The present invention is related to the removal of bio-scales in the hulls of marine vessels that carry out offshore operations and transport of crude and derivatives. More particularly, the present invention is related to a teleoperated underwater robot that contains a built-in residue containment and capture system to act on bio-scales, normally containing invasive species from other oceans, such as Sun Coral.
The present invention proposes in its broadest form a marine bio-scaling removal system predominantly composed of calcareous organisms with a rigid skeleton such as stony or scleractinous corals, with the possibility of the presence of fibrous organisms, up to 30 centimeters thick, here designated macro-scaling, and sending the bio-residue generated after removal to a remote modular unit for treatment of the generated effluent.
Marine bio-scaling occurs on FPSO hulls, semi-submersible platforms, support/service vessels and similar ship hulls, and may be up to 30 centimeters thick. This thick layer increases resistance to slipping in water and, consequently, fuel consumption, as well as causing corrosion on the surface, in addition to increasing the weight of the vessel.
Due to the development of bio-scaling on vessels, platforms and floating structures in general, these bulkheads are one of the main vectors of dispersion and introduction of exotic species in the marine environment. The aim is to contain and control the population of these proliferative species due to the potential impacts on native species, which may reduce or affect the biodiversity of the Brazilian coast.
One of the main invaders of Brazilian biodiversity is Sun Coral, from the Pacific Ocean, known since the 80s, for having invaded the rocky shores of the coast. Some studies have proven that sun coral is an efficient invader, with rapid growth. The sun coral modifies the invaded environment, creating a favorable environment for its permanence, and, for that, it produces harmful chemical substances, which excludes some actors of the native fauna and flora. The sun coral was also observed killing native coral species, some even endemic to Brazil, competing with species of economic value, such as the mussel, affecting primary and coastal productivity (fisheries and sea resources), thus harming a source of food.
National laws require the identification, monitoring and elimination of non-native organisms that have settled in natural areas of biological importance. The aim is to eliminate these proliferative species due to the impacts on native species, which may reduce or affect the biodiversity of the Brazilian coast. This motivation created the need of designing a robot that promotes the removal and collection of vectors that use the hull of vessels to spread around the world, compromising in this case the marine habitat of the country.
The scales interfere negatively because they bring an additional load to a design that, possibly, did not take into account such excess weight, bringing structural and/or stability problems (buoyancy).
Scaled ships suffer from increased drag (greater friction with water), and have their displacement speed reduced, increasing fuel consumption.
The hulls range from flat geometries with large radius of curvature to more complex geometries with niche areas, such as riser counters, hull protection structures, structural reinforcements, areas of difficult access, etc.
Commonly, the removal of bio-scaling both on the hull and in difficult places is performed by divers equipped with appropriate tools, and the removed material may not be completely withdrawn, but rather left in the environment. The operation presents risks for the operator due to the large extension and irregularities of the surface, as well as for the environment, since invasive species and fragments of surface paint containing heavy metals or other harmful substances spread in the environment, disrupting the balance of that subsystem.
The development of technologies that do not require human diving is essential to provide safer operations. In this context, the design of a robotic system for the removal of bio-scaling presents itself as an excellent alternative for reducing costs and human exposure to this type of operation. Likewise, it is important that the system is coupled to an effluent treatment module containing bio-scaling, which guarantees the proper disposal of solid residues generated and return of liquid effluent to the sea (free of living organisms), preventing the proliferation of exotic species. With the development of technologies, it is currently possible to replace human labor in this activity, thus providing a more efficient and safer operation.
Current systems that could meet this task were found in documents U.S. Pat. No. 7,905,192B1, WO2019028562A1, JP2008018745A, WO2018096214A1, GB2528871A and US20140230711, but have a number of limitations for the technical problem presented here, so that simple adaptations of the solutions disclosed in these documents would not be adequate for the removal of macro-scales, here called scales of up to 30 centimeters, but for the removal of thinner bio-scaling, predominantly formed by algae, mussels and barnacles, here designated micro-scale.
The system claimed in document U.S. Pat. No. 7,905,192B1 comprises an integrated cleaning and treatment system comprising a vehicle consisting of a compartment provided with brushes for removing bio-scaling and a compartment for separating solids from bio-scaling, and these solids are pumped to a station for treatment by means of a flexible hose. This vehicle needs to be driven by an operator, the mechanical strength of the brush bristles is considered low due to its slenderness index, which limits the removal in the body of calcium carbonate, in particular, sun coral; adding to this factor, there is the capture that is connected to a pump without the intermediary of a crusher, which causes a low flow of solid/liquid or a total obstruction of the system.
