Human skin inevitably deteriorates with age. The skin of a young child is typically smooth, firm, unwrinkled, evenly colored, and blemish free. As one ages, the skin becomes rough, dry, lax, wrinkled, and irregular in color and pigmentation. The skin deterioration is due to intrinsic aging and photoaging. Also, abnormalities in the pilosebaceous units and dysfunction of the melanocyste/keratinocyte units contribute to the skin deterioration. Extrinsic factors, such as sunlight, tanning UV light, makeup, and improper use of moisturizers can further aggravate the intrinsic aging process of the skin. There are various treatment modalities to attempt to stop or reverse the skin aging process.
The various treatment modalities fall into two basic categories. First, using chemical products, one attempts to condition the skin by increasing its tolerance to damage, to correct the defects of the epidermal layer, and to stimulate the basal layer of the epidermis and papillary dermis to improve skin function. Second, using physical or chemical means, one attempts to remove the deteriorated epidermal and dermal tissue to allow the replacement with new skin of more normal and desirable characteristics. These chemical and physical agents include, for example: chemical peels such as TCA, dermabrasions, lasers, ionic plasma, etc. The effectiveness and side effects of the various modalities might or might not correlate with the invasiveness of the processes. In general terms, though, it is reasonable to suggest that most people would prefer processes that are not invasive, that are safe, and that are reasonably effective to treat their skin. The chemical products designed to condition, correct, or stimulate the skin in lotion or gel form are non-invasive. These products, if formulated properly, are relatively safe. However, the effectiveness of these products is often questionable. The epidermis, especially the horny layer of the stratum corneum, functions as a barrier to prevent penetration by any external fluids into the body. Unless the therapeutic chemicals can get to the basal layer of the epidermis and the papillary dermis, they cannot affect the keratinocyte or melanocyte function to improve the epidermal appearance and texture. It is even more difficult for topically-applied therapeutic chemicals to affect the deeper dermal tissue where the collagen, elastic fibers, and extracellular matrix largely determine the look and feel of the skin.
It would thus be desirable to provide a more effective method and apparatus to improve the look and feel of the skin. Further, it would be preferable to employ a non-invasive procedure to achieve these results.
This application specifically incorporates by reference the disclosure and drawings of the provisional patent application identified above as a related application.
The concepts disclosed herein address the above-mentioned problems by using ultrasound to enhance the penetration of a therapeutic agent into the epidermis and dermis, in a non-invasive process, to achieve conditioning, correction and stimulation of the skin, to improve its appearance and feel.
In a basic representative embodiment, a waveguide couples an acoustic source (such as an ultrasound transducer) to a custom cosmetic product (i.e., a liquid- or gel-based skin care product) applied to the skin. For example, a distal surface of the waveguide is placed in contact with a relatively thin layer (from about 1 mm to about 3 mm, or less) of skin care product that has been applied to the skin. Alternatively, the thin layer can be applied to the distal face of the waveguide, and then the waveguide placed on the skin. The custom cosmetic product is formulated such that when ultrasound energy is directed into the custom cosmetic product via the waveguide, bubbles in the custom cosmetic product oscillate, and this oscillatory motion increases the permeability of the skin to active agents incorporated into the custom cosmetic product. Representative liquids and transducer power outputs are discussed in more detail below.
Significantly, the waveguide directs the acoustic energy to the boundary region between the skin care product and the skin. Other products have attempted to focus ultrasound energy to sub-dermal regions, so that the ultrasound energy would have a therapeutic effect on subdermal tissue. In the context of the present disclosure, the ultrasound energy is instead directed into the skin care product at the boundary between the applicator and the skin, so that oscillations in the skin care product increase the permeability of the skin, allowing one of more active ingredients in the skin care product to reach subdermal tissue. In general, the oscillations open up existing pores.
In at least one representative embodiment, the acoustic impedance of the skin care product is selected to enable some of the acoustic energy to pass through the skin care product and into the skin to a depth of about 3.5 mm. The purpose for introducing some acoustic energy into the upper dermal tissue (i.e., about the first 3.5 mm) is not to heat the dermal tissue, or for the acoustic energy to have some physiological effect on that tissue. Rather, the acoustic energy, delivered as a wave or pulse, acts as a driving force that pushes some of the skin care product through the pores that have been opened by the oscillating bubble action in the skin care product. Furthermore, the acoustic energy will also generate shear stresses at the skin layer boundary, further facilitating the absorption of the skin care product.
