This invention relates to a pressure regulating fuel delivery system suitable for a gas turbine engine, having a pressure regulator, together with an ultrasonic sensor and a densiometer to accurately measure the mass flow of fuel to the engine.
Conventional fuel delivery systems for gas turbine engines are expensive and include numerous complex parts. A typical fuel delivery system is controlled by scheduling fuel flow based upon a fuel metering valve position and a linear variable displacement transducer to provide feedback. The metering valve position is adjusted in closed loop to maintain the desired engine speed (and power setting). A low accuracy dual rotor turbine meter to measure totalized mass flow after the fuel metering unit. The totalized flow is used as a double check for the wing tank fuel level gauges. The dual rotor turbine meter is a volumetric device with limited accuracy, therefore it is not used for engine health monitoring.
The fuel metering valve, dual rotor turbine meter, linear variable displacement transducer, pressure regulator, and other components, are all quite complicated. The metering valve also creates a pressure drop within the system that generates extra heat in fuel and decreases the efficiency of the oil cooling system. Therefore, what is needed is a system that reduces heat load, eliminates the fuel metering valve, dual rotor turbine meter, and linear variable displacement transducer, and accurately measures the instantaneous and totalized mass flow to the burner, for engine health monitoring.
A pressure setting fuel delivery system uses an ultrasonic volumetric flow sensor and a densiometer to measure a mass flow rate of the fuel.
A densiometer having a coriolis mass flow sensor etched into a small chip is located within the fuel delivery system. Preferably, for durability reasons, the densiometer is at a location having lower fuel temperatures and pressures. As fuel flows past the densiometer a density of the fuel is determined for a given temperature and a slope verses temperature determined and continuously updated. At least one temperature sensor is also located on the chip to provide accurate temperature of the fuel to correspond to the fuel density reading.
An ultrasonic flow sensor is positioned in the system such that fuel flows through the ultrasonic flow sensor and is discharged from fuel nozzles into the engine. Piezoelectric crystals within the ultrasonic flow sensor generate and receive a sound wave. By analyzing the sound wave signals the fluid velocity and a corresponding volumetric flow rate of fluid through the ultrasonic flow sensor can be calculated. At least one temperature sensor is also placed on the ultrasonic flow sensor to correct for any thermal expansion of an inner diameter of the ultrasonic flow sensor when analyzing the sound wave signals, and for converting the volumetric flow to mass flow.
The density and temperature information from the densiometer and the volumetric flow rate and temperature from the ultrasonic flow sensor are sent to an electronic engine controller (EEC). Using the information the EEC can determine the density of the fuel at the ultrasonic flow sensor and thus the true mass flow rate of the fuel. The EEC can then send this information to aircraft systems that monitor total and instantaneous fuel consumption for engine health monitoring.
Accordingly, the present invention provides a fuel metering unit that eliminates the fuel metering valve, dual rotor turbine meter, linear variables displacement transducer, and other complicated and expensive components typically found in prior art fuel delivery systems, while providing accurate mass flow rate information.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A fuel delivery system 10 is shown schematically in
Between the fuel filter 16 and the ultrasonic flow sensor 18 a portion of the fuel is directed toward a pressure-regulating valve 24 which can be used to adjust the fuel pressure in the fuel line 26 prior to the fuel nozzles 20. By decreasing pressure within the fuel line 26 the flow rate of the fluid through the ultrasonic flow sensor 18 and out of fuel nozzles 20 is decreased. Inversely, as the pressure in the fuel line 26 is increased, the flow rate of the fuel through the ultrasonic flow sensor 18 and the fuel nozzles 20 is increased. Thus, the pressure regulating valve 24 is used to adjust the mass flow rate of the fuel into the engine 12.
Excess fuel is bypassed by the pressure regulating valve 24 and flows back to the boost pump system 14 where it later cycles through the system again. Additionally, a portion of the fuel that passes through the fuel filter 16 also passes through a fine filter 28. Fuel from the fine filter 28 flow through coriolis densiometer 30 then joins the fuel from the pump 22 to cycle back to the boost pump system 14. A Minimum Pressure and Shut-Off Valve (MPSOV) 31 is located between filter 16 and ultrasonic flow sensor 18. The MPSOV 31 opens as pressure builds and allows flow to the engine. It also is controlled by a separate solenoid (not shown) to allow shutting off the fuel flow and stopping the engine 12.
Referring to
Referring to
Referring back to
Using the density calculated at the ultrasonic flow sensor 18 and using the volumetric flow information, an accurate mass flow rate of the fuel at the ultrasonic flow sensor 18 can be calculated. The EEC 52 then sends this information to the aircraft system for the purpose of monitoring instantaneous mass flow and totalized mass flow.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3739635 | Stuart | Jun 1973 | A |
3772915 | Stamler | Nov 1973 | A |
4193291 | Lynnworth | Mar 1980 | A |
4450820 | Haynes | May 1984 | A |
4508127 | Thurston | Apr 1985 | A |
5284120 | Fukushima et al. | Feb 1994 | A |
6912918 | Lynnworth et al. | Jul 2005 | B1 |
20020194902 | Gehner et al. | Dec 2002 | A1 |
20030183206 | Fujimoto et al. | Oct 2003 | A1 |
20040163459 | Christian et al. | Aug 2004 | A1 |
20040211263 | Wiesinger et al. | Oct 2004 | A1 |
20050049777 | Fritsch et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
006 303 | Jul 2005 | AT |
0 122 100 | Oct 1984 | EP |
1 411 328 | Apr 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20070151333 A1 | Jul 2007 | US |