Conventional percutaneous cardiac valve replacement procedure relies on Trans-Esophageal Echocardiography (TEE) in combination with Fluoroscopy for guiding the valve into position where it is to be deployed. It is easy to see the tissue and the anatomical landmarks on the ultrasound image, but difficult to visualize the valve and its deployment catheter. Conversely, it is easy to see the valve and catheter on the fluoroscopy image, but difficult to clearly see and differentiate the tissue. Since neither imaging modality provides a clear view of both the anatomy and the valve, it difficult to determine exactly where the valve is with respect to the relevant anatomy. This makes positioning of the artificial valve prior to deployment quite challenging.
Relevant background material also includes U.S. Pat. Nos. 4,173,228, 4,431,005, 5,042,486, 5,558,091, and 7,806,829, each of which is incorporated herein by reference.
One aspect of the invention is directed to a method of positioning a device in a patient's body using an ultrasound probe and a device installation apparatus. The ultrasound probe includes an ultrasound transducer that captures images of an imaging plane and a first position sensor mounted so that a geometric relationship between the first position sensor and the ultrasound transducer is known. The device installation apparatus includes the device, a device deployment mechanism, and a second position sensor mounted so that a geometric relationship between the second position sensor and the device is known. This method includes the steps of detecting a position of the first position sensor and detecting a position of the second position sensor. The device's position is determined with respect to the imaging plane based on (a) the detected position of the first position sensor and the geometric relationship between the first position sensor and the ultrasound transducer and (b) the detected position of the second position sensor and the geometric relationship between the second position sensor and the device. Images of the imaging plane are displayed, and an indication of the device's position with respect to the imaging plane is outputted.
Another aspect of the invention is directed to an apparatus for determining a position of a device in a patient's body using an ultrasound probe and a device installation apparatus. The ultrasound probe includes an ultrasound transducer that captures images of an imaging plane and a first position sensor mounted so that a geometric relationship between the first position sensor and the ultrasound transducer is known. The device installation apparatus includes the device, a device deployment mechanism, and a second position sensor mounted so that a geometric relationship between the second position sensor and the device is known. This apparatus includes an ultrasound imaging machine that drives the ultrasound transducer, receives return signals from the ultrasound transducer, converts the received return signals into 2D images of the imaging plane, and displays the 2D images. It also includes a position tracking system that detects a position of the first position sensor, detects a position of the second position sensor, reports the position of the first position sensor to the ultrasound imaging machine, and reports the position of the second position sensor to the ultrasound imaging machine. The ultrasound imaging machine includes a processor that is programmed to determine the device's position with respect to the imaging plane based on (a) the detected position of the first position sensor and the geometric relationship between the first position sensor and the ultrasound transducer and (b) the detected position of the second position sensor and the geometric relationship between the second position sensor and the device. The processor is also programmed to output an indication of the device's position with respect to the imaging plane.
Another aspect of the invention relates to an ultrasound probe for use with an ultrasound system. The probe includes a housing having a flexible shaft and a distal end, an ultrasound transducer housed within the distal end of the housing, an interface that permits the transducer to be driven by the ultrasound system, and a position sensor disposed in the distal end of the housing so that a geometric relationship between the position sensor and the ultrasound transducer is known. In some embodiments, the geometric relationship is permanently fixed by mounting the ultrasound transducer in a fixed position with respect to the housing and by mounting the position sensor in a fixed position with respect to the housing. And in some embodiments, the ultrasound transducer is a phased array ultrasound transducer with a plurality of elements that are configured so that the elements can be driven individually and independently, with the elements of the ultrasound transducer stacked so that each element is displaced in an azimuthal direction with respect to at least one adjacent element.
In the illustrated embodiment, the position sensor is located on the proximal side of the ultrasound transducer 12 by a distance d1 measured from the center of the ultrasound transducer 12 to the center of the position sensor 15. In alternative embodiments, the position sensor 15 can be placed in other locations, such as distally beyond the ultrasound transducer 12, laterally off to the side of the ultrasound transducer 12, or behind the transducer 12. In embodiments that place the position sensor 15 behind the transducer, smaller sensors are preferred to prevent the overall diameter of the ultrasound probe 10 from getting too large.
However, in addition to the conventional components described above, a position sensor 25 is added, together with associated wiring to interface with the position sensor 25.
The position sensor 25 is located in a position on the valve installation apparatus 20 that has a known geometric relationship with the valve 23. For example, as shown in
In alternative embodiments, the position sensor 25 can be placed in other locations, such as on the deployment mechanism 22 or on the delivery sheath 24. In still other alternative embodiments, the position sensor 25 could be positioned on the valve 23 itself (preferably in a way that the position sensor 25 is released when the valve is deployed). However, the position sensor 25 must be positioned so that its relative position with respect to the valve 23 is known (e.g., by placing it at a fixed position with respect to the valve 23). When this is done, it becomes possible to determine the position of the valve 23 by adding an appropriate offset in three dimensional space to the sensed position of the sensor 25.