Document WO2019028562A1 discloses a self-propelled machine guided by an operator for removing bio-scaling that is connected to a treatment unit, although this unit is not included in the invention.
Document JP2008018745A refers to an underwater cleaning robot to remove organisms such as blue mussels and red barnacles growing on a submerged surface. The locomotion system of said robot is carried out by thrusters and guide wheels. The forces generated by the thrusters are used to press the robot against the surface to be cleaned, generating a fluid dynamic disturbance, which is a major inconvenience, as it generates vibrations in the water causing some coral species to potentially release their planulae into the environment. This underwater cleaning robot includes a scraping device that scrapes off the living organism that has settled on the surface of the wall. The underwater cleaning robot sucks up the organisms scraped by the scraping device. A crushing device crushes the organisms that are sucked through a suction port in a storage unit.
The crushing device described in this document JP2008018745 is configured by a rotating crushing drum positioned in an earlier stage and a rotating shearing drum positioned in a subsequent stage of the rotating crushing drum. The disclosed crushing system has a design that is not suitable for crushing macro-scales, such as sun coral, as the sectioned material is not reduced in size before being sent to the rollers, which could cause clogging. There is a grip limitation by the rollers of larger particles, which is a characteristic of macro-scales, in particular, of coral colonies whose structural strength is greater than that of adhesion to the hull, increasing the possibility of detaching entire colonies during removal. Adding to this, there is the fact that the solid particles have heterogeneous characteristics, containing algae, fibrous and carbonaceous elements, favoring the obstruction of the passage destined for the passage of water, causing the obstruction of the system. In the proposed system, object of the present invention, this phenomenon does not happen due to the fact that the reduction of macro-scaling particles size happens in a staggered way or simultaneously by means of shearing devices besides the existence of devices that avoid the obstruction of the removal, capture and crushing system as can be seen in the detailed description below.
In a flow of a two-phase system, the solid particles have their residence time longer than the liquid phase when they pass through the rollers during crushing. In this way, the fluid flow rate is reduced due to the generated obstruction, compromising the capture efficiency, which is enhanced when there are rollers in series. In addition, when the fragments do not reach the desired sizes, they are recirculated through the crushers again, increasing head loss and reducing the overall efficiency of the system.
Document WO2018096214A1 discloses an ROV device for maintenance of underwater marine vessels that is capable of traveling over a ferrous surface. The ROV device has a continuous track that grips the ferrous surface with electromagnets, while the apparatus performs maintenance tasks on the vessel hull. The ROV can be used for selecting subsea tasks for marine vessels, such as cleaning or inspecting ship hulls. The ROV can carry various devices for various purposes, such as cameras, suction ports, brushes, lights, UV lights, sonars or devices for underwater analysis or surveillance. The ROV may comprise an umbilical cord connected to the host, for example on the ship deck which carries information or consumables such as electrical power between the ROV and the host. The umbilical cord can deliver debris or scales detached from the hull or helix to the host for further residue management. Debris can be filtered and collected, thus allowing the use in ports or locations with environmental limits. In this invention, dimensions and versatility are not observed for the device to be able to perform tasks to eliminate Sun Coral, it was even developed to have a rotating arm, with the objective of cleaning low-thickness scales, the micro-scales, and therefore, it also does not have a crushing system according to the invention proposed herein. The differential of this device lies in the existence of a coupling system through a suction module that allows rotation on its own shaft, giving greater flexibility in the mobility of the robotic platform. Even if this device were applied to remove marine bio-scaling, it would not be suitable for macro-scaling removal, nor would it efficiently contain and capture the material, as is the purpose of the present invention.
Document GB2528871A discloses a remotely operated vehicle (ROV) for cleaning and/or inspection of hulls, comprising an on-board hydraulic power unit (HPU), electrically driven. It comprises one or more tracks for providing grip and traction on a hull, the track comprising a plurality of magnetic elements. The vehicle is controlled by an on-board PLC (programmable logic controller), using on-board sensors and operator inputs, with data communication to the surface control console via an optical Ethernet connection. The ROV may comprise modular cleaning elements, with different modules allowing the surface cleaning to be done by various processes including, but not limited to, brushes with rotational shaft normal to the surface, brushes with rotational shaft parallel to the surface, or water jet. The ROV can withdraw the bio-scaling and cleanup debris and return the same to the surface via an umbilical, or store the same on-board. The ROV may comprise thrusters and ballast adjustment that allow it to swim through the water, allowing it to maneuver through the water to a ferritic surface and attach. The ROV may comprise one or more cameras to transmit live video to a surface control console. In spite of all these elements, this vehicle does not serve to the removal of scales of up to 30 centimeters, the macro-scales, and also does not have a crushing device, only bringing brushes of the Rilsan type.
