor substrate or glass substrate by ultrasonic wave energy at the time of cleaning as well as to achieve a high cleaning effect. In particular, in a case where a fine pattern is formed in a semiconductor substrate surface or a glass substrate surface, it is necessary to perform ultrasonic cleaning so as not to break the fine pattern.
The present invention has been achieved under these circumstances, and an object of the present invention is to provide an ultrasonic cleaning apparatus capable of effectively removing particles, an organic contamination or the like attached to the surface of an object to be cleaned without scratching or damaging the surface of the object to be cleaned.
To achieve the above-described object, according to a first aspect of the present invention, there is provided an ultrasonic cleaning apparatus which performs ultrasonic cleaning of a contamination attached to the surface of an object to be cleaned, by using a cleaning liquid to which ultrasonic waves are applied, the apparatus having a cleaning bath pooling the cleaning liquid, a support base on which the object to be cleaned is supported in the cleaning liquid, an ultrasonic wave generation device of alternately focusing first ultrasonic wave having a frequency of 1 to 10 MHz and a second ultrasonic wave having a frequency equal to or lower than ½ of that of the first ultrasonic wave toward the object to be cleaned, a focus position adjustment device of adjusting a distance between a focus position for the focusing and the surface of the object to be cleaned, and a moving device of moving at least any one of the ultrasonic wave generation device and the support base so that the effect on the surface of the object to be cleaned of the ultrasonic waves generated by the ultrasonic wave generation device is uniform.
The first aspect relates to a dip type apparatus for performing ultrasonic cleaning on the object to be cleaned in a state of being immersed in the cleaning liquid. According to the first aspect, an ultrasonic vibrator is arranged in the ultrasonic cleaning apparatus so that ultrasonic waves generated from the ultrasonic wave generation device are focused on a dot or a local portion in line form on or in the vicinity or the surface of the object to be cleaned, or an ultrasonic vibrator having a concave surface is provided as an ultrasonic wave generation source in the ultrasonic cleaning apparatus. The object to be cleaned is supported on the support base in the cleaning bath. Ultrapure water for example is used as the cleaning liquid. However, the cleaning liquid is not specifically limited to ultrapure water. A suitable liquid may be selected according to the kind of a contamination on the object to be cleaned. In this state first ultrasonic waves having a frequency of 1 to 10 MHz are emitted from the ultrasonic wave generation device to locally generate a cluster of a multiplicity of bubbles by cavitation at the focus position to which the ultrasonic waves are focused. Subsequently, second ultrasonic waves having a frequency equal to or lower than that of the first ultrasonic waves are emitted from the ultrasonic wave generation device to cause the bubbles generated by the first ultrasonic waves to resonate and collapse. The position to which the first ultrasonic waves are focused and the position to which the second ultrasonic waves are focused are the same. Collapse of bubbles refers not to a process in which bubbles become fragmented or disappear but to a phenomenon in which when bubbles implode by a change in ambient pressure, high energy is concentrated in the vicinity of the center of the cluster of bubbles to generate an extremely large pressure impulse wave.
The first and second ultrasonic waves are thus focused to the focus position to locally concentrate high energy at the time of bubble collapse. It is, therefore, possible to remove even extremely strongly attached particles by alternately repeating the above-described radiation of the first ultrasonic waves and radiation of the second ultrasonic waves. After emission of the first ultrasonic waves for 30 to 70 μs, the second ultrasonic waves are successively emitted for 5 to 15 μs. It is preferable to repeatingly perform this radiation at intervals of 80 to 120 μs.
In the above-described ultrasonic cleaning of the object to be cleaned, the distance between the focus position and the surface of the object to be cleaned can be adjusted by the focus position adjustment device, thus making it possible to set the optimum focus point as desired according to the kind of a contamination on the object to be cleaned, the strength of attachment of the contamination and the physical strength of the surface of the object to be cleaned (hardness against scratching or damaging). The distance between the focus point and the surface of the object to be cleaned adjusted by the focus position adjustment device comprises zero. That is, adjustment is performed so that the focus position is between the surface of the object to be cleaned and a position in the vicinity of the surface.
