BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side elevational view of a prior art ultrasound probe showing an outward splaying force on the sonographer's fingers caused by axial force applied to the probe, such splaying force requiring increased gripping force to prevent the sonographer's fingers from slipping along the probe;
FIG. 2 is a figure similar to FIG. 1, but of the present invention, showing a cross-section of a detachable cuff that adds finger shelves to the probe eliminating the splaying force;
FIG. 3 is a top plan view of the cuff of FIG. 2, before installation on a probe, showing a split form that may be clamped together about the probe and retained by a strap;
FIG. 4 is a fragmentary, detailed view of FIG. 3, also showing the probe in partial cross-section, and illustrating an inner surface of the cuff that grips the probe and an outer cushion surface contacting the fingers; and
FIG. 5 is a side elevational view of an alternative embodiment of the cuff of FIG. 2 having second shelf for providing additional points of contact between shelves and fingers.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIG. 1, a conventional ultrasonic probe 10 may include a hard polymer body 12 extending along an axis 14 and grippable by the fingers 16 of the sonographer.
A front face 18 of the ultrasonic probe 10 emits and receives ultrasonic energy along ultrasound path 20 and is pressed against the surface of a patient with an axial force 22. Because the outer surface of the body 12 is generally parallel to or slopes along the axis 14, the axial force 22 causes an outward splaying 24 of the sonographer's fingers 16 requiring an countervailing inward gripping pressure 26 to prevent loss or slippage of the probe 10.
Referring now to FIG. 2, a first embodiment of the present invention provides a cuff 30 that may surround the body 12 of the probe 10. The cuff 30 provides a rearward opening 32 through which a cable 34 connecting the probe 10 to an ultrasound machine (not shown) may pass, and a forward opening 36 through which the front face 18 of the probe may extend.
Importantly, the cuff 30 provides for a shelf 40 extending along a radial direction 42 generally perpendicular to the axis 14. The shelf 40 extends from the adjacent outer surfaces of the cuff 30 by an amount no less than the width 44 of an average adult finger and allows force to be exerted by the sonographer through the sides or tops of the sonographer's fingers 16 as well as through the inner opposed pads of the fingers 16. The term fingers, as used herein, also includes thumbs.
Ideally, an angle 50 between the rear surface of the shelf 40 contacting the front surface of the sonographer's fingers 16 and the ultrasound path 20 will be greater than 90 degrees. In this case, the force 22 applied to axially press the probe 10 against the patient will create no net outward splaying force 24, and may even produce an inward clasping force 24′, such as does not require increased gripping by the sonographer. This reduced need for gripping force while pressing on the probe may reduce occupational injuries from gripping, pinching, or pulling-type motions.
Referring now to FIG. 3, the shelf 40 may extend radially outward around the axis 14 of the probe 10 (not shown in FIG. 3) to subtend over 270 degrees in a circumferential direction 52 about the cuff 30 to provide for support at a variety of different rotational angles of the ultrasonic probe 10 about its axis. An axially extending slot 54 may be cut through the wall of the cuff 30 from the opening 32 to the opening 36 allowing the cuff to be split and the ultrasonic probe 10 to be inserted therein. A gripping tab 56, for example, a strap with hook and loop fasteners positioned on both the outer surface of the cuff 30 and inner surface of the gripping tab 56, may be used to cinch the cuff 30 around the probe 10 during use.
Referring now to FIG. 4, the cuff 30 may have an inner layer 60 of a hard polymer material conforming to the outer surface of the body 12 of the ultrasonic probe so as to resist axial slippage between the inner layer 60 and the body 12 when inner layer 60 is cinched to body 12. Inner layer 60 may in turn be coated with a cushioning material, for example, a closed cell foam, to create an outer cushion layer 62 that is more deformable, hence more plastic, than the inner layer 60, the latter which while somewhat elastic, tends to retain its shape. The closed cell foam may allow easy cleaning of the cuff 30, while removal of the cuff 30 allows easy cleaning of the probe 10.
The plasticity of the outer cushion layer 62 reduces the pressure on the sonographer's fingers to prevent possible discomfort as may be caused by a pressing on the forward faces of the fingers 16 rather than on their inner opposed surfaces which lightly grip the ultrasonic probe 10. The forward surface of the fingers 16 will typically be the sides of the fingers 16 as face the front face 18 surface of the probe 10, but may in fact include the tops or knuckles of the fingers 16 depending on how the cuff 30 is held.
The lower surface 63 may be displaced back from the front face 18 of the probe so as to prevent its contact directly with skin of the patient, such as may increase the forces necessary to press the ultrasonic probe 10 in against the patient. Further, the lower surface 63 may be provided with an absorbing or barrier pattern to reduce the migration of gel up into the area of the fingers 16.
Referring now to FIG. 5, it will be understood that additional axially displaced shelves 40′ may be positioned on the cuff 30 that may allow for positioning of different fingers 16 against the shelves 40 and 40′ further dividing the axial force 22 among the fingers 16. The shelves 40′ need not extend continuously around the cuff, but may be placed at locations where they may best fit between the fingers 16 of the sonographer.
While the cuff is shown as a replacement item, it will be recognized that a similar design can be incorporated directly into the housing of the ultrasonic probe by the manufacturer.
It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.