The present disclosure relates generally to programmable devices, and more particularly to a programmable interconnect matrix.
Field-programmable gate arrays (FPGAs) and Programmable Logic Devices (PLDs) have been used in data communication and telecommunication systems. Conventional PLDs and FPGAs consist of an array of programmable elements, with the elements programmed to implement a fixed function or equation. Some currently-available Complex PLD (CPLD) products comprise arrays of logic cells. Conventional PLD devices have several drawbacks, such as limited speed and limited data processing capabilities.
In developing complex integrated circuits, there is often a need for additional peripheral units, such as operational and instrument amplifiers, filters, timers, digital logic circuits, analog to digital and digital to analog converters, etc. As a general rule, implementation of these extra peripherals create additional difficulties: extra space for new components, additional attention during production of a printed circuit board, and increased power consumption. All of these factors can significantly affect the price and development cycle of the project.
The introduction of the Programmable System on Chip (PSoC) features digital and analog programmable blocks, which allow the implementation of a large number of peripherals. A programmable interconnect allows analog and digital blocks to be combined to form a wide variety of functional modules. The digital blocks consist of smaller programmable blocks and are configured to provide different digital functions. The analog blocks are used for development of analog elements, such as analog filters, comparators, inverting amplifiers, as well as analog to digital and digital to analog converters. Current PSoC architectures provide only a coarse grained programmability where only a few fixed functions are available with only a small number of connection options.
A programmable interconnect matrix includes horizontal channels that programmably couple different groups of one or more digital blocks together. The interconnect matrix can include segmentation elements that programmably interconnect different horizontal channels together. The segmentation elements can include horizontal segmentation switches that programmably couple together the horizontal channels for different groups of digital blocks in a same row. Vertical segmentation switches can programmably couple together the horizontal channels for different groups of digital blocks in different rows.
Vertical channels can programmably connect the horizontal channels in different rows. The horizontal channels provide more connectivity between the digital blocks located in the same rows than connectivity provided by the vertical channels connecting the digital blocks in different rows. Two digital blocks in a same digital block pair can be tightly coupled together to common routes in a same associated horizontal channel and different digital block pairs can be less tightly coupled together through the segmentation elements.
Programmable switches are configured to connect different selectable signals from the digital bocks to their associated horizontal channels. Programmable tri-state buffers in the segmentation elements can be configured to selectively couple together and drive signals between different horizontal channels.
A Random Access Memory (RAM) can be configured to programmably control how the different digital blocks are coupled together through the interconnection matrix. Undedicated Inputs and Outputs (I/Os) can be programmably coupled to different selectable signals in different selectable digital blocks through different selectable routes in the interconnection matrix. The undedicated Inputs and Outputs refer to the connections on the Integrated Circuit (IC) to external signals.
A micro-controller system is programmably coupled to the different digital blocks through the interconnect matrix and is programmably coupled to the different programmable Inputs/Outputs (I/Os) through the interconnect matrix. The micro-controller system can include a micro-controller, an interrupt controller, and Direct Memory Access (DMA) controller. Interrupt requests can be programmably coupled between the interrupt controller and different selectable digital blocks or different selectable I/Os through the interconnect matrix. DMA requests can also be programmably coupled between the DMA controller and different selectable digital blocks or different selectable I/Os through the interconnect matrix. In one embodiment, the micro-controller, digital blocks, I/Os, and interconnect are all located in a same integrated circuit.
In one embodiment, the digital blocks comprise a first group of uncommitted logic elements that are programmable into different logic functions and also include a second group of structural logic elements that together form a programmable arithmetic sequencer.
A new programmable routing scheme provides improved connectivity both between Universal Digital Blocks (UDBs) and between the UDBs and other micro-controller elements, peripherals and external Inputs and Outputs (I/Os) in the same Integrated Circuit (IC). The routing scheme increases the number of functions and the overall routing efficiency for programmable architectures. The UDBs can be grouped in pairs and share associated horizontal routing channels. Bidirectional horizontal and vertical segmentation elements extend routing both horizontally and vertically between different UDB pairs and to the other peripherals and I/O.
UDB Array
The UDB array 110 is arranged into UDB pairs 122 that each include two UDBs 120 that can be tightly coupled to a shared horizontal routing channel 132. The UDB pairs 122 can also be programmably connected to the horizontal routing channels 132 of other UDB pairs 122 either in the same horizontal row or in different rows through vertical routing channels 134. The horizontal and vertical routing channels and other switching elements are all collectively referred to as the interconnect matrix 130.
A Digital System Interconnect (DSI) routing interface 112 connects a micro-controller system 170 and other fixed function peripherals 105 to the UDB array 110. The micro-controller system 170 includes a micro-controller 102, an interrupt controller 106, and a Direct Memory Access (DMA) controller 108. The other peripherals 105 can be any digital or analog functional element in PSoC 100. The DSI 112 is an extension of the interconnect matrix 130 at the top and bottom of the UDB array 110.
The interconnect matrix 130 also includes Horizontal/Vertical (H/V) segmentation elements 125 that programmably interconnect the different horizontal routing channels 132 together. The segmentation elements 125 couple together the horizontal routing channels 132 for the different digital block pairs 122 in the same rows. The segmentation elements 125 also programmably couple together the horizontal routing channels 132 for digital block pairs 122 in different rows through vertical routing channels 134.