Commercially available position sensors may be used for the position sensors 15, 25. One example of a suitable sensor is the “model 90” by Ascension Technologies, which are small enough (0.9 mm in diameter) to be integrated into the distal end of the probe 10 and the valve installation apparatus 20. These devices have previously been used for purposes including cardiac electrophysiology mapping and needle biopsy positioning, and they provide six degrees of freedom information (X, Y, and Z Cartesian coordinates) and orientation (azimuth, elevation, and roll) with a high degree of positional accuracy.
Other examples include the sensors made using the technology used by Polhemus Inc. The various commercially available systems differ in the way that they create their signal and perform their signal processing, but at long as they are small enough to fit into the distal end of an ultrasound probe 10 and the valve installation apparatus 20, and can output the appropriate position and orientation information, any technology may be used (e.g., magnetic-based technologies and RF-based systems).
In
The ultrasound imaging machine 30 interacts with the transducer in the distal of the probe 10 to obtain 2D images in a conventional matter (i.e., by driving the ultrasound transducer, receiving return signals from the ultrasound transducer, converting the received return signals into 2D images of the imaging plane, and displaying the 2D images). But in addition to the conventional connection between the ultrasound imaging machine 30 and the transducer in the distal end of the probe 10, there is also wiring between the position tracking system 35 and the position sensor 15 at the distal end of the ultrasound probe. In the embodiment that uses Ascension model 90 position sensors, an Ascension 3D Guidance Medsafe™ electronics unit may be used as the position tracking system 35. Since the wiring between the position tracking system 35 and the position sensor is built into the model 90 sensor, the model 90 sensor may be integrated into the distal end of an ultrasound probe 10 in a way that permits the connector at the proximal end of the model 90 sensor to branch over to the position tracking system 35. In alternative embodiments, the proximal end of the ultrasound probe 10 may be modified so that a single connector that terminates at the ultrasound imaging machine 30 can be used, with appropriate wiring added to route the signals from the position sensor 15 to the position tracking system 35.
A similar position sensor 25 is also disposed at the distal end of the valve installation apparatus 20. A connection between the position sensor 25 and the position tracking system 35 is providing by appropriate wiring that runs from the distal end of the apparatus through the entire length of apparatus and out of the patient's body, and from there to the position tracking system 35. Suitable ways for making the electrical connection between the position tracking system 35 and the position sensor 25 will be apparent to person skilled in the relevant arts. Note that since the distal end of the valve installation apparatus 20 is positioned in the patient's heart during deployment, the wiring must fit within the catheter that delivers the valve installation apparatus 20 to that position, which is typically positioned in the patient's arteries.
With this arrangement, the position tracking system 35 can determine the exact position and orientation in three-dimensional space of the position sensor 15 at the distal end of the ultrasound probe and of the position sensor 25 at the distal end of the valve installation apparatus 20. The position tracking system 35 accomplishes this by communicating with the position sensors 15, 25 via the transmitter 36 which is positioned outside the patient's body, preferably in the vicinity of the patient's heart. This tracking functionality is provided by the manufacturer of the position tracking system 35, and it provides an output to report the position and orientation of the sensors.
A processor (not shown) uses the hardware depicted in
Referring now to
The position tracking system 35 also determines the position of the position sensor 25 at the distal end of the valve installation apparatus 20. That position is depicted as point 45 in
The processor then sends the signed value of Z and the coordinates of point 46 to the software object in the ultrasound imaging machine 30 that is responsible for generating the images that are ultimately displayed. That software object is modified with respect to conventional ultrasound imaging software so as to display the location of point 46 on the ultrasound image. This can be accomplished, for example, by displaying a colored dot at the position of point 46 on the XY plane 43. The modifications that are needed to add a colored dot to an image generated by a software object will be readily apparent to persons skilled in the relevant arts.
Preferably, the distance Z is also displayed by the ultrasound imaging machine 30. This can be accomplished using any of a variety of user interface techniques, including but not limited to displaying a numeric indicator of the value of Z to specify the distance in front of or behind the XY imaging plane 43, or displaying a bar graph whose length is proportional to the distance Z and whose direction denotes the sign of Z. In alternative embodiments other user interface techniques may be used, such as relying on color and/or intensity to convey the sign and magnitude of Z to the operator. The modifications that are needed to add this Z information to the ultrasound display will also be readily apparent to persons skilled in the relevant arts.
When the system is configured in this way, during use the operator will be able to see the relevant anatomy by looking at the image that is generated by the ultrasound imaging machine 30. Based on the position of the dot representing point 46 that was superposed on the imaging plane, and the indication of the value of Z, the operator can determine where the position sensor 25 is with respect to the portion of the patient's anatomy that appears on the display of the ultrasound imaging machine 30.
Based on the known geometric offset between the position sensor 25 and the valve 23, the operator can use the image displayed by the ultrasound imaging machine 30, the position point 46 that is superposed on that image, and the display of Z information to position the valve at the appropriate anatomical location.