In at least one representative embodiment, the acoustic source and waveguide provide sufficient acoustic energy to cause microbubbles to form in the skin care product applied to the skin, and those newly formed microbubbles oscillate to increase the skin permeability. Alternatively, custom formulations of skin care products will include microbubbles or microspheres in addition to the active ingredients. In such embodiments, relatively less acoustic energy is required to cause the microbubbles or microspheres to oscillate and increase skin permeability.
Custom formulations of skin care products can include various active ingredients (generally moisturizers, conditioners, emollients, and/or nutrients, although such ingredients are exemplary, rather than limiting). Preferably, the custom formulations will include either microspheres or microbubbles that can be oscillated, or ingredients that will form such microbubbles when exposed to acoustic energy. In some embodiments, custom formulations of skin care products will also include ingredients whose function is to acoustically match the skin care product to the acoustic energy being employed, to ensure that the acoustical energy will be efficiently absorbed by the skin care product, and that the desired oscillations will occur. Ingredients that can be used to manipulate the acoustical properties of the formulations include (but are not limited to) gelatin, polyoxymethylene urea (PMU), methoxymethyl methylol melamine (MMM), hollow phenolic beads, solid microspheres (spherical styrene/acrylic beads), and calcium aluminum borosilicate (another type of microsphere). It should be noted that some of the above materials are available as hollow microbubbles or solid spheres and either is usable in the present application. An exemplary, but not limiting size range for such spheres/microbubbles is between about 100 nm to about 100 microns. Note that there has been some success in having small nano size particles pass through the skin layer, and that the average pore size in the skin is about 50 microns. Thus, the larger size microspheres in the above-noted range are simply too large to pass through the skin layer, and thus will remain above the skin surface even after oscillations of the microspheres have increased the skin permeability. An exemplary, but not limiting concentration of spheres/microbubbles introduced into the skin care product is about 0.2%. The spheres/microbubbles are added for two primary purposes: to change the acoustic properties of the skin care product, to ensure that the skin care product absorbs acoustic energy as much as practical; and, to increase the permeability of the skin due to the oscillation of the spheres/microbubbles.
In some representative embodiments, the waveguide is incorporated into a removable delivery head (e.g., where the waveguide is included in the delivery head). Of course, an integrated device with no removable components can also be provided for this application.
In some representative embodiments, a motor is configured to energize a vibrational structure at sonic frequencies. Exemplary vibrational elements include conformal pads, bristles, or the delivery head itself. The vibrational element is not required, but may provide a more pleasant user experience. In at least some embodiment, the motor will be controlled to provide pulsations (i.e., motor frequencies) ranging from about 5 kHz to about 10 kHz.
In at least one representative embodiment, no bristles or other elements extend beyond the distal face of the acoustic wave guide, which would contact the user's skin while the applicator is in use.
This Summary has been provided to introduce a few concepts in a simplified form that are further described in detail below in the Description. However, this Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Various aspects and attendant advantages of one or more representative embodiments and modifications thereto will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Representative embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive. No limitation on the scope of the technology and of the claims that follow is to be imputed to the examples shown in the drawings and discussed herein.
In a representative embodiment, the acoustic energy employed has a frequency ranging from about 100 kHz to about 500 kHz. In a first related representative embodiment, the acoustic energy employed has a frequency ranging from about 300 kHz to about 350 kHz. In a second related representative embodiment, the acoustic energy employed has a frequency ranging from about 200 kHz to about 250 kHz. In general, the term ultrasound is employed to refer to sound of a frequency higher than about 20 kHz (i.e., sound outside of the audible range of the human ear). The term acoustic energy encompasses ultrasound, as well as encompassing frequencies not generally referred to as ultrasound.