The two UDBs 120A and 120B in UDB pair 122 are tightly coupled together to common routes in the same associated horizontal routing channel 132. Tight coupling refers to the UDB I/O signals 127 in the upper UDB 120A and the corresponding signals 128 in the lower UDB 120B all being directly connected to the same associated horizontal routing channel 132. This tight coupling provides high performance signaling between the two UDBs 120A and 120B. For example, relatively short connections 127 and 128 can be programmably established between the upper UDB 120A and the lower UDB 120B.
In one embodiment, the horizontal routing channels 132 can also have a larger number of routes and connections to the UDBs 120A and 120B than the vertical routing channels 134 shown in
Thus, the interconnect matrix 130 in
At the switch points, RAM bits operate RAM cells 136 and 138 which in turn control Complementary Metal Oxide Semi-conductor (CMOS) transmission gate switches 142 and 144, respectively. The switches 142 and 144 when activated connect the UDB output 127A and the UDB input 128A to horizontal routing channel wire 132A.
The RAM cells 136 and 137 are programmably selectable by the micro-controller 102 (
In addition to the segmentation elements 125, the interconnect matrix 130 includes the switching elements 145 previously shown in
Referring to
When bit 162A is set, the buffer 164A drives one of the horizontal or vertical channel lines 166 from left to right. When bit 162B is set, the buffer 164B drives the same horizontal or vertical channel line 166 from right to left. If neither bit 162A or bit 162B is set, the buffers 164A and 164B drive line 166 to a high impedance state.
Configuration and Programmability
Any combination of the switching elements 145, horizontal segmentation switches 152, and vertical segmentation switches 154 can be programmably configured to connect together almost any combination of external I/O pins 104 (
A first set of bits in RAM section 412 are associated with the RAM cells 136 and 137 shown in
Pursuant to the micro-controller 102 programming RAM 410, the interconnect matrix 130 is configured with a first interconnect path 176 that connects a UDB 120C to the interrupt controller 106. The UDB 1200 can then send interrupt requests to the DMA controller 108 over interconnect path 176. A second interconnect path 178 is established between a peripheral (not shown) in the PSoC chip 100 (
A third interconnect path 180 is also configured by the micro-controller 102 by loading bits into RAM sections 412 and 414. The DMA controller 108 uses the interconnect path 180 to send a DMA terminate signal to UDB 120D. A fourth interconnect path 182 is programmably configured between one of the PSoC I/O pins 104 and a fixed digital peripheral, such as the micro-controller 102. The interconnect path 182 is used to send I/O signals between the micro-controller 102 and the I/O pin 104.
Interconnect paths 176-182 are of course just a few examples of the many different interconnect configurations that can be simultaneously provided by the interconnect matrix 130. This example also shows how different I/O pins 104, UDBs 120, and other peripherals can be connected to the same interrupt line on the interrupt controller 106 or connected to the same DMA line on the DMA controller 108.
Typically, interrupt requests received by an interrupt controller and DMA requests received by a DMA controller can only be connected to one dedicated pin. The interconnect matrix 130 allows any variety of different selectable functional elements or I/O pins to be connected to the same input or output for the interrupt controller 106 or DMA controller 108 according to the programming of RAM 410 by micro-controller 102.
The programmability of the interconnect matrix 130 also allows any number, or all, of the I/O pins 104 to be undedicated and completely programmable to connect to any functional element in PSoC 100. For example, the pin 104 can operate as an input pin for any selectable functional element in
Universal Digital Block
The PLD blocks 200 implement state machines, perform input or output data conditioning, and create look-up tables. The PLDs 200 can also be configured to perform arithmetic functions, sequence datapath 210, and generate status. PLDs are generally known to those skilled in the art and are therefore not described in further detail.
The datapath block 210 contains highly structured dedicated logic that implements a dynamically programmable ALU, comparators, and condition generation. A status and control block 204 allows micro-controller firmware to interact and synchronize with the UDB 120 by writing to control inputs and reading status outputs.
A clock and reset control block 202 provides global clock selection, enabling, and reset selection. The clock and reset block 202 selects a clock for each of the PLD blocks 200, the datapath block 210, and status and control block 204 from available global system clocks or a bus clock. The clock and reset block 202 also supplies dynamic and firmware resets to the UDBs 120.
Routing channel 130 connects to UDB 110 through a programmable switch matrix and provides connections between the different UDBs in
The PLDs 200 and the datapath 210 have chaining signals 212 and 214, respectively, that enable neighboring UDBs 120 to be linked to create higher precision functions. The PLD carry chain signals 212 are routed from the previous adjacent. UDB 120 in the chain, and routed through each macrocell in both of the PLDs 200. The carry out is then routed to the next UDB 120 in the chain. A similar connectivity is provided by the datapath chain 214 between datapath blocks 210 in adjacent UDBs 120.
Referring to
The datapath 210 comprises highly structured logic elements 254 that include a dynamically programmable ALU 304, conditional comparators 310, accumulators 302, and data buffers 300. The ALU 304 is configured to perform instructions on accumulators 302, and to update the sequence controlled by a sequence memory. The conditional comparators 310 can operate in parallel with the ALU 304. The datapath 210 is further optimized to implement typical embedded functions, such as timers, counters, etc.
