The present disclosure relates generally to medical ultrasound imaging systems for visualizing soft tissue organs in the interior regions of the body. More particularly, the present disclosure relates to an ultrasound transducer assembly having improved thermal management.
Ultrasound imaging is a medical diagnostic imaging which permits the visualization of soft tissue organs in the interior regions of the body. An ultrasound imaging process generally involves placing an ultrasound transducer assembly or transducer probe against the skin of a patient near the region of interest, such as, for example, against the back to image the kidneys.
The ultrasound transducer assembly is operable to transmit ultrasound energy along a propagation path and includes a transducer array and corresponding electrical circuitry in operative communication with the transducer array. Despite its success and overall acceptance as a preferred technique for non-invasively imaging a number of soft tissue organs, the design of an ultrasound transducer assembly presents a number of challenges. In particular, ultrasound transducer assembly requires a thermal management system in order to limit the surface temperature of the ultrasound transducer assembly by managing the heat generated by the transducer array and corresponding electrical circuitry. In addition, there are regulatory and safety requirements that must be satisfied in order to sustain optimal performance of the ultrasound transducer assembly. For example, it is desirable that the housing of the ultrasound transducer assembly be comfortably cool to prevent excess perspiration in the hand of the operator.
Moreover, as new innovations in the design of ultrasound transducer assemblies are developed, such as, for example, microbeam forming technology, it is increasingly important to incorporate an effective and economical thermal management system in the ultrasound transducer assembly in order to ensure proper functioning of the ultrasound transducer assembly.
To address these concerns, thermal management of ultrasound transducer assemblies has long been an important issue in the design of ultrasound transducer assemblies. There is significant prior art describing various methods to transport heat energy generated by the ultrasound transducer assembly elements. For example, one method makes use of passive cooling mechanisms wherein the heat energy generated by the ultrasound transducer housed by the ultrasound transducer assembly is passively dissipated to a heat sink usually, the cable and/or the housing. However, passive cooling mechanisms can be ineffective in removing heat energy from multiple, localized regions of the ultrasound transducer assembly. A second method incorporates active cooling mechanisms generally in fluid communication with external cooling fluids. An active cooling mechanism incorporates fans, suction devices, pumps, and/or other energy consuming means to dissipate heat from the ultrasound transducer assembly. Active cooling systems are expensive and include elaborate cooling devices. Examples of active cooling mechanisms are described in U.S. Pat. No. 5,560,362 issued to Sliwa Jr., et al.
The present disclosure obviates the disadvantages of the prior art by providing an ultrasound transducer assembly having a self-contained cooling system thermally coupling multiple heat sources in the ultrasound transducer to a heat sink. The ultrasound transducer assembly further includes a thermoelectric cooler thermally coupled to the ultrasound transducer for augmenting the heat transfer process.
The present disclosure provides improved thermal management of an ultrasound transducer assembly. In particular, the present disclosure provides an ultrasound transducer assembly adapted to effectively manage the thermal energy it generates. The ultrasound transducer assembly of the present disclosure includes an ultrasound transducer operable to transmit ultrasound energy along a propagation path. The ultrasound transducer includes a transducer array and corresponding electric circuitry in operable communication with the transducer array; and a cooling system thermally coupling at least one of the transducer array and the corresponding electrical circuitry to at least one heat sink. The cooling system defines a low resistance heat flow path from the sources within the transducer to the sink(s) and maintains the direction of heat flow in a direction substantially opposite the propagation path of the ultrasound energy.
In one aspect of the presently disclosed ultrasound transducer assembly, the heat transfer process is augmented by the addition of a thermoelectric cooler positioned in thermal communication with the ultrasound transducer assembly. More in particular, the thermoelectric cooler is thermally coupled with the corresponding electrical circuitry. The thermoelectric cooler is activated when the temperature of the electrical circuitry is higher than the temperature of the transducer array which would cause heat to propagate toward the patient applied surface. The thermoelectric cooler is adapted to bias the temperature of the corresponding electrical circuitry lower than the transducer array temperature to prevent heat conduction from the electrical circuitry toward the transducer array. Thus, the self-contained cooling system provides for minimum thermal resistance while the thermoelectric cooler maintains the heat flow in the positive direction (towards one or more heat sinks) by maintaining a positive thermal gradient between the array and the heat sink.
Preferably, in an alternative embodiment, the transducer array and the corresponding electrical circuitry may be combined into one integral assembly. Thus, the thermal load generated by the transducer array and the corresponding electrical circuitry are combined into a compact space. The self-contained cooling system thermally couples these combined loads to the at least one heat sink.
The ultrasound transducer assembly of the present disclosure further includes a housing, and a cable assembly for connecting the ultrasound transducer assembly to an imaging station. The thermal conductivity of the housing may be enhanced by material selection, i.e. the housing is constructed of a thermally conductive material, such as, for example, loaded-thermally conductive polymer and/or metal. Alternatively, the thermal conductivity of the housing may be increased by internal metallization of a traditional unfilled polymer. In a preferred embodiment, the at least one heat sink may be the housing and/or the cable assembly.