The concepts disclosed herein utilize ultrasound waveguide technology and sonic vibrations to provide deeper penetration of therapeutic chemicals, such as cleansing and anti-aging products. More particularly, these concepts provide a non-invasive method of compound delivery through the epidermis by means of increasing the permeability of the skin through small hydrophilic channels in the stratum corneum. The channels are naturally occurring, and they become enlarged due to the oscillations.
The human skin has barrier properties, and the stratum corneum (the outer horny layer of the skin) is mostly responsible for these barrier properties. The stratum corneum imposes the greatest barrier to the transcutaneous flux of compounds into the body and is a complex structure of compact keratinized cell remnants separated by lipid domains. It is formed from keratinocytes, which comprise the majority of epidermal cells that lose their nuclei and become corneocytes. These dead cells make up the stratum corneum, which has a thickness of only about 10-30 μm, and which provides a waterproof membrane that protects the body from invasion by external substances, as well as preventing the outward migration of fluids and dissolved molecules.
Traditional applications of creams and lotions just sit on the surface of the skin. Using the concepts disclosed herein, skin care products can now penetrate the skin's surface and go to work to produce visible, desired results. Not only will the skin be extremely clean and rejuvenated (as a result of acoustic scrubbing of the skin surface), the micro-rubbing action will also tighten the skin's surface for a more youthful, toned appearance.
In prior art ultrasonic-based skin treatment devices, a probe is used to apply ultrasonic vibrations to the area of cosmetics application; however, the ultrasonic waves propagate along the skin line or penetrate into a subdermal layer. Significantly, such prior art devices do not focus the acoustic energy at a skin care product disposed between the acoustic applicator and the skin, such that the acoustic energy causes microbubbles in the skin care product to form and/or oscillate. As discussed above, such oscillation enables an active ingredient in the skin care product to penetrate a stratum corneum layer of the skin, such that the active ingredient is delivered to subdermal tissue to improve skin quality.
The cosmetic treatment devices disclosed herein generally include an acoustic waveguide, and an ultrasound transducer assembly. Some representative embodiments include a drive motor for vibrating the delivery head to provide a massage effect (though such vibrations are not a major component of inducing the micro bubble oscillations required to improve skin permeability). The acoustic energy generates bubbly flow and shear stresses at the tissue boundary and improves penetration of the active ingredient across the skin barrier. The combination of the ultrasound transducer and acoustic waveguide focusing the acoustic energy into the skin care product provide an effective cosmetic treatment device, yielding a synergistic treatment effect in combination with the active ingredients in the skin care product.
Skin active agents (i.e., therapeutic agents or active ingredients) to be used in conjunction with the described acoustic applicator can include (individually or in combination):
Referring to
It should be noted that while the waveguide is configured to direct acoustic energy into the skin care product disposed between the applicator and the skin, it is advantageous for the acoustic impedance of the skin care product to enable some of the acoustic energy to pass through the skin care product and into the skin to a depth of about 3.5 mm. The purpose for introducing some acoustic energy into the upper dermal tissue (i.e., about the first 3.5 mm) is not to heat the dermal tissue, or for the acoustic energy to have some physiological effect on that tissue. Rather, the acoustic energy, delivered as a wave or pulse, acts as a driving force that pushes some of the skin care product through the pores that have been opened by the oscillating bubble action in the skin care product. Furthermore, the acoustic energy will also generate shear stresses at the skin layer boundary, further facilitating the absorption of the skin care product.
Including a plurality of matching layers in the waveguide has an advantage. When an acoustic wave encounters a boundary between two layers having a relatively large variance in their respective acoustic impedances, the acoustic wave is reflected at the boundary. Using a plurality of layers enables the acoustic impedance of each layer to be varied gradually, to minimize reflections. The larger the difference in the acoustic impedances of the skin care product and the acoustic source, the more matching layers should be employed to minimize reflections. In at least one embodiment, the acoustic impedance of the skin care product is matched closely enough to the acoustic impedance of the skin boundary, such that reflections at the skin layer boundary are minimized. As noted above, it is desirable to have some of the acoustic energy pass through the skin layer boundary, into the tissue to a depth of about 3.5 mm, to provide a force that pushes the skin care product through the pores opened by the oscillating motion in the skin care product. In other words, the matching layers in the acoustic waveguide directs acoustic energy from the transducer to the skin care product, and the skin care product acts as a matching layer/waveguide to direct some of the ultrasound into the upper layers of the dermal tissue.