The combination of uncommitted PLDs 200 with a dedicated datapath module 210 allow the UDBs 120 to provide embedded digital functions with more efficient higher speed processing. The dedicated structural arithmetic elements 254 more efficiently implement arithmetic sequencer operations, as well as other datapath functions. Since the datapath 210 is structural, fewer gates are needed to implement the structural elements 254 and fewer interconnections are needed to connect the structural elements 254 together into an arithmetic sequencer. Implementing the same datapath 210 with PLDs could require additional combinational logic and additional interconnections.
The structured logic in the datapath 210 is also highly programmable to provide a wide variety of different dynamically selectable arithmetic functions. Thus, the datapath 210 not only conserves space on the integrated circuit 100 (
The functional configurability of the datapath 210 is provided through the control registers 250 and allow the micro-controller 102 to arbitrarily write into a system state and selectively control different arithmetic functions. The status registers 256 allow the micro-controller 102 to also identify different states associated with different configured arithmetic operations.
The flexible connectivity scheme provided by the routing channel 130 selectively interconnects the different functional element 250, 200, 254, and 256 together as well as programmably connecting these functional element to other UDBs, I/O connections, and peripherals. Thus, the combination of uncommitted logic 200, structural logic 254, and programmable routing channel 130 provides more functionality, flexibility, and more efficiently uses less integrated circuit space.
The interconnect matrix 130 also requires little or no dedicated UDB block routing. All data, state, control, signaling, etc, can be routed through the interconnect matrix 130 in the UDB array 110. The array routing is efficient because there is little or no difference between a local UDB net and a net that spans the UDB array. Horizontal and vertical segmentation allow the array to be partitioned for increased efficiency and random access to the RAM 410 allow high speed configuration or on the fly reconfiguability.
The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the operations. Some of the operations described above can be implemented in software and other operations can be implemented in hardware.
For the sake or convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there can be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or features of the flexible interface can be implemented by themselves, or in combination with other operations in either hardware or software.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.
The present application is a continuation of U.S. application Ser. No. 12/786,412 which claims priority U.S. Non Provisional application Ser. No. 11/965,291 filed Dec. 27, 2007, now U.S. Pat. No. 7,737,724 issued on Jun. 15, 2010 and U.S. Provisional Application No. 60/912,399 filed on Apr. 17, 2007 all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5554951 | Gough | Sep 1996 | A |
5555452 | Callaway et al. | Sep 1996 | A |
5555907 | Philipp | Sep 1996 | A |
5557762 | Okuaki et al. | Sep 1996 | A |
5559502 | Schutte | Sep 1996 | A |
5559996 | Fujioka | Sep 1996 | A |
5563526 | Hastings et al. | Oct 1996 | A |
5563529 | Seltzer et al. | Oct 1996 | A |
5564010 | Henry et al. | Oct 1996 | A |
5564108 | Hunsaker et al. | Oct 1996 | A |
5565658 | Gerpheide et al. | Oct 1996 | A |
5566702 | Philipp | Oct 1996 | A |
5572665 | Nakabayashi | Nov 1996 | A |
5572719 | Biesterfeldt | Nov 1996 | A |
5574678 | Gorecki | Nov 1996 | A |
5574852 | Bakker et al. | Nov 1996 | A |
5574892 | Christensen | Nov 1996 | A |
5579353 | Parmenter et al. | Nov 1996 | A |
5587945 | Lin et al. | Dec 1996 | A |
5587957 | Kowalczyk et al. | Dec 1996 | A |
5590354 | Klapproth et al. | Dec 1996 | A |
5594388 | O'Shaughnessy et al. | Jan 1997 | A |
5594734 | Worsley et al. | Jan 1997 | A |
