This patent for letters patent disclosure document describes inventive aspects that include various novel innovations (hereinafter “disclosure”) and contains material that is subject to copyright, mask work, and/or other intellectual property protection. The respective owners of such intellectual property have no objection to the facsimile reproduction of the disclosure by anyone as it appears in published patent a Office file/records, but otherwise reserve all rights.
The present innovations generally address apparatuses, methods, and systems for electronic commerce, and more particularly, include UNIVERSAL ELECTRONIC PAYMENT APPARATUSES, METHODS AND SYSTEMS (“UEP”).
Consumer transactions typically require a customer to select a product from a store shelf or website, and then to check the out at a checkout counter or webpage. Product information is selected from a webpage catalog or entered into a point-of-sale terminal, or the information is entered automatically by scanning an item barcode with an integrated barcode scanner at the point-of-sale terminal. The customer is usually provided with a number of payment options, such as cash, check, credit card a or debit card. Once payment is made and approved, the point-of-sale terminal memorializes the transaction in the merchant's computer system, and a receipt is generated indicating the satisfactory consummation of the transaction.
The accompanying appendices and/or drawings illustrate various non-limiting, example, inventive aspects in accordance with the present disclosure:
The leading number of each reference number within the drawings indicates the figure in which that reference number is introduced and/or detailed. As such, a detailed discussion of reference number lot would be found and/or introduced in
The UNIVERSAL ELECTRONIC PAYMENT APPARATUSES, METHODS AND SYSTEMS (hereinafter “UEP”) transform touchscreen inputs into a virtual wallet mobile application interface, via UEP components, into purchase transaction triggers and receipt notices.
In some implementations, the virtual wallet application may provide a ‘discover shopping’ mode 211. For example, the virtual wallet application executing on a user device may communicate with a server. The server may provide information to the virtual wallet on the consumer trends across a broad range of consumers in the aggregate. For example, the server may indicate what types of transactions consumers in the aggregate are engaging in, what they are buying, which reviews they pay attention to, and/or the like. In some implementations, the virtual wallet application may utilize such information to provide a graphical user interface to facilitate the user's navigation through such aggregate information, such as described in the discussion below with reference to
In some implementations, the virtual wallet application may allow the user to simultaneously maintain a plurality of shopping carts, e.g., 212-213. Such carts may, in some implementation, be purely virtual carts for an online website, but in alternate implementations, may reflect the contents of a physical cart in a merchant store. In some implementations, the virtual wallet application may allow the user to specify a current cart to which items the user desires will be placed in by default, unless the user specifies otherwise. In some implementations, the virtual wallet application may allow the user to change the current cart (e.g., 213). In some implementations, the virtual wallet application may allow the user to create wishlists that may be published online or at social networks to spread to the user's friends. In some implementations, the virtual wallet application may allow the user to view, manage, and pay bills for the user, 214.
For example, the virtual wallet application may allow the user to import bills into the virtual wallet application interface by taking a snapshot of the bill, by entering information about the bill sufficient for the virtual wallet application to establish a communication with the merchant associated with the bill, etc.
In some implementations, the virtual wallet application may allow the user to shop within the inventories of merchants participating in the virtual wallet. For example, the inventories of the merchants may be provided within the virtual wallet application for the user to make purchases. In some implementations, the virtual wallet application may provide a virtual storefront for the user within the graphical user interface of the virtual wallet application. Thus, the user may be virtually injected into a store of the merchant participating in the UEP's virtual wallet application.
In some implementations, the virtual wallet application may utilize the location coordinates of the user device (e.g., via GPS, IP address, cellular tower triangulation, etc.) to identify merchants that are in the vicinity of the user's current location. In some implementations, the virtual wallet application may utilize such information to provide information to the user on the inventories of the merchants in the locality, and or may inject the merchant store virtually into the user's virtual wallet application.
In some implementations, the virtual wallet application may provide a shopping assistant 204. For example, a user may walk into a physical store of a merchant. The user may require assistance in the shopping experience. In some implementations, the virtual wallet application may allow the user to turn on the shop assistant (see 217), and a store executive in the merchant store may be able to assist the user via another device. In some embodiments, a user may enter into a store (e.g., a physical brick-and-mortar store, virtual online store [via a computing device], etc.) to engage in a shopping experience. The user may have a user device. The user device 102 may have executing thereon a virtual wallet mobile app, including features such as those as described herein. Upon entering the store, the user device may communicate with a store management server. For example, the user device may communicate geographical location coordinates, user login information and/or like check-in information to check in automatically into the store. In some embodiments, the UEP may inject the user into virtual wallet store upon check in. For example, the virtual wallet app executing on the user device may provide features as described below to augment the user's in-store shopping experience. In some embodiments, the store management server may inform a customer service representative (“CSR”) of the user's arrival into the store. For example, the CSR may have a CSR device, and an app (“CSR app”) may be executing thereon. For example, the app may include features such as described below in the discussion herein. The CSR app may inform the CSR of the user's entry, including providing information about the user's profile, such as the user's identity, user's prior and recent purchases, the user's spending patterns at the current and/or other merchants, and/or the like. In some embodiments, the store management server may have access to the user's prior purchasing behavior, the user's real-time in-store a behavior (e.g., which items' barcode did the user scan using the user device, how many times did the user scan the barcodes, did the user engage in comparison shopping by scanning barcodes of similar types of items, and/or the like), the user's spending patterns (e.g., resolved across time, merchants, stores, geographical locations, etc.), and/or like user profile information. The store management system may utilize this information to provide offers/coupons, recommendations and/or the like to the CSR and/or the user, via the CSR device and/or user device, respectively. In some embodiments, the CSR may assist the user in the shopping experience. For example, the CSR may convey offers, coupons, recommendations, price comparisons, and/or the like, and may perform actions on behalf of the user, such as adding/removing items to the user's physical/virtual cart, applying/removing coupons to the user's purchases, searching for offers, recommendations, providing store maps, or store 3D immersion views, and/or the like. In some embodiments, when the user is ready to checkout, the UEP may provide a checkout notification to the user's device and/or CSR device. The user may checkout using the user's virtual wallet app executing on the user device, or may utilize a communication mechanism (e.g., near field communication, card swipe, QR code scan, etc.) to provide payment information to the CSR device. Using the payment information, the UEP may initiate the purchase transaction(s) for the user, and provide an electronic receipt to the user device and/or CSR device. Using the electronic receipt, the user may exit the store with proof of purchase payment.
