The present disclosure relates generally to programmable devices, and more particularly to a Universal Digital Block (UDB) with an integrated Arithmetic Logic Unit (ALU).
Field-programmable gate arrays (FPGAs) and programmable logic devices (PLDs) have been used in data communication and telecommunication systems. Conventional PLDs and FPGAs consist of an array of programmable elements, with the elements programmed to implement a fixed function or equation. Some currently-available Complex PLD (CPLD) products comprise arrays of logic cells. Conventional PLD devices have several drawbacks, such as high power consumption and large silicon area.
In developing complex electronic systems, there is often a need for additional peripheral units, such as operational and instrument amplifiers, filters, timers, digital logic circuits, analog to digital and digital to analog converters, etc. As a general rule, implementation of these extra peripherals create additional difficulties: extra space for new components, additional attention during production of a printed circuit board, and increased power consumption. All of these factors can significantly affect the price and development cycle of the project.
The introduction of Programmable System on Chip (PSoC) chips feature digital and analog programmable blocks, which allow the implementation of a large number of peripherals. A programmable interconnect allows analog and digital blocks to be combined to form a wide variety of functional modules. The digital blocks consist of smaller programmable blocks and are configured to provide different digital functions. The analog blocks are used for development of analog elements, such as analog filters, comparators, inverting amplifiers, as well as analog to digital and digital to analog converters. Current PSoC architectures provide only a coarse grained digital programmability in which a few fixed functions with a small number of options are available.
An array of universal digital blocks consisting of sections that include uncommitted user programmable logic (PLD, Programmable Logic Device) functions and datapath sections that include structural data and arithmetic operators. A routing channel matrix programmably connects to different selectable elements in the programmable logic device sections and the datapath sections in the array of universal digital blocks.
Configuration registers dynamically program different functions performed by the structural datapath sections and programmable logic sections, and statically configure how the structural datapath and programmable logic device sections connect to the routing channel.
The datapath sections comprise dedicated data buffers, a dedicated arithmetic logic unit, and dedicated conditional operators. The arithmetic unit can include a dedicated data shifter and a dedicated data bit mask. A Random Access Memory (RAM) in the datapath is configured to store addressable data values that dynamically program the different arithmetic operators. An output multiplexer programmably couples different outputs from the arithmetic operators to other universal digital blocks through the routing channel.
Dedicated data registers are accessible through a micro-controller and provide inputs to the arithmetic operators. Parallel data buses are coupled to the data registers and are programmably coupled to the routing channel.
The first set of user programmable uncommitted logic in at least some of the universal digital blocks are programmed into a first set of user programmed logic functions. The second set of dedicated arithmetic sequencer elements in at least some of the universal digital blocks provide a second set of user arithmetic operations that operate in conjunction with the user programmed logic functions. The routing channel is then used to selectively couple at least some of the user programmed logic functions with at least some of the dedicated arithmetic sequencer elements in different universal digital blocks.
A micro-controller monitors data signals and can dynamically reprogram the arithmetic sequencer elements or user programmed logic elements in one or more of the universal digital blocks to perform different arithmetic functions or programmable logic sequences according to the monitored data signals. The micro-processor can also dynamically change, through programmable routing configuration which of the arithmetic sequencer elements in which of the universal digital blocks are coupled together according to the monitored data signals.
A new Universal Digital Block (UDB) architecture combines PLDs and a datapath module in the same digital logic block to allow for the implementation of universal embedded digital functions. The new UDB architecture includes an integrated ALU that removes limitations associated with fixed functionality and provides users with the ability to customize digital operations to match system requirements.
The UDB array 110 is arranged into UDB pairs 122 that may or may not be connected together through the interconnect matrix 130. The UDB pairs 122 each include two UDBs 120 that can be tightly coupled to a shared horizontal routing channel 132. The UDB pairs 122 can also be programmably connected to the horizontal routing channels 132 of other UDB pairs 122 either in the same horizontal row or in different rows through vertical routing channels 134. The horizontal and vertical routing channels and other switching elements are all collectively referred to as the interconnect matrix 130.
A Digital System Interconnect (DSI) routing interface 112 connects a micro-controller system 170 and other fixed function peripherals 105 to the UDB array 110. The micro-controller system 170 includes a micro-controller 102, an interrupt controller 106, and a Direct Memory Access (DMA) controller 108. The other peripherals 105 can be any digital or analog functional element that is preconfigured in PSoC 100. The DSI 112 is an extension of the interconnect matrix 130 at the top and bottom of the UDB array 110.