5594876 | Getzlaff et al. | Jan 1997 | A |
5594890 | Yamaura et al. | Jan 1997 | A |
5600262 | Kolze | Feb 1997 | A |
5604466 | Dreps et al. | Feb 1997 | A |
5608892 | Wakerly | Mar 1997 | A |
5614861 | Harada | Mar 1997 | A |
5617041 | Lee et al. | Apr 1997 | A |
5625316 | Chambers et al. | Apr 1997 | A |
5625583 | Hyatt | Apr 1997 | A |
5629857 | Brennan | May 1997 | A |
5629891 | Lemoncheck et al. | May 1997 | A |
5630052 | Shah | May 1997 | A |
5630057 | Hait | May 1997 | A |
5630102 | Johnson et al. | May 1997 | A |
5631577 | Freidin et al. | May 1997 | A |
5633766 | Hase et al. | May 1997 | A |
5642295 | Smayling | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646901 | Sharpe-Geisler et al. | Jul 1997 | A |
5648642 | Miller et al. | Jul 1997 | A |
5651035 | Tozun et al. | Jul 1997 | A |
5652893 | Ben-Meir et al. | Jul 1997 | A |
5661433 | LaRosa et al. | Aug 1997 | A |
5663900 | Bhandari et al. | Sep 1997 | A |
5663965 | Seymour | Sep 1997 | A |
5664199 | Kuwahara | Sep 1997 | A |
5666480 | Leung et al. | Sep 1997 | A |
5670915 | Cooper et al. | Sep 1997 | A |
5673198 | Lawman et al. | Sep 1997 | A |
5675825 | Dreyer et al. | Oct 1997 | A |
5677691 | Hosticka et al. | Oct 1997 | A |
5680070 | Anderson et al. | Oct 1997 | A |
5682032 | Philipp | Oct 1997 | A |
5684434 | Mann et al. | Nov 1997 | A |
5684952 | Stein | Nov 1997 | A |
5686844 | Hull et al. | Nov 1997 | A |
5687325 | Chang | Nov 1997 | A |
5689195 | Cliff et al. | Nov 1997 | A |
5689196 | Schutte | Nov 1997 | A |
5691664 | Anderson et al. | Nov 1997 | A |
5691898 | Rosenberg et al. | Nov 1997 | A |
5694063 | Burlison et al. | Dec 1997 | A |
5696952 | Pontarelli | Dec 1997 | A |
5699024 | Manlove et al. | Dec 1997 | A |
5703871 | Pope et al. | Dec 1997 | A |
5706453 | Cheng et al. | Jan 1998 | A |
5708589 | Beauvais | Jan 1998 | A |
5708798 | Lynch et al. | Jan 1998 | A |
5710906 | Ghosh et al. | Jan 1998 | A |
5712969 | Zimmermann et al. | Jan 1998 | A |
5721931 | Gephardt et al. | Feb 1998 | A |
5724009 | Collins et al. | Mar 1998 | A |
5727170 | Mitchell et al. | Mar 1998 | A |
5728933 | Schultz et al. | Mar 1998 | A |
5729704 | Stone et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5732277 | Kodosky et al. | Mar 1998 | A |
5734272 | Belot et al. | Mar 1998 | A |
5734334 | Hsieh et al. | Mar 1998 | A |
5737557 | Sullivan | Apr 1998 | A |
5737760 | Grimmer et al. | Apr 1998 | A |
5745011 | Scott | Apr 1998 | A |
5748048 | Moyal | May 1998 | A |
5748875 | Tzori | May 1998 | A |
5752013 | Christensen et al. | May 1998 | A |
5754552 | Allmond et al. | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5757368 | Gerpheide et al. | May 1998 | A |
5758058 | Milburn | May 1998 | A |
5760612 | Ramirez | Jun 1998 | A |
5761128 | Watanabe | Jun 1998 | A |
5763909 | Mead et al. | Jun 1998 | A |
5764714 | Stansell et al. | Jun 1998 | A |
5767457 | Gerpheide et al. | Jun 1998 | A |
5774704 | Williams | Jun 1998 | A |
5777399 | Shibuya | Jul 1998 | A |
5781030 | Agrawal et al. | Jul 1998 | A |
5781747 | Smith et al. | Jul 1998 | A |
5784545 | Anderson et al. | Jul 1998 | A |
5790882 | Silver et al. | Aug 1998 | A |
5790957 | Heidari | Aug 1998 | A |
5796183 | Hourmand et al. | Aug 1998 | A |
5799176 | Kapusta et al. | Aug 1998 | A |
5801958 | Dangelo et al. | Sep 1998 | A |
5802073 | Platt | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5805792 | Swoboda et al. | Sep 1998 | A |
5805897 | Glowny | Sep 1998 | A |
5808883 | Hawkes | Sep 1998 | A |
5811987 | Ashmore, Jr. et al. | Sep 1998 | A |
5812698 | Platt et al. | Sep 1998 | A |
5818254 | Agrawal et al. | Oct 1998 | A |
5818444 | Alimpich et al. | Oct 1998 | A |
5818736 | Leibold | Oct 1998 | A |
5819028 | Manghirmalani et al. | Oct 1998 | A |
5822387 | Mar | Oct 1998 | A |
5822531 | Gorczyca et al. | Oct 1998 | A |
5828693 | Mays et al. | Oct 1998 | A |
5838583 | Varadarajan et al. | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5841996 | Nolan et al. | Nov 1998 | A |
5844256 | Mead et al. | Dec 1998 | A |
5844404 | Caser et al. | Dec 1998 | A |
5848285 | Kapusta et al. | Dec 1998 | A |
5850156 | Wittman | Dec 1998 | A |