Document WO2018061122A1 discloses a simple surface or wall moving robot device and a surface or wall moving method, which can use an attractive magnetic force efficiently, providing stable movement on a ferritic metal surface or wall. The robot comprises a rotating brush for cleaning the surface as it travels across the same. The document, in addition to not disclosing a device for crushing scaling organisms according to the invention, does not clearly disclose how the vehicle is operated.
Document US20140230711A1 discloses a robot device focused on solutions for a certain attractive force pulling the same towards the structure, mainly vertical. Such a force can be exerted by an electromagnet or a permanent magnet, causing a tool bearing or a movable chassis of the device to grip a ferrous surface, being maneuvered over the surface of a ship hull. The alleged differential for this device is the magnetic attachment system that uses a permanent magnet system, these are allocated inside the wheels, or electromagnets, varying only the distance between the magnet and the surface. It further discloses a series of embodiments containing tools for cleaning surfaces, including by jet, but none of them discloses a device for crushing scaling organisms according to the invention.
Regarding the bio-scaling removal system, documents WO2018096214A1, GB2528871A, WO2018061122A1 and US20140230711A1 present solutions already known from the state of the art such as brushes, rollers or blasting. These removal systems are sized to remove scales with a maximum thickness of 1 cm. Therefore, they are not suitable for removing rigid macro-scales that may contain calcareous and fibrous organic material with thicknesses of up to 30 centimeters. Another relevant factor is that, as noted, no document has an efficient system of containment and capture of bio-scaling for subsequent treatment, thus potentiating that unwanted (exotic) species release planulae during the removal activity, not being relevant when compared to systems of removal, capture and crushing of the present invention.
With the development of technologies as shown, it is currently possible to replace human labor in loco in this activity, thus providing a more efficient and safer operation.
The invention can be fully applied to meet environmental restrictions which involve the removal of marine bio-scaling containing sun coral from the hulls of floating units (FPSO, SS, NS and service/support vessels and similar hulls).
In order to solve the related problems, the present invention was developed to meet not only the environmental requirements related to bio-scaling, mainly referring to macro-scales containing Sun Coral, but it was also developed with a focus on increasing productivity through a more efficient and faster removal than presented in the state of the art; and with an economic focus, since the faster the removal, the sooner a unit (FPSO, SS, etc.) is released for its core activity, avoiding production losses due to downtime waiting for the removal of marine bio-scaling from the hull.
The proposed invention is an intelligent equipment capable of acting in two modes: ROV, to allow it to navigate in the water, and Crawler to carry out the proper functions and consequent removal of macro-scale containing sun coral.
In order to remove, capture and transport bio-scaling, the underwater operating robot invention was divided into subsystems, as shown in
The invention was conceived containing a robotic unit that adheres to ferromagnetic hulls, by electromagnets, alternatively electromagnets together with permanent magnets, following the path, an internal module being inserted containing a unit for removal, crushing and accommodation of residues, which sends the removed material to a modular system for effluent treatment (MSET), described in another application for invention titled Modular System for Treatment of Effluents from the Cleaning of Floating Unit Hulls.
The teleoperated robotic system eliminates the need for human diving at any steps of the processes of removal, containment and capture of marine bio-scaling removed from the hull.
The present invention foresees the need for an operator to position the front region of the robot, in charge of the removal, close to the macro-scaling. The teleoperated robot, object of the present invention, is capable of removing, capturing and crushing bio-scaling, containing sun coral and a dense number of marine organisms that have a calcareous skeleton, such as corals, referred to here as macro-scaling.
In the drawings, there are:
The underwater robot project for Marine Bio-scaling Removal (MBSR) was designed to be divided into 3 independent conceptual parts. The first part consists of the concept of invention presented herein, represented by the detailing of the two preferred embodiments of the underwater robot that will perform the task of removing bio-scales in the field. The second part consists of the use of a support vessel that will contain not only the Robot Garage, but an integrated control and operation system for the Robot and MSET, as well as a launch system at sea, which are described in the document BR 10 2020 026998-4. And the third part consists of the Modular System for Effluent Treatment (MSET), which processes all the residues generated during the removal operation by the Robot described in 10 BR 2020 027017-6.