The PLD blocks 200 implement state machines, perform input or output data conditioning, and create look-up tables. The PLDs 200 can also be configured to perform arithmetic functions, sequence datapath 210, and generate status. PLDs are generally known to those skilled in the art and are therefore not described in further detail.
The datapath block 210 contains highly structured dedicated logic that implements a dynamically programmable ALU, comparators, and condition generation. A status and control block 204 allows micro-controller firmware to interact and synchronize with the UDB 120 by writing to control inputs and reading status outputs.
A clock and reset control block 202 provides global clock selection, enabling, and reset selection. The clock and reset block 202 selects a clock for each of the PLD blocks 200, the datapath block 210, and status and control block 204 from available global system clocks or a bus clock. The clock and reset block 202 also supplies dynamic and firmware resets to the UDBs 120.
Routing channel 130 connects to UDB I/O through a programmable switch matrix and provides connections between the different elements of the UDBs in
The PLDs 200 and the datapath 210 have chaining signals 212 and 214, respectively, that enable neighboring UDBs 120 to he linked to create higher precision functions. The PLD carry chain signals 212 are routed from the previous adjacent UDB 120 in the chain, and routed through each macrocell in both of the PLDs 200. The carry out is then routed to the next UDB 120 in the chain. A similar connectivity is provided for the set of conditional signals generated by the datapath chain 214 between datapath blocks 210 in adjacent UDBs 120.
Referring to
The datapath 210 comprises highly structured logic elements 254 that include a dynamically programmable ALU 304, conditional comparators 310, accumulators 302, and data buffers 300. The ALU 304 is configured to perform instructions on accumulators 302, and to perform arithemetic sequences as controlled by a sequence memory. The conditional comparators 310 can operate in parallel with the ALU 304. The datapath 210 is further optimized to implement typical embedded functions, such as timers, counters, pseudo random sequence generators, Cyclic Redunduncy Checkers (CRC), Pulse Width Modulators (PWM), etc.
The combination of uncommitted PLDs 200 with a dedicated datapath module 210 allow the UDBs 120 to provide embedded digital functions with more silicon efficient processing. The dedicated committed structural arithmetic elements 254 more efficiently implement arithmetic sequencer operations, as well as other datapath functions. Since the datapath 210 is structural, fewer gates are needed to implement these structural elements 254 and fewer interconnections are needed to connect the structural elements 254 together into an arithmetic sequencer. Implementing the same datapath 210 with PLDs could require a much greater quantity of additional combinational logic and additional interconnections.
The structured logic in the datapath 210 is also highly programmable to provide a wide variety of different dynamically selectable arithmetic functions. Thus, the datapath 210 not only conserves space on the integrated circuit 100 (
The functionalality of the datapath 210 may be controlled through writes to the control registers 250 allowing the micro-controller 102 to arbitrarily set the system state and selectively control different arithmetic functions. The status registers 256 allow the micro-controller 102 to also identify different states associated with different configured arithmetic operations. The flexible connectivity scheme provided by the routing channel 130 selectively interconnects the different functional element 250, 200, 254, and 256 together as well as programmably connecting these functional element to other UDBs, I/O connections, and peripherals.
Thus, the combination of uncommitted logic 252, structural logic 254, and programmable routing channel 130 provide as much functionality and uses less integrated circuit space, while at the same time providing the potential for increased performance and substantially the same functional configurability.
The datapath 210 is optimized to implement typical embedded functions, such as timers, counters, Pulse Width Modulators (PWMs), Pseudo Random Sequence (PRS) generators, Cyclic Redundancy Checks (CRC), shifters, dead band generators, etc. The addition of the add and subtract functions in ALU 304 also allow support for digital delta-sigma operations.
Internal connections 330 can be externally connected to either the system bus 140 and/or the routing channel 130. Different combinations of connections 330 are interconnected between different datapath components according to their related functions. Connections 330 are shown as a single bus in
Dynamic configuration is the ability to change the datapath function and interconnect configuration on a cycle-by-cycle basis. This is implemented using the information in configuration RAM 324. The address 323 input to RAM 324 can be routed from any functional element connected to the routing channel 130, and most typically include the PLDs 200 (
The ALU 304 can perform different general-purpose functions such as increment, decrement, add, subtract, logical AND, OR, XOR, or PASS. In addition to these functions, hardware structures and connections are provided to implement a single cycle CRC operation. In addition to the ALU 304, an independent shifter 306 provides left, right, nibble swap operations. Another independent masking function 308 masks selectable bits output from the ALU 304.