5852733 | Chien et al. | Dec 1998 | A |
5854625 | Frisch et al. | Dec 1998 | A |
5857109 | Taylor | Jan 1999 | A |
5861583 | Schediwy et al. | Jan 1999 | A |
5861875 | Gerpheide | Jan 1999 | A |
5864242 | Allen et al. | Jan 1999 | A |
5864392 | Winklhofer et al. | Jan 1999 | A |
5867046 | Sugasawa | Feb 1999 | A |
5867399 | Rostoker et al. | Feb 1999 | A |
5869979 | Bocchino | Feb 1999 | A |
5870004 | Lu | Feb 1999 | A |
5870309 | Lawman | Feb 1999 | A |
5870345 | Stecker | Feb 1999 | A |
5872464 | Gradinariu | Feb 1999 | A |
5874958 | Ludolph | Feb 1999 | A |
5875293 | Bell et al. | Feb 1999 | A |
5877656 | Mann et al. | Mar 1999 | A |
5878425 | Redpath | Mar 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5880598 | Duong | Mar 1999 | A |
5883623 | Cseri | Mar 1999 | A |
5886582 | Stansell | Mar 1999 | A |
5887189 | Birns et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5889723 | Pascucci | Mar 1999 | A |
5889936 | Chan | Mar 1999 | A |
5889988 | Held | Mar 1999 | A |
5894226 | Koyama | Apr 1999 | A |
5894243 | Hwang | Apr 1999 | A |
5894565 | Furtek et al. | Apr 1999 | A |
5895494 | Scalzi et al. | Apr 1999 | A |
5896068 | Moyal | Apr 1999 | A |
5896330 | Gibson | Apr 1999 | A |
5898345 | Namura et al. | Apr 1999 | A |
5900780 | Hirose et al. | May 1999 | A |
5901062 | Burch et al. | May 1999 | A |
5903718 | Marik | May 1999 | A |
5905398 | Todsen et al. | May 1999 | A |
5909544 | Anderson et al. | Jun 1999 | A |
5911059 | Profit, Jr. | Jun 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
5914633 | Comino et al. | Jun 1999 | A |
5914708 | LaGrange et al. | Jun 1999 | A |
5917356 | Casal et al. | Jun 1999 | A |
5920310 | Faggin et al. | Jul 1999 | A |
5923264 | Lavelle et al. | Jul 1999 | A |
5926566 | Wang et al. | Jul 1999 | A |
5929710 | Bien | Jul 1999 | A |
5930148 | Bjorksten et al. | Jul 1999 | A |
5930150 | Cohen et al. | Jul 1999 | A |
5931959 | Kwiat | Aug 1999 | A |
5933023 | Young | Aug 1999 | A |
5933356 | Rostoker et al. | Aug 1999 | A |
5933816 | Zeanah et al. | Aug 1999 | A |
5935233 | Jeddeloh | Aug 1999 | A |
5935266 | Thurnhofer et al. | Aug 1999 | A |
5939904 | Fetterman et al. | Aug 1999 | A |
5939949 | Olgaard et al. | Aug 1999 | A |
5941991 | Kageshima | Aug 1999 | A |
5942733 | Allen et al. | Aug 1999 | A |
5943052 | Allen et al. | Aug 1999 | A |
5945878 | Westwick et al. | Aug 1999 | A |
5949632 | Barreras, Sr. et al. | Sep 1999 | A |
5952888 | Scott | Sep 1999 | A |
5956279 | Mo et al. | Sep 1999 | A |
5959871 | Pierzchala et al. | Sep 1999 | A |
5963075 | Hiiragizawa | Oct 1999 | A |
5963105 | Nguyen | Oct 1999 | A |
5963503 | Lee | Oct 1999 | A |
5964893 | Circello et al. | Oct 1999 | A |
5966027 | Kapusta et al. | Oct 1999 | A |
5966532 | McDonald et al. | Oct 1999 | A |
5968135 | Teramoto et al. | Oct 1999 | A |
5969513 | Clark | Oct 1999 | A |
5969632 | Diamant et al. | Oct 1999 | A |
5973368 | Pearce et al. | Oct 1999 | A |
5974235 | Nunally et al. | Oct 1999 | A |
5977791 | Veenstra | Nov 1999 | A |
5978584 | Nishibata et al. | Nov 1999 | A |
5978937 | Miyamori et al. | Nov 1999 | A |
5982105 | Masters | Nov 1999 | A |
5982229 | Wong et al. | Nov 1999 | A |
5982241 | Nguyen et al. | Nov 1999 | A |
5983277 | Heile et al. | Nov 1999 | A |
5986479 | Mohan | Nov 1999 | A |
5987246 | Thomsen et al. | Nov 1999 | A |
5988902 | Holehan | Nov 1999 | A |
5994939 | Johnson et al. | Nov 1999 | A |
5996032 | Baker | Nov 1999 | A |
5999725 | Barbier et al. | Dec 1999 | A |
6002268 | Sasaki et al. | Dec 1999 | A |
6002398 | Wilson | Dec 1999 | A |
6003054 | Oshima et al. | Dec 1999 | A |
6003107 | Ranson et al. | Dec 1999 | A |
6003133 | Moughanni et al. | Dec 1999 | A |
6005814 | Mulholland et al. | Dec 1999 | A |
6005904 | Knapp et al. | Dec 1999 | A |
6006321 | Abbott | Dec 1999 | A |
6006322 | Muramatsu | Dec 1999 | A |
6008685 | Kunst | Dec 1999 | A |
6008703 | Perrott et al. | Dec 1999 | A |
6009270 | Mann | Dec 1999 | A |
6009496 | Tsai | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6012835 | Thompson et al. | Jan 2000 | A |
6014135 | Fernandes | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6014723 | Tremblay et al. | Jan 2000 | A |