In alternative preferred embodiments, instead of having the operator account for the offset between the position sensor 25 and the valve 23, the system is programmed to automatically offset the displayed value of the Z by the distance d2, which eliminates the need for the operator to account for that offset himself. In these embodiments, the procedure of valve deployment becomes very simple. The valve installation apparatus 20 is snaked along the blood vessel until it is in the general vicinity of the desired position. Then, the operator aligns the imaging plane with the a cross sectional view of the desired position within the patients original valve that is being treated by, for example, advancing or retracting the distal end of an ultrasound probe 10, and/or flexing a bending section of that probe. An indication that the proper position has been reached is when (a) the imaging plane displayed on the ultrasound imaging machine 30 depicts the desired position within the patients original valve, (b) the position marker 46 that is superposed on the ultrasound image indicates that the valve is aligned within the desired position of the valve, and (c) the Z display indicates that Z=0. After this, the deployment mechanism 22 can be triggered (e.g., by inflating a balloon), which deploys the valve.
In the above-described embodiments, the information is presented to the user in the form of a conventional 2D ultrasound image with (1) a position marker added to the image plane to indicate a projection of the valve's location onto the image plane and (2) and indication of the distance between the valve and the image plane. In alternative embodiments, different ways to help the user visualize the position of the valve with respect to the relevant anatomy may be used.
One such approach is to make a computer-generated model of an object in 3D space, in which the object incorporates both the valve and the 2D imaging plane that is currently being imaged by the ultrasound system. Using a suitable user interface, the user can then view the object from different perspectives using 3D image manipulation techniques that are commonly used in the context of computer aided design (CAD) systems and gaming systems. A suitable user interface, which can be implemented using any of a variety of techniques used in conventional CAD and gaming systems, then enables the user to view the object from different perspectives (e.g., by rotating the object about horizontal and/or vertical axes).
Preferably, the object can be rotated by the user to help the user better visualize the location of the position sensor 25 in 3D space. Assume, for example, that the position sensor 25 remains at the location that caused the system to paint the cylinder 51 at the location shown in
In alternative embodiments, instead of having the cylinder 51 represent the position of the position sensor, the cylinder 51 can be used to represent the position of the valve that is being deployed. In these embodiments, the cylinder would be painted onto the object at a location that is offset from the location of the position sensor 25 based on the known geometric relationship between the valve and the position sensor 25. Optionally, instead of using a plain cylinder 51 in these embodiments, a more accurate representation of the shape of the undeployed valve can be displayed at the appropriate position within the 3D object.
Optionally, the system may be programmed to display the object in an anatomic orientation upon request from the user (e.g., in response to a request received via a user interface), which would show the imaging plane at the same orientation in which imaging plane is physically oriented in 3D space. For example, assuming the patient is lying down and the ultrasound transducer is used to image the patient's heart 62, if the imaging plane 63 of the ultrasound transducer is canted by about 30°, and spun by an angle of about 10°, as shown in
Optionally, proximity of the ultrasound imaging plane 53 can be indicated by modifying the color and/or size of the rendered cylinder, adding graphics onto or in proximity of the sensor display (e.g., a circle with a radius that varies proportionally with the distance between the sensor and the imaging plane), or a variety of alternative approaches (including but not limited to numerically displaying the actual distance).
Optionally, the techniques described above can be combined with conventional fluoroscopic images, which may be able to provide additional information to the operator, or as a double-check that the valve is properly positioned.
The techniques described above advantageously help determine the position of the valve relative to the tissue being visualized in the imaging plane, and improve the confidence of the correct placement of the valve when deployed. The procedures can also eliminate or at least reduce the amount of fluoroscopy or other x-ray based techniques, advantageously reducing the physician's and patient's exposure to same.
The concepts discussed above can be used with any type of ultrasound probe that generates an image, such as Trans-Esophageal Echocardiography probes (e.g., those described in U.S. Pat. No. 7,717,850, which is incorporated herein by reference), Intracardiac Echocardiography Catheters (e.g., St. Jude Medical's ViewFlex™ PLUS ICE Catheter and Boston Scientific's Ultra ICE™ Catheter), and other types of ultrasound imaging devices. The concepts discussed above can even be used with imaging modalities other than ultrasound, such as MRI and CT devices. In all these situations, one position sensor is affixed to an imaging head in a fixed relationship with an image plane, and another position sensor is affixed to the prosthesis or other the medical device that is being guided to a position in the patient's body. The fixed relationship between the position sensor and the image plane can be used as described above to help guide the device into the desired position.
Note that while the invention is described above in the context of installing heart valves, it can also be used to help position other devices at the correct locations in a patient's body. It could even be used in non-medical contexts (e.g., guiding a component to a desired position within a machine that is being assembled).
Finally, while the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention.
This application claims priority to U.S. Provisional Application 61/474,028, filed Apr. 11, 2011, U.S. Provisional Application 61/565,766, filed Dec. 1, 2011, and U.S. application Ser. No. 13/410,449, filed Mar. 2, 2012, each of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US12/31254 | 3/29/2012 | WO | 00 | 10/4/2013 |
Number | Date | Country | |
---|---|---|---|
61474028 | Apr 2011 | US | |
61565766 | Dec 2011 | US | |
61565766 | Dec 2011 | US | |
61474028 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13410449 | Mar 2012 | US |
Child | 14009908 | US |