Acoustic transducers are often designed to function in a longitudinal mode.
Referring to
The representative applicator discussed above represents just one of many possible applicator embodiments. The following provides a brief discussion of other applicators and embodiments, consistent with the concepts disclosed herein.
In one representative, but not limiting embodiment, the skin care device includes: (1) a single applicator handle having a pulsed acoustic generator and a motor coupled to the support structure, which together provide electrical and mechanical signals to a removable therapy contact; and, (2) at least one removable delivery head. Useful removable delivery heads include: a removable delivery head having an acoustic waveguide in the center surrounded by at least one ring of bristles, each bristle being coupled to a ring connected to the removable delivery head, each ring being configured to rotate upon connection to the motor drive; and, a removable skin care delivery head having an acoustic waveguide in the center, surrounded by a soft conformable pad that forms a pocket when contacting the skin surface, the conformable pad being connected to the removable head contact and providing pulsation when coupled to and driven by the motor drive.
A representative acoustic transducer for use in one or more of the embodiments disclosed herein produces ultrasonic energy at frequencies between 25 KHz and 500 KHz, generating a peak negative acoustic pressure of about 0.1-1 MPa during a single acoustic cycle.
In some applicator embodiments in which a portion of the delivery head is configured to vibrate or rotate, exemplary vibration/rotation parameters include a peak velocity less than 3 m/sec, and a motor frequency 10 kHz
In some representative embodiments, the acoustic waveguide is mounted to and contacts the upper surface of the transducer, and at least a portion of the side walls of the transducer.
In some representative embodiments, the acoustic transducer operates in a pulsed mode where the pulse frequency is not greater than 2 KHz. The acoustic transducer generates sinusoidal acoustic waves of ultrasonic energy at frequencies of less than 500 KHz, and produces a peak negative acoustic pressure between 0.1-1 MPa during one acoustic cycle.
In some representative embodiments, the acoustic transducer includes at least one piezoelectric element.
In some representative embodiments, the acoustic transducer includes a flat, circular piezoelectric element.
In some representative embodiments, the acoustic transducer includes a series of piezoelectric elements arranged in a circular array so that their acoustic emission combines at a natural geometric focus.
In some representative embodiments, the acoustic transducer includes a stack of piezoelectric elements.
In some representative embodiments, the acoustic transducer includes a series of piezoelectric elements arranged in a triangular array so that their acoustic emission combines at a natural geometric focus.
In some representative embodiments, the acoustic transducer includes a piezoelectric element having electrically conductive material on one side of its surfaces.
In some representative embodiments, the acoustic transducer includes a piezoelectric element having acoustically matched material connected to the waveguide.
In some representative embodiments, the acoustic transducer operates to produce ultrasonic energy at frequencies of less than 250 KHz during an acoustic cycle.
In some representative embodiments, the acoustic transducer is pulsed at a pulse frequency of no more than 2 KHz.
In some representative embodiments where a motor is used to vibrate or rotate a portion of the delivery head, the motor operates to rotate and or vibrate the portion at a peak velocity of less than 2 msec during one cycle.
In some representative embodiments where a motor is used to vibrate or rotate a portion of the delivery head, the motor operates to rotate and or vibrate the portion at a frequency of less than 250 KHz.
In some representative embodiments, an ultrasound drive circuit is mounted in the handle and electrically coupled to an ultrasound piezoelectric element comprising the transducer, wherein the ultrasound drive circuit is controlled by a circuit board, receiving power from a rechargeable battery.
In some representative embodiments, a removable delivery head includes an acoustic waveguide disposed in a center of a rotating brush ring.
In some representative embodiments, the delivery head and handle are integrated and non-removable.
In some representative embodiments, the acoustic waveguide is dome shaped.
In some representative embodiments, the acoustic waveguide has a flat circular disk shape.
In some representative embodiments, the acoustic waveguide has a pyramid shape.
In some representative embodiments, the acoustic waveguide has a flat circular spiral shape.