6016554 | Skrovan et al. | Jan 2000 | A |
6016563 | Fleisher | Jan 2000 | A |
6018559 | Azegami et al. | Jan 2000 | A |
6023422 | Allen et al. | Feb 2000 | A |
6023565 | Lawman et al. | Feb 2000 | A |
6026134 | Duffy et al. | Feb 2000 | A |
6026501 | Hohl et al. | Feb 2000 | A |
6028271 | Gillespie et al. | Feb 2000 | A |
6028959 | Wang et al. | Feb 2000 | A |
6031365 | Sharpe-Geisler | Feb 2000 | A |
6032268 | Swoboda et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6035320 | Kiriaki et al. | Mar 2000 | A |
6037807 | Wu et al. | Mar 2000 | A |
6038551 | Barlow et al. | Mar 2000 | A |
6041406 | Mann | Mar 2000 | A |
6043695 | O'Sullivan | Mar 2000 | A |
6043719 | Lin et al. | Mar 2000 | A |
6049223 | Lytle et al. | Apr 2000 | A |
6049225 | Huang et al. | Apr 2000 | A |
6051772 | Cameron et al. | Apr 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6052524 | Pauna | Apr 2000 | A |
6055584 | Bridges et al. | Apr 2000 | A |
6057705 | Wojewoda et al. | May 2000 | A |
6058263 | Voth | May 2000 | A |
6058452 | Rangasayee et al. | May 2000 | A |
6061511 | Marantz et al. | May 2000 | A |
6066961 | Lee et al. | May 2000 | A |
6070003 | Gove et al. | May 2000 | A |
6072803 | Allmond et al. | Jun 2000 | A |
6075941 | Itoh et al. | Jun 2000 | A |
6079985 | Wohl et al. | Jun 2000 | A |
6081140 | King | Jun 2000 | A |
6094730 | Lopez et al. | Jul 2000 | A |
6097211 | Couts-Martin et al. | Aug 2000 | A |
6097432 | Mead et al. | Aug 2000 | A |
6101457 | Barch et al. | Aug 2000 | A |
6101617 | Burckhartt et al. | Aug 2000 | A |
6104217 | Magana | Aug 2000 | A |
6104325 | Liaw et al. | Aug 2000 | A |
6107769 | Saylor et al. | Aug 2000 | A |
6107826 | Young et al. | Aug 2000 | A |
6107882 | Gabara et al. | Aug 2000 | A |
6110223 | Southgate et al. | Aug 2000 | A |
6111431 | Estrada | Aug 2000 | A |
6112264 | Beasley et al. | Aug 2000 | A |
6121791 | Abbott | Sep 2000 | A |
6121805 | Thamsirianunt et al. | Sep 2000 | A |
6121965 | Kenney et al. | Sep 2000 | A |
6121971 | Berry et al. | Sep 2000 | A |
6125416 | Warren | Sep 2000 | A |
6130548 | Koifman | Oct 2000 | A |
6130551 | Agrawal et al. | Oct 2000 | A |
6130552 | Jefferson et al. | Oct 2000 | A |
6130553 | Nakaya | Oct 2000 | A |
6133773 | Garlepp et al. | Oct 2000 | A |
6134181 | Landry | Oct 2000 | A |
6134516 | Wang et al. | Oct 2000 | A |
6137308 | Nayak | Oct 2000 | A |
6140853 | Lo | Oct 2000 | A |
6141376 | Shaw | Oct 2000 | A |
6141764 | Ezell | Oct 2000 | A |
6144327 | Distinti et al. | Nov 2000 | A |
6148104 | Wang et al. | Nov 2000 | A |
6215326 | Jefferson et al. | Apr 2001 | B1 |
7274212 | Burney et al. | Sep 2007 | B1 |
7389487 | Chan et al. | Jun 2008 | B1 |
7737724 | Snyder et al. | Jun 2010 | B2 |
8026739 | Sullam et al. | Sep 2011 | B2 |
20010000634 | Keehn et al. | May 2001 | A1 |
20010002129 | Zimmerman et al. | May 2001 | A1 |
20010006347 | Jefferson et al. | Jul 2001 | A1 |
20010010083 | Satoh | Jul 2001 | A1 |
20010038392 | Humpleman et al. | Nov 2001 | A1 |
20010043081 | Rees | Nov 2001 | A1 |
20010044927 | Karniewicz | Nov 2001 | A1 |
20010045861 | Bloodworth et al. | Nov 2001 | A1 |
20010047509 | Mason et al. | Nov 2001 | A1 |
20020010716 | McCartney et al. | Jan 2002 | A1 |
20020016706 | Cooke et al. | Feb 2002 | A1 |
20020023110 | Fortin et al. | Feb 2002 | A1 |
20020042696 | Garcia et al. | Apr 2002 | A1 |
20020052729 | Kyung et al. | May 2002 | A1 |
20020059543 | Cheng et al. | May 2002 | A1 |
20020063688 | Shaw et al. | May 2002 | A1 |
20020065646 | Waldie et al. | May 2002 | A1 |
20020068989 | Ebisawa et al. | Jun 2002 | A1 |
20020073119 | Richard | Jun 2002 | A1 |
20020073380 | Cooke et al. | Jun 2002 | A1 |
20020080186 | Frederiksen | Jun 2002 | A1 |
20020085020 | Carroll | Jul 2002 | A1 |
20020099863 | Comeau et al. | Jul 2002 | A1 |
20020109722 | Rogers et al. | Aug 2002 | A1 |
20020116168 | Kim | Aug 2002 | A1 |
20020121679 | Bazarjani et al. | Sep 2002 | A1 |
20020122060 | Markel | Sep 2002 | A1 |
20020129334 | Dane et al. | Sep 2002 | A1 |
20020133771 | Barnett | Sep 2002 | A1 |