The underwater operating robot has the ability to operate in flat areas and large radii, comprising concepts suited to the challenges and particularities of the environment in which it must operate, such as: non-uniform surfaces (unevenness, large radii); forces from the environment where it must operate (waves, sea currents); avoidance of bio-scaling after removal; need of moving around in an underwater environment; locomotion when adhered to the hull of FPSO, SS, NS type vessels and vessels (RSV, PSV, AHTS, PLSV, SDSV and similar hulls), Typical hull (FPSO, UMS and NS), and Semi-submersible hull (SS). The division of the robot into modules, as shown generically in
The robot is deployed in the water from a launch system built for such an operation. After releasing the robot, the operator will operate it in ROV form, where the operator will control the same via a specialized control for moving ROVs, in which the software will transform the commands made by the operator into information for the thrusters placed on the robot. Thrusters are typically marine helices driven by hydraulic or electric motors mounted on an underwater robot as a propelling device. This gives the robot movement and maneuverability against the resistance of the fluid in which it is submerged.
Internally, the robot has a self-leveling and self-attitude system, with which the robot will automatically adapt to stresses from the environment. In ROV mode, the robot will have a non-georeferential localization system (location coordinates in a given reference system to be established in each mission), which, based on the fusion of data from these sensors, the system gives the operator the location of the robot in relation to the support vessel. The altitude and attitude of the robot are data that the sensors provide; in this case, the altitude is given as a function of the sea floor and the attitude in relation to the main shafts of the robot. The USBL system is based on the transmission and reception of an acoustic signal transmitted and received by a transducer containing multi-elements installed on the bottom of the vessels, that is, it compares the phase at the arrival of the pulse, also called ping, among these multi-elements to determine the angle and distance between the transponder and the transducer.
When the robotic platform is close to the metal surface, the robot must translate and rotate until it is parallel to the surface to which it will couple. To carry out this operation, the robot will be able to change its buoyancy center by means of a dynamic buoyancy system (37), as shown in
The components of the subsystems of each module are shown in
Because the robot is divided into modules, the modules have mechanical attachments (16) at one point and active cylinders (17) at another point to dampen the relative movement between the modules and help the robot conform to surfaces with large radii, whether convex or concave. This occurs because, when the robot will attach itself to the surface, not necessarily all the modules will be in contact with the metallic hull; therefore, it is necessary that there are actuators that conform the body so that the modules and electromagnets come into contact with the surface. When in ROV mode, the active cylinders will provide greater stability between modules, inhibiting relative movement between them and thus enabling greater robot stability. The robot chassis is made in a modular way and hollowed out so that stresses from the environment are minimized.
In another alternative configuration, the modules are connected by a three-bar mechanism (104), driven by a linear actuator (100). This mechanism provides the robot with greater flexibility, thus ensuring its adaptation to large radii, as well as overcoming obstacles, as seen in
The mechanism (104) consists of two metal links of different sizes (101), with ball joints (102) at their ends, in addition to the hydraulic cylinder. When this is actuated, it allows the system to move, thus transferring the connection between the two metallic links. This connection, in turn, is interconnected with the structure (103) of the robot, in order to provide the robot with adaptability and the ability to overcome obstacles.
The removal and capture system may comprise mechanisms sized for underwater environments to remove bio-scales arranged in the hulls of floating units. These mechanisms can perform different methods of removal, such as cavitation, impact and vibration. The methods can be used simultaneously or in steps, depending only on the conditions of the surface to be cleaned and the characteristics of the environment.
The removal and capture system may comprise: a set of mechanisms for the bidirectional application of shear forces from the use of the rotational action of the crushing system itself or by means of an exclusive device for generating said principle. In addition to having a cavitation blasting system using a set of lances distributed along the entire length of the capture opening of the robot, guaranteeing, in any case, the total containment of the particles removed from the use of a suction force coming from the central part of the robot, together with the containment system.
The capture subsystem may comprise mobile or attached elements in order to inhibit the dispersion of oocytes and organic particles to the seabed shortly after the cleaning operation. These components can act passively, acting only by stresses from the environment or from the robot itself, or actively, being operated from actuators based on the need for the operation.
