The present invention relates to an ultrasonographic device using complementary coding transmission and reception.
A conventional ultrasonographic device is configured such that as shown in
As a result, the signal outputted by the addition means 109 becomes the signal whose range side lobe is improved (for example, refer to the following patent document 1).
Patent Document 1: Japanese Patent Application Publication after Examination 7-81993 (Page 6-7, FIG. 9)
However, in the conventional ultrasonographic device, when such as a tissue of a living body, a test body is in motion, it is difficult to output the reception waveform after the correlation process based on a previous transmission, synchronously with the received signal after the correlation process based on a current transmission. As a result, there was a problem that the range side lobe of the signal outputted by the addition means was not improved.
The present invention is proposed in order to solve the conventional problems. Therefore, its object is to provide an ultrasonographic device that can improve the range side lobe of the complementary coded transmission and reception method even for the moving test body such as the living body.
The ultrasonographic device of the present invention comprises: transmission and reception means for carrying out transmission and reception of a modulated waveform signal obtained by modulating by a complementary code, and transmission and reception of a normal waveform signal that is not modulated; velocity detection means for detecting a velocity of a motion of an interest region of a test body from a received signal received by the transmission and reception means; and switching means for carrying out a switching between the transmission and reception of the modulation waveform signal that is carried out by the transmission and reception means in accordance with the velocity detected by the velocity detection means and the transmission and reception of the normal waveform signal.
This configuration reduces the range side lobe by using the complementary code transmission and reception method even if the test body is in motion.
Also, the ultrasonographic device of the present invention comprises: transmission and reception means for carrying out transmission and reception of a modulated waveform signal obtained by modulating by a complementary code, and transmission and reception of a normal waveform signal that is not modulated; velocity detection means for detecting a velocity of a motion of an interest region of a test body from the received signal received by the transmission and reception means; and delay process means for changing a delay time of the modulated waveform signal that is received by the transmission and reception means correspondingly to the velocity detected by the velocity detection means.
This configuration reduces the range side lobe by using the complementary code transmission and reception method even if the test body is in motion.
Moreover, the ultrasonographic device of the present invention comprises: transmission and reception means for carrying out transmission and reception of a modulated waveform signal obtained by modulating by a complementary code, and transmission and reception of a normal waveform signal that is not modulated; heartbeat information detecting means for detecting a heartbeat information of a test body; and switching means for carrying out switching between transmission and reception of the modulated waveform signal that is carried out by the transmission and reception means in accordance with the heartbeat information detected by the heartbeat information detecting means and the transmission and reception of the normal waveform signal.
This configuration reduces the range side lobe by using the complementary code transmission and reception method even if the test body is in motion.
Moreover, the ultrasonographic device of the present invention comprises: transmission and reception means for carrying out transmission and reception of a modulation waveform signal obtained by modulating by a complementary code, and transmission and reception of a normal waveform signal that is not modulated; velocity detection means for detecting a velocity of a motion of an interest region of a test body from a received signal received by the transmission and reception means; and changing means for changing the code length of the complementary code of the transmission and reception means correspondingly to the velocity detected by the velocity detection means. This configuration reduces the range side lobe by using the complementary code transmission and reception method even if the test body is in motion.
Moreover, the ultrasonographic device of the present invention comprises a configuration in which the velocity detection means detects the velocity of the motion of the interest region of the test body, by receiving the normal waveform signal from the transmission and reception means.
This configuration reduces the range side lobe by using the complementary code transmission and reception method even if the test body is in motion.
Moreover, in the ultrasonographic device of the present invention, the transmission and reception means comprises means for changing a reception sensibility in accordance with the code length of the complementary code of the modulation waveform signal to be transmitted and received. This configuration can decrease the reception sensibility and reduce the noise level when the length of the code becomes long. For example, when the length of the code is N, the reception sensibility may be decreased to ½N.
Moreover, in the ultrasonographic device of the present invention, the transmission and reception means comprises a configuration for changing a central frequency of an ultrasonic to be transmitted and received in accordance with the code length of the complementary code of the modulation waveform signal to be transmitted and received. With this configuration, when the code becomes longer, the sensibility becomes higher, which can make the central frequency higher and make a resolution higher.
Moreover, in the ultrasonographic device of the present invention, the velocity detection means comprises a function for detecting the dispersion of the velocities of the motions of the interest region. This configuration reduces the range side lobe by using the complementary code transmission and reception method even if the test body is in motion.
Moreover, the ultrasonographic device of the present invention has a configuration that further has comprises for adding information with regard to the code length of the complementary code that is transmitted and received by the transmission and reception means to a diagnostic picture and can check the length of the code when the picture is obtained from the picture information.