The cleaning liquid has radicals (e.g., OH radical) generated at the focus position by receiving irradiation with the ultrasonic waves. An organic contamination attached to the surface of the object to be cleaned is oxidatively decomposed. Also in this case, energy necessary for generation of radicals can be concentrated on a local region by focusing the first and second ultrasonic waves to the focus position, thus generating radicals with efficiency. Moreover, since the distance between the focus position and the surface of the object to be cleaned can be adjusted by the focus position adjustment device, the optimum focus position can be set as desired according to the kind of an organic contamination, the strength of attachment of the contamination and the chemical strength (resistance to radicals) of the surface of the object to be cleaned.
Therefore, even on a semiconductor substrate or glass substrate on which a fine pattern for a metal thin film or a circuit for example is formed in advance, ultrasonic cleaning can be performed effectively without damaging the fine pattern.
According to the present invention, the moving device of moving at least any one of the ultrasonic wave generation device and the support base enables ultrasonic cleaning to be uniformly performed on the surface of the object to be measured, and changes the moving speed to enable finely-controlled cleaning in such a manner that the moving speed is reduced with respect to a surface portion having a higher degree of contamination, and is increased with respect to a surface portion having a lower degree of contamination.
To achieve the above-described object, according to a second aspect of the present invention, there is provided an ultrasonic cleaning apparatus which performs ultrasonic cleaning of a contamination attached to a surface of an object to be cleaned, by using a cleaning liquid to which ultrasonic waves are applied, the apparatus comprising a transport device of transporting the object to be cleaned, an ultrasonic wave nozzle provided above the transport device, the ultrasonic wave nozzle ejecting the cleaning liquid from a nozzle opening toward the surface of the object to be cleaned, the ultrasonic wave nozzle having ultrasonic wave generation device of alternately focusing first ultrasonic waves having a frequency of 1 to 10 MHz and second ultrasonic waves having a frequency equal to or lower than ½ of that of the first ultrasonic waves toward the surface of the object to be cleaned and a focus position adjustment device of adjusting the distance between the nozzle opening and the surface of the object to be cleaned.
The second aspect relates to an ultrasonic nozzle type apparatus for applying ultrasonic waves to the cleaning liquid ejected from the nozzle opening toward the object to be cleaned.
Also in the case of the ultrasonic nozzle type in the second aspect, the function and effect are the same as those in the case of the dip type in the first aspect.
According to a third aspect of the present invention, the object to be cleaned in the first or second aspect is any one of a semiconductor substrate or a glass substrate for an LCD or a photomask.
This is because the ultrasonic cleaning apparatus of the present invention is particularly effective in cleaning on an object to be cleaned, such as a semiconductor substrate or a glass substrate for an LCD or a photomask, which may have a scratch or damage at the time of cleaning as a quality defect detrimental to it.
According to a fourth aspect of the present invention, a solid member is provided at the focus position in one of the first to third aspects.
Bubbles can occur extremely easily on the surface of a solid member. Therefore, a cluster of bubbles can be formed at a higher density by providing a solid member at the ultrasonic wave focus position, as in the fourth aspect. In this way, higher energy can be obtained at the time of bubble collapse. Also, even if the ultrasonic wave generation power is low, bubbles can be generated with efficiency, thus achieving an energy saving effect.
According to a fifth aspect of the present invention, the solid member in the fourth aspect is any one of a metallic plate, a flat plate made of a material other than metal, a mesh plate and a porous plate.