Each datapath 210 includes conditional logic comparators 310 which can be configured to receive a variety of different datapath register inputs. The comparators 310 check for conditions such as zero detect, all one's detect, and overflow. These conditions produce datapath outputs that are selectively routed back through the same datapath 210 or routed through output multiplexer 326 and the routing channel 130 to other UDBs or peripheral components.
Each datapath 210 contains multiple FIFOs 312 that can be individually configured to operate as input buffers or output buffers. When operating as input buffers, the system bus 140 can write to the FIFOs 312 and datapath internal logic elements can read from the FIFOs 312. When operating as output buffers, datapath internal logic elements write to the FIFO 312 and the system bus 140 reads from the FIFO 312. The FIFOs 312 generate status that can be routed to interact with sequencers, interrupt, or DMA requests.
As described above in
In applications that are oversampled, or don't need the highest clock rates, the ALU block 304 can be efficiently shared with two sets of registers and condition generators. Selected outputs from the ALU 304 and shifter 306 are registered and can be used as inputs in subsequent cycles.
The datapath 210 receives configuration inputs, control inputs, and data inputs. At least some configuration data can be received over input 320 and used for selecting the current address 323 for configuration RAM 324. Input 320 can come from either to the system bus 140 and/or to the routing channel 130. Control inputs can come over the system bus 140 or the routing channel 130 and are used to load the data registers 314 and capture outputs from accumulators 302. Data inputs can also come from the system bus 140 and/or the routing channel 130 and can include shift in and carry in signals received over input multiplexer 322. Other data inputs include parallel data input and output ports 318 that can be programmably connected through the routing channel 130 to the ALU 304.
There are multiple conditional, data, and status signals that can be selectively output via output multiplexer 326. For maximum routing flexibility, any of the status or data output signals connected to output mux 326 can be programmably connected to the routing channel 130.
The datapath 210 has multiple working registers. These registers are readable and writable by the micro-controller 102 and DMA 108 in
Referring to
Some example conditional logic is shown in
A Random Access Memory (RAM) and/or a set of configuration registers 410 are directly readable and writeable by the micro-controller 102. Some memory locations 412 are associated with PLD configuration. For example, the micro-controller 102 can write values into memory locations 412 to program how different PLDs 200 operate and how the PLDs 200 are connected with other PLDs 200 and datapaths 210 in the same or in other UDBs 120. Similarly, the micro-controller 102 can write values into memory locations 416 to configure different arithmetic operations in the datapaths 210 and configure routing interconnections between the datapaths 210 and other functional elements in the PSoC IC 100.
The memory section 418 is used to program different arithmetic operations performed by the datapath 210 and different interconnect matrix routing that may be used for these different arithmetic operations. For example, the values in memory locations 418 can determine which internal signals from the ALU 304 in
Referring both to
The micro-controller 102 can then monitor different internal or external events in operation 232. For example, the micro-controller 102 may monitor external signals on I/O pin 104 or may monitor different internal signals or states in the UDB array 110. A particular external or internal signal or state may be detected in operation 234 that requires a new UDB functional operation and/or a new routing configuration.
For example, the micro-controller 102 may detect a signal that requires increased accuracy for a subsequent arithmetic operation. Accordingly, the micro-controller 102 in operation 234 writes different values into particular locations 412, 414, and/or 416 of configuration RAM 410 that reconfigure the UDB array 110 for the new arithmetic operation and/or new interconnect configuration.
In this example, the micro-controller 102 can determine based on some monitored event that both datapath_1 and datapath_3 need to process a set of data. A previous operation may have compared two 8 bit wide data values. However, the micro-controller 102 determines that a next operation requires two 16 bit wide data values to be added together. The micro-controller 102 writes values into RAM section 414 that change the functions performed in the ALUs 304 and/or comparators 310 in datapath 1 and datapath_3 from 8 bit compare operations to a 16 bit add operation.
The micro-controller 102 may also need to reconfigure the interconnect matrix 130 so that the first datapath_1 adds together the first 8 bits of the two data values and datapath_3 adds together the second 8 bits of the two data values. Accordingly, the micro-controller 102 writes values into memory location 416 that connect datapath_1 and datapath_3 together through the interconnect matrix 130 to form a 16 bit wide adder. The new values loaded into memory sections 414 and 416 also connect the carry output 214 (
The two halves of the two 16 bit data values are loaded into the data registers 314 (
The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the operations. Some of the operations described above can be implemented in software and other operations can be implemented in hardware.
For the sake of convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there can be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or features of the flexible interface can be implemented by themselves, or in combination with other operations in either hardware or software.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.
The present application claims priority to U.S. Provisional Application No. 60/912,399, filed Apr. 17, 2007 and is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60912399 | Apr 2007 | US |