Moreover, the ultrasonographic device of the present invention has a configuration that further comprises display means for displaying information with regard to the code length of the complementary code that is transmitted and received by the transmission and reception means and can check the length of the code from the picture.
The present invention can provide the ultrasonographic device having the effect of reducing the range side lobe by using the complementary code transmission and reception method even if the test body is in motion, because as for the transmission and reception unit, the switching between the transmission and reception of the modulation waveform signal that is modulated with the complementary code and the transmission and reception of the normal waveform signal that is not modulated, or the change of the length of the complementary code is possible, and as for the means for detecting the velocity of the motion of the interest region of the test body, the switching between the transmission and reception of the modulation waveform signal that is modulated with the complementary code in accordance with the velocity and the transmission and reception of the normal waveform signal, or the change of the length of the complementary code is carried out.
Hereinbelow, description will be given about the ultrasonographic device according to the embodiments of the present invention by using the drawings.
In
A test body 20 is brought into contact with the prove 1.
The operations of the above-configured ultrasonographic device will be described below by using
Firstly, the complementary code is described.
The complementary code has the following features. For example, a2 and b2 of the following equation are the complementary codes of a length N=2̂m (m=1, ̂ represents a power).
a2=[+1,+1] (1)
b2=[+1,−1] (2)
an autocorrelation c2 of a2 and an autocorrelation d2 of b2 are represented by the following equation.
c2=[+1,+2,+1] (3)
d2=[−1,+2,−1] (4)
A sum e2 of the autocorrelation c2 and the autocorrelation d2 becomes:
e2=[0,+4,0] (5)
Then, at the peak of the center of a sequence, the value becomes 2N=4, and before and after the peak, namely, the range side lobe becomes zero.
The complementary code of N=2̂m (m=2) is obtained from a procedure that in accordance with the complementary code of the length N, an item in which b2 is linked after a2 is defined as a4, and an item in which the code of b2 is inverted and linked after a2 is defined as b4.
a4=[+1,+1,+1,−1] (6)
b4=[+1,+1,−1,+1] (7)
In this way, when the length of the complementary code becomes N, the peak value of a received signal becomes 2N times. Thus, when the complementary code becomes long, for example, in the signal procession unit 14, a reception sensibility can be decreased, which can relatively reduce the noise level included in the received signal. For example, when the length of the complementary code is N, the reception sensibility may be set to ½N. Reversely, when the length of the complementary code becomes short, the reception sensibility may be increased.
In a waveform T3, the impulses T1 or the waveform-inverted impulses T1 are arranged at a δT2 interval. By the way, there is a relation of δT1<δT2. Also, an interval between the waveform T3 and a waveform T4 is ΔT. As for the received signal through the waveform T3, by using the complementary code of the equation (6), the correlator 7 performs an autocorrelation process thereon, and as for the received signal through the waveform T4, by using the complementary code of the equation (7), the correlator 7 performs the autocorrelation process thereon. Then, after the output of the correlator 7 that corresponds to the waveform T3 is stored in the memory 9 and delayed by a time ΔT and read out, this is added by the addition means 13. Consequently, a complementary transmission and reception output is obtained.
The process in the correlator 7 is specifically shown by using
However, when the test body 20 is a living body, its tissue is in motion. In particular, when the received signal from the tissue of a circulatory organ group is processed, it is required not to receive the influence of the pulsation of the tissue. The velocity operation means 8 performs a Doppler operation process on the output signal from the reception amplification unit 6 and detects a movement velocity V of the tissue.
When the Doppler operation process is carried out, the output waveform of the transmission unit 2 may use the impulse of the usual transmission and reception. At first, the complementary code generator 4 carries out the output corresponding to the usual transmission and reception. The coded waveform generation unit 3 generates the impulse waveform of
When the velocity detected by the velocity operation means 8 becomes equal to a constant level or less, the complementary code generator 4 generates the complementary code of the equation (6) at a certain time. Then, the output of the correlator 7 is stored in the memory 9. After the ΔT time, the complementary code generator 4 generates the complementary code of the equation (7). Then, the output of the correlator 7 and the output read from the memory 9 are added by the addition means 13. While the complementary code transmission and reception is carried out, the velocity detection of the velocity operation means 8 is carried out through the usual transmission and reception at a proper temporal interval. When the detected velocity V becomes equal to or higher than the constant level, the transmission and reception through only the usual transmission and reception is carried out.
Or, on the basis of the velocity detected by the velocity operation means 8, the length of the complementary code may be changed. For example, as the velocity becomes faster, the complementary code may be shorter. Or, when the code of the complementary code becomes longer, the central frequency of the ultrasonic may be made higher. Moreover, as a result of the Doppler operation process, when the distribution of the velocities is spread even if the average velocity is equal to or less than the constant level, namely, when the velocities are dispersed, the complementary code generator 4 may be designed to generate the complementary code of the equation (6) at a certain time, when the dispersion becomes equal to or less than the constant level.