This is a preferred example of a solid member capable of promoting generation of bubbles. A metallic plate, e.g., an ultrasonic wave reflecting plate, a flat plate made of a material other than metal, a mesh plate or a porous plate can be suitably used. In such a case of using a metallic plate or a flat plate, it is preferable to place the plate so that its surface is parallel to the direction of travel of ultrasonic waves in order to avoid impeding the flow of energy at the time of collapse of bubbles in reaching the object to be cleaned. In the case of a mesh plate or a porous plate not impeding the flow of energy at the time of collapse of bubbles in reaching the object to be cleaned, the plate can be placed so that its surface is perpendicular to the direction of travel of ultrasonic waves.
According to a sixth aspect of the present invention, the direction of travel of the ultrasonic waves is inclined from a direction perpendicular to the surface of the object to be cleaned in the first, third, fourth or fifth aspect.
The sixth aspect relates to a dip type. Since the direction of travel of ultrasonic waves is inclined from a direction perpendicular to the surface of the object to be cleaned, the region in which ultrasonic waves are effective and the region in which radicals generated by the ultrasonic waves are effective on the surface of the object to be cleaned can be increased in size. Further, the direction of the flow caused by an acoustic flow can be set in one direction to enable a contamination removed from the surface of the object to be cleaned to be quickly expelled from the object to be cleaned, thus improving the cleaning effect. “Acoustic flow” refers to a flow of a medium caused in the beam of ultrasonic waves propagating through the fluid.
According to a seventh aspect of the present invention, the direction of ejection of the cleaning liquid from the nozzle opening and the direction of travel of the ultrasonic waves are inclined from a direction perpendicular to the surface of the object to be cleaned in any one of the second to fifth aspects.
The seventh aspect relates to an ultrasonic wave nozzle type. Since the direction of ejection of the cleaning liquid from the nozzle opening and the direction of travel of the ultrasonic waves are inclined from a direction perpendicular to the surface of the object to be cleaned, the region in which ultrasonic waves are effective and the region in which radicals generated by the ultrasonic waves are effective on the surface of the object to be cleaned can be increased in size. Further, the direction in which the cleaning liquid ejected from the nozzle opening flows on the surface of the object to be cleaned and the direction of the flow caused by an acoustic flow can be set in one direction to enable a contamination removed from the surface of the object to be cleaned to be quickly expelled from the object to be cleaned, thus improving the cleaning effect.
According to an eighth aspect of the present invention, a pair of the ultrasonic wave generation devices are provided and are disposed so as to have a common ultrasonic wave focus position in any one of the first to seventh aspects.
This arrangement enables generation of bubbles in a region made narrower than the ultrasonic focus region formed by one ultrasonic wave generation device, and thereby makes it possible to obtain higher energy at the time of collapse of bubbles.
According to a ninth aspect of the present invention, the pair of ultrasonic wave generation devices in the eighth aspect are supported so as to be rotatable on a rotation axis, and the focus position adjustment device in the eight aspect adjusts the distance between the common focus position and the surface of the object to be cleaned by rotating the pair of ultrasonic wave generation devices while maintaining the common focus position.
Since the pair of ultrasonic wave generation devices in the eighth aspect are supported so as to be rotatable on a rotation axis, and are rotated by the focus position adjustment device, the ultrasonic waves from the two ultrasonic wave generation device can be easily and accurately focused to the common focus position, and the distance between the focus position and the surface of the object to be cleaned can be adjusted.
According to a tenth aspect of the present invention, gas dissolved water blow-in device of blowing gas dissolved water in which a gas is dissolved into the cleaning liquid is provided in any one of the first to ninth aspects.
This is because the cleaning liquid having gas dissolved water blown thereinto has an increased amount of generation of radicals by irradiation with ultrasonic waves in comparison with a cleaning liquid having no gas dissolved water blown thereinto to further improve the effect of cleaning the object to be cleaned by radicals. In this case, it is preferred that a blow-in port be disposed in the vicinity of the focus position and on the upstream side of the focus position with respect to the direction of travel of ultrasonic waves to eject gas toward the focus position. The gas or gas dissolved water blown in on the upstream side of the focus position generates radicals efficiently at the focus position in which the ultrasonic energy is the largest, and the radicals generated then reach the surface of the object to be cleaned with efficiency.