The crushing system may comprise one or more comminution devices operating sequentially or simultaneously in which the removed particles are broken down until they reach a certain granularity and size. The system can consist of elements that crush and remove bio-scaling simultaneously without the need for multiple steps, reducing operating time and manufacturing complexity.
The present invention will be described in more detail from the description presented through embodiment 1 (
In a preferred embodiment, the underwater operating robot has a locomotion system consisting of electromagnetic tracks, which provide for the system to be attached on metallic surfaces, as shown in
Being parallel to the surface, the robot attaches itself to the same by means of electromagnets arranged on the track (08), as shown in
Because the robot is divided into front (2), central (3) and rear (4) modules, as shown in
At the front part of the robot (02), there is the first module, where the removal, capture and containment of bio-scaling is performed. After this operation, the bio-scaling is crushed in its inner part in order to assist in transport to the MSET (modular system for effluent treatment) located on the support vessel.
The central module (03) joins the other two modules and there is provided (if necessary) part of the pressure housings that contain the electronic elements for controlling and activating the actuators and for the locomotion of the system when the robot operates in ROV mode, using the Thrusters (5) to provide its locomotion.
In the third module (04) (at the rear part), possible pressure housings (11) and electronic components are arranged.
The ideal measurements for the robot to achieve its objectives is preferably between 1.0 to 1.5 m in width, 0.6 to 0.8 m in height and 1.8 to 2.0 m in length. The height of the front part, where the bio-scaling is contained, had as a requirement to be greater than 30 centimeters, which was already necessary for the removal of macro-scales of up to 30 centimeters in height.
To locate in space and map and perceive the environment, there are some sensors. The sensors used to perceive the environment, such as cameras (10), multibeam sonar (24), mechanical sonar (27), ultrawide cameras (28) and particle sensor (25), are placed on the outside of the vehicle, as shown in
The robotic system will have a flow rate sensor (29) that will be installed in the fluid transport piping (6). This sensor will help the system to measure the flow rate and bio-scales removal rate being performed by the crawler robot.
The operation of the robot on the surface to be cleaned is done remotely, aided by the system coming from the robot. This system will provide the operator with a view of the front (35), sides (34) and rear (36) of the robot, as shown in
Once positioned, the robot starts the removal of bio-scaling through double helices of 3 straight rotating blades (45) located in the removal region (38). In the region of the capture system (39), see
The removal takes place simultaneously, with a mechanical impact with low rotation torque and required pressure, which provides to the removal process a lower dispersion. Added to this, there is a dynamic suction inserted in the rotating blades capturing the particles in the act of removal, offering the system an efficient containment, as it reduces the radius of dispersion of the material and the volume of water needed to assist in the capture.
The removal and capture system consists of rotors and blades (45) that move by adjusting the height, in order to maintain contact with the surface at the time of removal, and moving parts that move around the surface of attachment; the same are pressed by springs to keep the blades in contact with the surface to be cleaned, performing the upward movement when activated by an ascending surface. The blades are made of material with less hardness than boat paint, avoiding damage to the same. These mobile blades are provided with holes (50) which, when removed by rotation (
The bio-scaling containing solid and liquid phase is directed through a pressure difference to the holes (50) that retain particles larger than their smallest diameter and the flow follows through channels (53) that have a section larger than the holes (50) thus avoiding retention of particles. The flow goes to the suction gallery of the fixed shaft through slots.
In
The geometry of these holes favors the expulsion of particles retained in the process; this process of alignment and misalignment of the holes (56) is activated through cams (49) positioned in a defined location, thus increasing the output section, avoiding the residence of material retained in the act of suction. These movable parts move in the vertical direction when pressed by irregularities of high relief or low relief of the surface, overcoming the pressure of the springs, adjusting the irregularities of the surfaces, performing a more efficient removal. When the blades perform a 180° turn, the holes are aligned with a high-pressure channel (54) performing the opposite movement of the suction, that is, an expulsion of the materials contained in the capture act, providing a dynamic self-cleaning of the blades in a strategic position that allows materials to be projected towards the crushing system. In addition to this movement of the blades added to the mechanical impact removal system, the robot is provided with a hydrodynamic removal system by water jet or cavitation positioned at the lower part of the blades. This system assists in the removal containing predefined activation and deactivation positions, reducing the particle dispersion.