In some representative embodiments, the acoustic waveguide has a flat square shape.
In some representative embodiments, the acoustic waveguide has a triangular shape.
In some representative embodiments, the acoustic waveguide is made from a non-stick material.
In some representative embodiments, the acoustic waveguide is made from a silicon material.
In some representative embodiments, the acoustic waveguide is made from a material acoustically matched to human skin.
In some representative embodiments, the acoustic waveguide is made from a material acoustically matched to the acoustic transducer.
In some representative embodiments, the acoustic waveguide is made from a material acoustically matched to both the acoustic transducer and human skin.
In some representative embodiments, the delivery head includes a rotating brush ring having a set of soft bristles made from nylon or plastic.
In some representative embodiments, the delivery head includes a rotating brush ring having a set of soft bristles made from a soft material suitable for skin contact.
In some representative embodiments, the delivery head includes an acoustic waveguide in the center of a conformable vibrating pad. In such an embodiment, the conformable pad material can be made from a soft, conformable material suitable for skin contact. In at least some related embodiments, the conformable pad provides a 2-3 mm standoff between the skin surface and the waveguide.
In some representative embodiments, the transducer-generated acoustic energy, in combination with the skin care product, results in stable bubble oscillations on the skin surface. In at least some related embodiments, the stable bubble oscillations on the skin surface produce shear stress on the skin surface.
In some representative embodiments, the transducer-generated acoustic energy, in combination with the skin care product, results in stable bubble oscillations in the skin care product. In at least some related embodiments, the stable bubble oscillations in the skin care product produce acoustic streaming in the skin care product.
In some representative embodiments, the transducer-generated acoustic energy, in combination with the skin care product, generates bubbles in the skin care product or on the skin surface.
A representative method consistent with the concepts disclosed herein includes the steps of: (1) providing a safe and therapeutically effective amount of a composition including a skin active agent, the composition having a viscosity ranging from about 500-5000 mPA when measured with a Brookfield rotational viscometer, the composition having from about 0.5 to about 20 parts by weight of water-soluble humectants or a nonionic surfactant, and an aqueous carrier, and/or an absorption activator (benzyl alcohol, sodium laurel sulfate, etc.); and, (2) applying ultrasound to the surface of the skin by an ultrasound applying apparatus. The ultrasound applying apparatus preferably includes an application element for applying ultrasound at a frequency of from about 25 KHz and 500 kHz to the skin and a control element for controlling application conditions of the application element. In such a method, the composition is used as a medium for applying ultrasound to the skin by the ultrasound applying apparatus.
In at least one related method, the composition is formulated with at least one chemical designed to enhance bubble formation by ultrasound energy.
In at least one related method, the composition is formulated with at least one chemical designed to enhance the production of shear stress on the skin surface by ultrasound energy.
In at least one related method, the composition is formulated with at least one chemical designed to enhance the production of acoustic streaming in the composition by ultrasound energy.
A representative (but not limiting) skin therapy system includes an ultrasonic transducer acoustically coupled to a skin care product applied to human skin through the use of an acoustic waveguide. The acoustic waveguide includes one or more matching layers designed to focus the acoustic energy into the skin care product applied to human skin. The acoustic properties of the waveguide are designed to maximize acoustic absorbance in the skin care product applied to human skin, by matching the impedance of the transducer, acoustic waveguide, and the skin care product. The acoustic energy enhances the absorption of at least one of the active ingredients of the skin care product into the skin.
A representative waveguide for such a system has an acoustic impedance of about 0.5-3.5 MRayls in a frequency range of about 100 KHz-2 MHz. Upon propagation through the waveguide, the acoustic intensity of ultrasonic energy in the skin care product applied to human skin is in the range of about 0.1 W/cm2−1 W/cm2.
Another representative waveguide for such a system has an acoustic impedance of about 0.5-3.5 MRayls in a frequency range of about 100 KHz-2 MHz. Upon propagation through the waveguide, the acoustic intensity of ultrasonic energy in the skin care product applied to human skin is in the range of about 0.01 W/cm2−1 W/cm2.