20020133794 | Kanapathippillai et al. | Sep 2002 | A1 |
20020138516 | Igra | Sep 2002 | A1 |
20020144099 | Muro et al. | Oct 2002 | A1 |
20020145433 | Morrise et al. | Oct 2002 | A1 |
20020152234 | Estrada et al. | Oct 2002 | A1 |
20020152449 | Lin | Oct 2002 | A1 |
20020156885 | Thakkar | Oct 2002 | A1 |
20020156998 | Casselman | Oct 2002 | A1 |
20020161802 | Gabrick et al. | Oct 2002 | A1 |
20020166100 | Meding | Nov 2002 | A1 |
20020174134 | Goykhman | Nov 2002 | A1 |
20020174411 | Feng et al. | Nov 2002 | A1 |
20020191029 | Gillespie et al. | Dec 2002 | A1 |
20080263319 | Snyder et al. | Oct 2008 | A1 |
20080263334 | Synder et al. | Oct 2008 | A1 |
20080288755 | Synder et al. | Nov 2008 | A1 |
20080294806 | Swindle et al. | Nov 2008 | A1 |
Entry |
---|
U.S. Appl. No. 11/322,044, mailed Dec. 28, 2005, Stiff, Jonathon. |
U.S. Appl. No. 12/060,176 “Programmable System-On-Chip Hub,” Scott Allen Swindle et al., filed Mar. 31, 2008; 39 pages. |
U.S. Appl. No. 12/104,391 “Clock Driven Dynamic Datapath Chaining,” Warren Synder et al., filed Apr. 16, 2008; 31 pages. |
U.S. Appl. No. 12/356,468 “System and Method for Dynamically Generating a Configuration Datasheet,” Anderson et al.; filed Jan. 20, 2009; 27 pages. |
U.S. Appl. No. 12/765,400 “Autonomous Control in a Programmable System,” Sullam et al., filed Apr. 22, 2010; 30 pages. |
U.S. Appl. No. 12/786,412 “Universal Digital Block Interconnection and Channel Routing,” Warren Snyder et al., filed May 24, 2010; 31 pages. |
Application No. 2008800122321 “Universal Digital Block Interconnection and Channel Routing,” Warren S. Snyder et al., filed Apr. 17, 2008. |
Application No. PCT/US08/60673 “Clock Driven Dynamic Datapath Chaining,” filed Apr. 17, 2008; 24 pages. |
Application No. PCT/US08/60680 “Universal Digital Block Interconnection and Channel Routing,” filed Apr. 17, 2008; 25 pages. |
Application No. PCT/US08/60685 “Universal Digital Block With Integrated Arithmetic Logic Unit,” filed Apr. 17, 2008; 24 pages. |
Application No. PCT/US08/60686 “Programmable System-On-Chip Hub,” filed Apr. 17, 2008; 22 pages. |
Application No. PCT/US08/60695 “System Level Interconnect With Programmable Switching,” filed Apr. 17, 2008; 4 pages. |
Application No. PCT/US08/60696 “Dynamically Configurable and Re-Configurable Data Path,” filed Apr. 17, 2008; 29 pages. |
Ashok Bindra, “Programmable SoC Delivers a New Level of System Flexibility”; Electronic Design; Nov. 6, 2000; 11 pages. |
Atmel Corporation: AT9OSC Summary: “Secure Microcontrollers for Smart Cards,” Oct. 1999; 7 pages. |
Azim et al., “A Custom DSP Chip to Implement a Robot Motion Controller Proceedings of the IEEE Custom Integrated Circuits Conference,” May 1988, pp. 8.7.1-8.7.5; 6 pages. |
Bakker et al., “Micropower CMOS Temperature Sensor with Digital Output,” IEEE Journal of Solid-State Circuits, Jul. 1996; 3 pages. |
Balough et al., “White Paper: Comparing IP Integration Approaches for FPGA Implementation,” Feb. 2007, Version 1.1, Altera, pp. 1-7; 7 pages. |
Bauer et al.; “A Reconfigurable Logic Machine for Fast Event-Driven Simulation”; Jun. 1998; Design Automation Conference Proceedings; 8 pages. |
Burogs et al., “Power Converter Analysis and Design using Matlab: A Transfer Function Approach,” Proceedings of IEEE International Symposium on Industrial Electronics 1998, vol. 2, pp. 552-557; 6 pages. |
Bursky, “FPGA Combines Multiple Interfaces and Logic,” Electronic Design, vol. 48 No. 20, Oct. 2, 2000, pp. 74-78; 5 pages. |
Catthoor et al., “Architectural Strategies for an Application-Specific Synchronous Multiprocessor Environment,” IEEE transactions on Acoustics, Speech, and Signal Processing; vol. 36, No. 2, Feb. 1988, pp. 265-284; 20 pages. |
USPTO Final Rejection for U.S. Appl. No. 12/060,176 dated Jun. 21, 2012; 26 pages. |
Chapweske, Adam; “The PS/2 Mouse Interface,” PS/2 Mouse Interfacing, 2001, retrieved on May 18, 2006; 11 pages. |
Charles Melear, “Using Background Modes for Testing, Debugging and Emulation of Microcontrollers,” IEEE, 1997, pp. 90-97; 8 pages. |