According to an eleventh aspect of the present invention, a gas blow-in device of blowing a gas into the cleaning liquid is provided in any of the first to ninth aspects.
Blowing the gas directly into the cleaning liquid may be performed instead of blowing gas dissolved water into the cleaning liquid.
As described above, the ultrasonic cleaning apparatus of the present invention can effectively remove particles, an organic contamination and the like attached to the surface of an object to be cleaned without scratching or damaging the surface. Therefore the present invention is highly effective in ultrasonic cleaning of semiconductor substrates and glass substrates for LCDs and photomasks.
10 Dip-type ultrasonic cleaning apparatus
11 Cleaning liquid
12 Cleaning bath
14 Glass substrate
14A Surface (to be cleaned) of glass substrate
16 Support base
18 Ultrasonic vibrator
20 Ultrasonic wave generation device
22 Focus position adjustment device
24 Support table moving device
26 Main body
28 First ultrasonic wave
30 Second ultrasonic wave
32 Arrow indicating the direction of travel of ultrasonic wave
34 Center line of ultrasonic wave
36 Bubbles
38 Arm
40 Solid member
42 Acoustic flow
44 Rotation axis
46 Gas blow-out port
48 Gas dissolving device
50 Liquid supply pipe
52 Gas supply pipe
100 Ultrasonic-wave-nozzle-type ultrasonic cleaning apparatus
102 Transport device
104 Nozzle opening
108 Ultrasonic wave nozzle
110 Nozzle container
112 Cleaning liquid supply pipe
114 Roller
P Ultrasonic wave focus position
A preferred embodiment of an ultrasonic cleaning apparatus in accordance with the present invention will be described with reference to the accompanying drawings.
As shown in
The ultrasonic wave generation device 20 is constituted mainly by a main body 26 and the ultrasonic vibrator 18. The ultrasonic vibrator 18 has a concave vibrating surface and is disposed so that radiated ultrasonic waves are focused toward the glass plate 14 supported on the support base 16. Ultrasonic waves may be focused in spot form (dot-like form) or line form (linear form). In this embodiment, however, ultrasonic waves are focused in line form (see
As shown in
By the above-described radiation of the first ultrasonic waves 28, fine bubbles 36 are generated at a high density at a local focus position P on the surface 14A of the glass substrate 14 or in the vicinity of the surface 14A. The generated bubbles 36 are collapsed in a short time by the second ultrasonic waves successively radiated. Impactive force at this time is much larger than that in the case of the conventional art in which ultrasonic waves are not focused, and is effective in removing fine particles and a contamination in film form, which are attached to the surface of 14A of the glass substrate 14, and which cannot be removed by the conventional art. Also, radicals can be generated effectively by the large impactive force, thus improving the effect of chemical cleaning by radicals.
The main body 26 of the ultrasonic wave generation device 20 is supported by the focus position adjustment device 22 movably in arrow A-B directions shown in
The position P of focusing of ultrasonic waves 28 and 30 is suitably set apart from the surface 14A of the glass substrate 14 as shown in
As shown in
Since bubbles are generated much on a solid material surface, it is preferable to provide a solid member 40 at the position P of focusing of ultrasonic waves 28 and 30, as shown in
The solid member 40 provided at the position P of focusing of ultrasonic waves 28 and 30 is not limited to the metallic plate. A flat plate made of any other material, e.g., a ceramic or a plastic may alternatively be provided. Also, a metallic meshwork having a multiplicity of openings or a porous plate made of any of various materials may alternatively be used, as shown in
Referring to
Since ultrasonic waves from the two ultrasonic vibrators 18 are focused to one point, the main body 26 of each ultrasonic wave generation device 20 is supported so as to be movable (in E-F directions) on the circumference of a circle whose radius corresponds to the distance L between the ultrasonic wave generation surface of the ultrasonic vibrator 18 and the focus position P. This arrangement enables the angle from the horizontal (β) to be freely changed without changing the focus position P. The optimum value of the angle from the horizontal (β) varies depending on the object to be cleaned but falls generally into a range of 45°±30°. The distance between the position P of focusing of ultrasonic waves and the object to be cleaned, i.e., the substrate 14, by moving a structure 26B along the top-bottom direction on which the two ultrasonic wave generation device 20 are supported, or by moving the substrate 14 along the top-bottom direction. Thus, two ultrasonic wave generation device 20 are provided and the positions P of focusing therefrom are set to a common point, thereby enabling generation of a larger amount of bubbles 36 in a restricted region in the vicinity of the ultrasonic wave focus region. As a result, further increased energy can be obtained at the time of collapse of bubbles 36.