A representative skin care device consistent with the concepts disclosed herein includes a single applicator handle in which are disposed a pulsed acoustic generator and a motor coupled to a support structure, which together provide electrical and mechanical signals to a removable and interchangeable delivery head contact.
Such a representative skin care device can include an acoustic transducer acoustically coupled to an acoustic waveguide that produces ultrasonic energy at frequencies in the range from about 100 kHz to about 2 MHz, producing peak negative acoustic pressures of about 0.1-1 MPa during one acoustic cycle.
Such a representative skin care device can include a removable and interchangeable skin care delivery head having an acoustic waveguide surrounded by a soft conformable pad that forms a pocket when contacting the skin surface. The conformable pad is connected to the removable and interchangeable head contact and provides vibration upon being drivingly driven by the motor drive. In at least one related embodiment, the soft conformable pad exhibits the following properties: a durometer ranging from 75 Shore A to 20 Shore A, with a particularly desired durometer being about 40 Shore A. Physical properties of exemplary silicone coverings are as follows: Durometer 40 Shore A; Tensile Strength 800 lb/in2; Elongation 220%; and, Temperature Resistance 400° F. constant.
Such a representative skin care device can include brushes and/or one or more conformable pads included in the delivery head portion, such elements being coupled to the support structure via the removable and interchangeable head contact, which connects them to the motor drive. In operation, the peak vibration motor frequency will be 10 kHz and the peak velocity will be less than 3 m/second.
Such a representative skin care device can include an acoustic waveguide mounted to and contacting an upper surface of the transducer and at least a portion of the side walls of the transducer.
Such a representative skin care device can include an acoustic transducer including at least one piezoelectric element operating in a pulsed mode, where the pulse frequency is not greater than about 2 kHz. In at least one related embodiment, the acoustic transducer generates an acoustic waveform of ultrasonic energy at frequencies of less than 2 MHz and produces a peak negative acoustic pressure between about 0.1-1 MPa during one acoustic cycle.
Such a representative skin care device can include an acoustic transducer based on a series of piezoelectric elements arranged in an array so that their acoustic emission combines at a natural geometric focus.
Such a representative skin care device can include an acoustic transducer based on a stack of individual piezoelectric elements.
Such a representative skin care device can include an acoustic transducer based on a series of piezoelectric elements driven in a radial mode.
Such a representative skin care device can include an acoustic transducer based on a single piezoelectric element driven in a radial mode.
Such a representative skin care device can include an acoustic transducer operated to produce ultrasonic energy at frequencies of less than about 2 MHz during an acoustic cycle.
Such a representative skin care device can include an acoustic transducer operated to produce ultrasonic energy pulsed at a pulse frequency less than 2 kHz.
The motor in such a representative skin care device can be configured to rotate and or vibrate a portion of the removable head at a peak velocity of less than about 3 m/second during one cycle and at a motor frequency 10 kHz.
Such a representative skin care device can include an ultrasound drive circuit mounted in the handle and electrically coupled to the ultrasound piezoelectric element comprising the transducer, wherein the ultrasound drive circuit is controlled by a circuit board, receiving power from a rechargeable battery.
A representative skin care product is formulated to provide an acoustic impedance matching that of the acoustic transducer and the acoustic waveguide, to enhance the absorption of at least one active ingredient in the skin care product into the skin. Such a skin care product can be a cream, a gel, or a serum.
Such a representative skin care product can be formulated to provide an acoustic impedance in the range of about 0.5-3.5 MRayls.
Such a representative skin care product can be formulated with at least one ingredient designed to enhance bubble formation by ultrasound energy.
Such a representative skin care product can be formulated with at least one ingredient selected to enhance the production of shear stress on the skin surface in response to ultrasound energy.
Such a representative skin care product can be formulated with at least one type of hollow microbubbles or solid microspheres. Representative hollow microbubbles include collagen microbubbles and albumen microbubbles.
Although the concepts disclosed herein have been described in connection with the preferred form of practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
This application is continuation of U.S. application Ser. No. 12/487,538, filed Jun. 18, 2009, which claims the benefit of U.S. Provisional Application No. 61/073,670, filed Jun. 18, 2008, the disclosures of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61073670 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12487538 | Jun 2009 | US |
Child | 13400027 | US |