Moreover, the length information of the code of the complementary code may be added to the picture information obtained by the signal procession unit 14. Moreover, the length information of the code of the complementary code added to the picture information together with the picture of the test body may be displayed on the display 15.
According to the ultrasonographic device according to the first embodiment of the present invention as mentioned above, as for the transmission and reception unit, the switching between the transmission and reception of a modulation waveform signal modulated with the complementary code and the transmission and reception of the normal waveform signal that is not modulated is possible, and as for the means for detecting the velocity of the motion in the interest region of the test body, by carrying out the switching between the transmission and reception of the modulation waveform signal modulated with the complementary code correspondingly to the velocity and the transmission and reception of the normal waveform signal that is not modulated, the accurate complementary code transmission and reception can be carried out in which it is difficult to receive the influence of the motion of the test body.
Next, the ultrasonographic device according to the second embodiment of the present invention is shown in
In
As for the ultrasonographic device configured as mention above, its operations will be described below by using
At first, the velocity detection means 8 detects the velocity V of the motion of the interest region of the test body 20. The waveform of the coded waveform generation unit 3 in this case may be the waveform corresponding to the usual transmission and reception or may be the waveform corresponding to the coded transmission and reception. Since the motional velocity is V, after the ΔT time that is the interval between the transmissions, the position of the interest region is changed by ΔTL=V·ΔT.
With the change of the position of ΔL, an arrival time of an echo from the interest region is changed by ΔΔT=2·ΔL/c (however, c is a sound velocity inside the test body). For this reason, in the interest region, the temporal interval of the corresponding echo is ΔT−ΔΔT. In this way, in the delay means 10, the delay time of ΔΔT is adjusted for the signal outputted by the memory 9. Then, the output of the delay means 10 and the output of the correlator 7 are added by the addition means 13.
As mentioned above, according to the ultrasonographic device according to the second embodiment of the present invention, the output of the velocity detection means 8 is connected to the delay means 10. The output of the memory 9 is inputted to the delay means 10, and the output of the delay means 10 is inputted to the addition means 13. Thus, even if the interest region of the test body 20 is in motion, the accurate complementary code transmission and reception can be carried out in which it is difficult to receive the influence of the motion of the test body.
Next, the ultrasonographic device according to the third embodiment of the present invention is shown in
In
For the ultrasonographic device configured as mentioned above, its operations will be described below by using
At first, the prove 1 is assumed such that a carotid artery wall of the test body 20 serves as the interest region. On the other hand, the electrocardiograph 16 is assumed to observe a cardiac electrograph of a heart of the test body 20.
The contraction and dilation of the heart involves the change in the blood vessel diameter of the carotid artery. However, a timing when, since the carotid artery diameter is maximized or minimized, a carotid artery wall is instantaneously rested has a certain temporal delay from the contraction and dilation of the heart. For this reason, the R-wave trigger delay means 12 for delaying an R-wave trigger outputted by the electrocardiograph 16 estimates a time when the carotid artery diameter is maximized or minimized. Then, at a time when the carotid artery wall is instantaneously rested, the complementary code generator 4 generates the complementary code and carries out the complementary code transmission and reception.
As mentioned above, according to the ultrasonographic device according to the third embodiment of the present invention, the electrocardiograph 16 is installed inside the test body 20, the output of the electrocardiograph 16 is inputted to the R-wave delay means 12, and the output of the R-wave delay means 12 is inputted to the complementary code generator 4. Thus, even if the interest region of the test body 20 is in motion, the accurate complementary code transmission and reception can be carried out in which it is difficult to receive the influence of the motion of the test body.
By the way, in the foregoing descriptions, the prove 1 may be composed of the transducer of a single element or may be configured such that a plurality of transducers are arrayed.
As described above, in the ultrasonographic device according to the present invention, as for the transmission and reception unit, the switching between the transmission and reception of the modulation waveform signal modulated with the complementary code and the transmission and reception of the normal waveform signal that is not changed, or the change of the length of the complementary code is possible, and as for the means for detecting the velocity of the motion of the interest region of the test body, the switching between the transmission and reception of the modulation waveform signal modulated with the complementary code correspondingly to the velocity and the transmission and reception of the normal waveform signal, or the change of the length of the complementary code is carried out. Thus, there is an effect that, even if the test body is in motion, the complementary code transmission and reception method is used to reduce the range side lobe, and this is useful as the ultrasonographic device that uses the complementary coded transmission and reception method and the like.
Number | Date | Country | Kind |
---|---|---|---|
2007-113731 | Apr 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/001049 | 4/22/2008 | WO | 00 | 10/5/2009 |