Charles, Jr. et al., “Wirebonding: Reinventing the Process for MCMs,” Apr. 1998, IEEE 7th International Conference on Multichip Modules and High Density Packaging, pp. 300-302; 3 pages. |
Ching et al., “An In-Curcuit-Emulator for TMS320C25,” IEEE, 1994, pp. 51-56; 6 pages. |
Cover Pages Technology Reports; XML and Electronic Design Automation (EDA); Aug. 2000; retrieved from http://xml.coverpages.org on Mar. 23, 2005; 5 pages. |
Cypress MicroSystem, Inc. “Cypress Customer Forums” retrieved from <http://www.cypress.com/forums/messageview>; Nov. 30, 2004; 1 page. |
Cypress MicroSystem, Inc. “PsoC Designer: Integrated Development Environment User Guide”; Rev. 1.18; Sep. 8, 2003; 193 pages. |
Cypress MicroSystems, Inc. “Cypress MicroSystems Unveils Programmable System-On-A-Chip for Embedded Internet, Communications, and Consumer Systems” Nov. 13, 2000; 3 pages. |
Cypress Semiconductor Corporation, “CY8C21x34 Data Sheet,” CSR User Module, CSR V.1.0; Oct. 6, 2005; 36 pages. |
Cypress Semiconductor Corporation, “Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution,” Cypress Press Release; May 31, 2005; <http://www.cypress.com/portal/server>; retrieved on Feb. 5, 2007; 4 pages. |
Cypress Semiconductor Corporation, “FAN Controller CG6457AM and CG6462AM,” PSoC Mixed Signal Array Preliminary Data Sheet; May 24, 2005; 25 pages. |
Cypress Semiconductor Corporation, “PSoC CY8C20x34 Technical Reference Manual (TRM),” PSoC CY8C20x34 TRM, Version 1.0, 2006; 218 pages. |
Cypress Semiconductor Corporation, “PSoC Mixed-Signal Controllers,” Production Description; <http://www.cypress.com/portal/server>; retrieved on Sep. 27, 2005; 2 pages. |
Cypress Semiconductor Corporation, “Release Notes srn017,” Jan. 24, 2007; 3 pages. |
Dahl et al., “Emulation of the Sparcle Microprocessor with the MIT Virtual Wires Emulation System,” 1994, IEEE, pp. 14-22; 9 pages. |
Daniel B. Sedory, “A Guide to DEBUG,” 2004, retrieved on May 20, 2005 from http://www.geocites.com/thestarman3/asm/debug/debug2.htm, pp. 1-11; 7 pages. |
Dirk Killat, “A One-Chip Solution for Electronic Ballasts in Fluorescent Lamps,” Power Electronics, http://powerelectronics.com/mag/power—onechip—solution—electronic/, dated Mar. 1, 2004, accessed Sep. 13, 2005; 4 pages. |
Durham et al., “Circuit Architectures for High Linearity Monolithic Continuous-Time Filtering,” IEEE, 1992; 7 pages. |
Durham et al., “High-Linearity Conitnuous-Time Filter in 5-V VLSI CMOS,” IEEE, 1992; 8 pages. |
Durham et al., “Integrated Continuous-Time Balanced Filters for 16-bit DSP Interfaces,” IEEE, 1993; 6 pages. |
Duvvuru et al., “Evaluation of a Branch Target Address Cache,” 1995, IEEE, pp. 173-180; 8 pages. |
Ebeling et al., “Validating VLSI Circuit Layout by Wirelist Comparison,” Sep. 1983, In the Proceedings of the IEEE International Conference on Computer Aided Design (ICCAD-83), pp. 172-173; 2 pages. |
Ebling, “Gemini II: A Second Generation Layout Validation Program;” 1988; in proceedings of the IEEE International Conference on Computer Aided Design (ICCAD-88); 4 pages. |
Efstathiou, “Analog Electronics: Basic Circuits of Operational Amplifiers,” <http://web.archive.org/web/20021231045232> Dec. 31, 2002, version, retrieved from the Internet Archives; 10 pages. |
Electronic Tools Company; E-Studio User Manuel; 2000; retrieved from http://web.archive.org for site http://e-tools.com on Mar. 23, 2005; 77 pages. |
Frank Goodenough, “Analog Counterparts of FPGAS Ease System Design,” Electronic Design, Penton Publishing, Cleveland, OH, Oct. 14, 1994, vol. 42, No. 21, pp. 63-66, 68; 10 pages. |
Fred Eady, “PSoC 101,” Circuit Cellar, Aug. 2004, accessed Sep. 13, 2005, http://www.circuitcellar.com/library/print/0804/eady169/2.htm; 4 pages. |
From U.S. Appl. No. 10/033,027; “Programmable Microcontroller (PSoC) Architecture (Mixed Analog/Digital)”; Aug. 7, 2001; U.S. Appl. No. 09/924,734 Snyder et al.; 28 pages. |
Number | Date | Country | |
---|---|---|---|
20110304354 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
60912399 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12786412 | May 2010 | US |
Child | 13099334 | US | |
Parent | 11965291 | Dec 2007 | US |
Child | 12786412 | US |