A method of dissipating thermal energy generated by an ultrasound transducer assembly is also envisioned. The method includes the steps of providing a self-contained cooling system within an ultrasound transducer assembly thermally coupling at least one of an ultrasound transducer array and corresponding electrical circuitry of the ultrasound transducer array to at least one heat sink. The self-contained coolant system includes at least one heat transfer member partially filled with a working fluid and defines a heat flow path from at least the ultrasound transducer array and the corresponding electrical circuitry to the at least one heat sink via the at least one heat transfer member. The method further includes enabling the thermal energy to propagate along the heat flow path during operation of the ultrasound transducer assembly, such that the heat flow path propagates the thermal energy in a direction opposite an ultrasound propagation path of the ultrasound transducer assembly. The method further includes the step of providing a thermoelectric cooler thermally coupled with the corresponding electrical circuitry of the ultrasound transducer array in order to maintain heat flow in a direction substantially opposite the propagation of ultrasound energy.
Other features and advantages of the present disclosure will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principals of the invention.
The foregoing features of the present disclosure will become more readily apparent and will be better understood by referring to the following detailed description of preferred embodiments, which are described hereinbelow with reference to the drawings wherein:
The medical ultrasound imaging system of the present disclosure provides an ultrasound transducer assembly having improved thermal management. The ultrasound transducer assembly includes an ultrasound transducer array and corresponding electrical circuitry and is adapted for transmitting ultrasound energy along a propagation path. Moreover, the ultrasound transducer assembly of the present disclosure is capable of conducting heat from all heat sources within the assembly, i.e. ultrasound transducer array and corresponding electrical circuitry, to at least one heat sink.
Referring now in detail to the drawing figures, in which like reference numerals identify similar or identical elements, a medical ultrasound imaging system in accordance with the present disclosure is illustrated, and is designated generally as ultrasound imaging system 200. In the following description, as is traditional, the term “proximal” refers to the portion of the instrument closest to the operator, while the term “distal” refers to the portion of the instrument remote from the operator.
Referring initially to
With continued reference to
With reference now to
Ultrasound transducer assembly 202 further includes a self-contained cooling system 110 thermally coupling the transducer array 104 and corresponding electrical circuitry 106 to heat sink 112. The primary function of self-contained cooling system 110 is the thermal management of multiple heat sources in ultrasound transducer 202, i.e. transducer array 104 and corresponding electrical circuitry 106. Alternatively, self contained cooling system 110 thermally couples one of transducer array 104 or corresponding electrical circuitry 106 to heat sink 112. Self-contained cooling system 110 conducts heat from transducer array 104 and corresponding electrical circuitry 106 to heat sink 112. Self-contained cooling system 110 defines a heat flow path (depicted by directional arrow “Q+”). The propagation path of the ultrasound energy generated by ultrasound transducer assembly 202 is opposite in direction to the heat flow path defined by self-contained cooling system 110. Preferably, the components of the self-contained cooling system 110 include materials with large thermal conductivity, i.e. low thermal resistance, such as, for example, copper.
With continued reference to
The thermal conductivity of the housing 102 may be enhanced by material selection, i.e. the housing is constructed of a thermally conductive material, such as, for example, loaded-thermally conductive polymer and/or metal. Alternatively, the effective thermal conductivity of the housing 102 may be increased by internal metallization of a traditional unfilled polymer.
Thermoelectric cooler 114 may be included in order to augment the heat transfer process of self-contained cooling system 110. Thermoelectric cooler 114 is thermally coupled in the cooling system between the source(s) and the sink(s). Thermoelectric cooler 114 may be any thermoelectric cooler having a closed DC circuit and suitable for use in applications where temperature cooling is desired. As shown in the figures, thermoelectric cooler 114 includes a hot surface 114h and a cold surface 114c. Cold surface 114c is thermally coupled to a heat source such as, for example, electrical circuitry 106. Hot surface 114h is thermally coupled to heat sink 112. In the embodiment shown in
Thermoelectric cooler 114 is activated when the temperature of the electrical circuitry 106 is higher than the temperature of the transducer array 104. In addition, other criteria such as array temperature and imaging mode may be used to activate the active cooling system. Thus, thermoelectric cooler 114 will bias the temperature of the electrical circuitry 106 lower than the temperature of transducer array 104 to prevent heat flow from the electrical circuitry to the array structure, i.e., in a direction opposite the direction shown by directional arrow “Q+”.
With particular reference to
It will be understood that various modifications and changes in form and detail may be made to the embodiments of the present disclosure without departing from the spirit and scope of the invention. Therefore, the above description should not be construed as limiting the invention but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision other modifications within the scope and spirit of the present invention as defined by the claims appended hereto. Having thus described the invention with the details and particularity required by the patent laws, what is claimed and desired protected is set forth in the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/051228 | 4/20/2006 | WO | 00 | 10/25/2007 |
Number | Date | Country | |
---|---|---|---|
60674494 | Apr 2005 | US |