Thus, the cleaning liquid 11 having a gas blown thereinto in the vicinity of the focus position P has an increased amount of generation of radicals by irradiation with ultrasonic waves 28 and 30 in comparison with a cleaning liquid having no gas blown thereinto, thereby further improving the effect of cleaning the glass substrate 14 by radicals. In this case, it is preferred that the blow-in port 46 be disposed in the vicinity of the focus position P and on the upstream side of the focus position P with respect to the direction 32 of travel of ultrasonic waves 28 and 30 to eject the gas or gas dissolved water toward the focus position P. The gas blown in on the upstream side of the focus position P becomes radicals efficiently at the focus position P at which ultrasonic wave energy is maximized, and the radicals then reach the surface 14A of the glass substrate 14.
As shown in
The ultrasonic nozzle 108 is constituted mainly by a main body 26, an ultrasonic vibrator 18 and a nozzle container 110 having the nozzle opening 104 in the form a slit whose longitudinal direction corresponds to the width direction of the glass substrate 14 (the front-rear direction of
In the ultrasonic-wave-nozzle-type ultrasonic cleaning apparatus 100, the cleaning liquid 11 is supplied to the nozzle container 110 and ejected toward the glass substrate 14 through the nozzle opening 104, while a signal is supplied from a frequency-controllable oscillator (not shown) housed in the main body 26 to the ultrasonic vibrator 18 to radiate the first ultrasonic waves 28 at a higher frequency of, for example, 2 MHz for about 50 μs and to successively radiate the second ultrasonic waves 30 at a lower frequency equal to or less than a half of the frequency of the first ultrasonic waves, for example, about 500 kHz for about 10 μs. This cycle of radiation is repeatedly performed at short time intervals of about 100 μs. Thus, also in the case of the ultrasonic-wave-nozzle-type ultrasonic cleaning apparatus 100, the same ultrasonic cleaning effect as that of the dip-type ultrasonic cleaning apparatus 10 can be obtained. In this case, preferable ranges of the time period during which the first ultrasonic waves 28 and the second ultrasonic wave 30 are radiated at one time, and the time intervals are the same as those in the first embodiment.
The ultrasonic nozzle 108 can be moved in arrow A-B directions by the focus position adjustment device 22 to bring the nozzle opening 104 and the focus position P to a position substantially touching the surface 14A of the glass substrate 14 as shown in
Also in the case of the ultrasonic-wave-nozzle-type ultrasonic cleaning apparatus, the generation of bubbles can be promoted by providing a solid member 40 at the position P of focusing of ultrasonic waves, as shown in
The embodiments of the present invention have been described with respect to a case where the object to be cleaned is a glass substrate 14 by way of example. However, the object to be cleaned is not limited to a glass substrate 14. The object to be cleaned may be a semiconductor substrate or any other object if ultrasonic cleaning can be performed thereon.
Number | Date | Country | Kind |
---|---|---|---|
2004-298104 | Oct 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/18515 | 10/6/2005 | WO | 00 | 8/9/2007 |