Aiding in the capture, there are conical holes (51) on a surface located in the region above the blades (45) that carry out the suction of the removed material, as can be seen in
Integrated with the removal and capture tools, the robot is provided, in the upper part towards the crushing system, with a cavitation device attached on a mobile rail with transversal displacement and adjustment in the lead position, allowing to enlarge the area removal tool and the adjustment of the lead angle with adjustment in position. This device gives the controller the choice of lead angle, offering versatility to the system in selecting the removal method in the face of the challenges encountered in the surface to be treated subject to a sudden change in coral sizes and physical-chemical characteristics.
The containment is carried out through attached mechanical barriers with vertical and horizontal walls and flexible walls that mold to the bio-scaling, offering a barrier to dispersion in the environment, connected to the removal system.
After removal and capture, the marine bio-scale is directed to the crushing system that takes place in a staggered way, passing through pre-reduction in size by means of two rotating shafts containing knives (46) for pre-reduction in size and segregation. These shafts are separated by a predefined distance, synchronized like a gear, with arms attached to the same with a lag in the angular position, offering a stepped compression area, thus reducing the torque needed for the step. The turning ratio happens in a two-to-one ratio, which promotes a displacement when turning between both, forcing the impact between the blades, causing reduction and segregation of bio-scaling.
To mitigate the head loss that the crusher offers to the system, a filter (47) is installed in parallel to the flow, as a self-cleaning bypass system. This filter operates in a rotating movement between the fixed shaft that has separate channels (56) and (57) in a predefined and non-communicable angular position, which, when the rotating roller provided with conical holes, coincides with the suction pipe (42), a flow is carried out into the pipe by means of the pressure difference generated by the pump. The fluid captured by the filter, when passing through the pump and returning to the discharge pipe (57), generates an opposite pressure in the holes of the mobile rollers (58) causing the expulsion of particles and cleaning of the filters (47), thus leaving the holes cleaned for one more 180 degree turn to return and cycle again.
Finally, the material passes through crushing rollers (48) that each rotate around a fixed shaft, with two incommunicable water channels (59) and (60), illustrated in
It is worth to emphasize that, both in the filters (47) and in the crushing rolls (48), the channels connected to the suction of the pump (42) are fed by pipes with a smaller diameter (63) and (67) than those of the pipes of suction (64) and (68), as can be seen in
All the primary flow of bio-scale, resulting from the crushing process, added to the auxiliary passage of the self-cleaning filters, unite and continue to conduct the material through the suction pipe (42) connected to a pump located in a pumping unit external to the robot. Another embodiment of the invention provides for a parallel pipe that independently sends the discharge flow from the filters for treatment.
In another preferred embodiment of the invention, see
In this embodiment of the invention, the alternative magnetic attachment system, shown in
The magnetic attachment system, illustrated in
The bio-scaling containment system removed by robot operation in this embodiment of the invention is passive. The passive containment mechanism (81) simulates a curtain of cilia that, from the movement of the robot, touches the bio-scaling in the direction of movement, containing the suspended material generated by the crushing system in a control region. These cilia are made up of small polymeric tubes flexible enough not to break scales or disperse oocytes on the seabed. The curtain, where the polymer bristles are arranged, is made up of segments (82), each arranged in such a way that the cilia overlap. This overlap allows the system to simulate a sieve, allowing only liquids or small particles to pass through. On the sides, see
The curtain segments, as shown in
The invention in embodiment 2 uses cavitation removal devices (109) and mechanical impact (110) non-simultaneously represented respectively by
The cavitation removal system (109), as shown in
The cavitation removal system is activated in a segmented way, with each set of cavitation lances (91) activated momentarily, until the entire robot performance area is clean. This fractional drive provides less power required from the equipment on the support vessel and reduces mechanical vibrations in the robot.
The mechanical impact removal system (110), illustrated in
The mechanical impact removal system (110) is driven by a geared motor (94) encapsulated in a housing, which drives the driving shaft (95) by chain, and this drive is divided into two parts for the transmission bearings (96), in order to balance stresses. From the rotation of the cutting discs (98), the crushing occurs, and thus, the system removes and crushes the bio-scaling available on the surfaces of vessel hulls. The rotational speed of the cutting discs (98) can be variable based on the need for the operation, as well as the inserts (99) can have different types of material.
It should be noted that, although the present invention has been described in relation to embodiments 1 and 2 referring to the drawings of
Number | Date | Country | Kind |
---|---|---|---|
10 2020 027018 4 | Dec 2020 | BR | national |
10 2021 024485 2 | Dec 2021 | BR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/BR2021/050569 | 12/20/2021 | WO |