With reference to
Similarly, the discovery shopping mode 321 may provide a view of aggregate consumer response to opinions of experts, divided based on opinions of experts aggregated form across the web (see 302). For example, the centralized personal information platform components described below in the discussion with a reference to
With reference to
With reference to
With reference to
The virtual wallet, in another embodiment, may offer facilities for obtaining and displaying ratings 427 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITER or FACEBOOK). For example, the display area 428 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 429. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
In some implementations, the wallet application may display a shop trail for the user, e.g., 430. For example, a user may have reviewed a product at a number of websites (e.g., ElecReports, APPL FanBoys, Gizmo, Bing, Amazon, Visa Smartbuy feature (e.g., that checks various sources automatically for the best price available according to the user preferences, and provides the offer to the user), etc.), which may a have led the user to a final merchant website where the user finally bought the product. In some implementations, the UEP may identify the websites that the user visited, that contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. Accordingly, the UEP may calculate a revenue share for each of the websites in the user's shopping trail using a revenue sharing model, and provide revenue sharing for the websites.
In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 431 for the product 422 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 432 for the product. When the market price available for the user falls below the user's target price 431, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user.
In one implementation, an example user interface 711 for making a payment is shown. The user interface may clearly identify the amount 712 and the currency 713 for the transaction. The amount may be the amount payable and the is currency may include real currencies such as dollars and euros, as well as virtual currencies such as reward points. The user may select the funds tab 702 to select one or more forms of payment 717, which may include various credit, debit, gift, rewards and/or prepaid cards. The user may also have the option of paying, wholly or in part, with reward points. For example, the graphical indicator 718 on the user interface shows the number of points available, the graphical indicator 719 shows the number of points to be used towards the amount due 234.56 and the equivalent 720 of the number of points in a selected currency (USD, for example).
In one implementation, the user may combine funds from multiple sources to pay for the transaction. The amount 715 displayed on the user interface may provide an indication of the amount of total funds covered so far by the selected forms of payment (e.g., Discover card and rewards points). The user may choose another form of payment or adjust the amount to be debited from one or more forms of payment until the amount 715 matches the amount payable 714. Once the amounts to be debited from one or more forms of payment are finalized by the user, payment authorization may a begin.
In one implementation, the user may select a secure authorization of the transaction by selecting the cloak button 722 to effectively cloak or anonymize some (e.g., pre-configured) or all identifying information such that when the user selects pay button 721, the transaction authorization is conducted in a secure and anonymous manner. In another implementation, the user may select the pay button 721 which may use standard authorization techniques for transaction processing. In yet another implementation, when the user selects the social button 723, a message regarding the transaction may be communicated to one of more social networks (set up by the user), which may post or announce the purchase transaction in a social forum such as a wall post or a tweet. In one implementation, the user may select a social payment processing option 723. The indicator 724 may show the authorizing and sending social share data in progress.
In another implementation, a restricted payment mode 725 may be activated for certain purchase activities such as prescription purchases. The mode may be activated in accordance with rules defined by issuers, insurers, merchants, payment processor and/or other entities to facilitate processing of specialized goods and services. In this mode, the user may scroll down the list of forms of payments 726 under the funds tab to select specialized accounts such as a flexible spending account (FSA), health savings account (HAS) 727, and/or the like and amounts to be debited to the selected accounts. In one implementation, such restricted payment mode 725 processing may disable social sharing of purchase information.
In one embodiment, the wallet mobile application may facilitate importing a of funds via the import funds user interface 728. For example, a user who is unemployed may obtain unemployment benefit fund 729 via the wallet mobile application. In one implementation, the entity providing the funds may also configure rules for using the fund as shown by the processing indicator message 730. The wallet may read and apply the rules prior, and may reject any purchases with the unemployment funds that fail to meet the criteria set by the rules. Example criteria may include, for example, merchant category code (MCC), time of transaction, location of transaction, and/or the like. As an example, a transaction with a grocery merchant having MCC 5411 may be approved, while a transaction with a bar merchant having an MCC 5813 may be refused.
In one implementation, the user may select the payee Jane P. Doe 805 for receiving payment. Upon selection, the user interface may display additional identifying information 806 relating to the payee. The user interface may allow the user to contact the payee (e.g., call, text, email), modify the entry of the payee in the address book (e.g., edit, delete, merge with another contact), or make a payment to the payee 807. For example, the user can enter an amount 808 to be paid to the payee. The user can include a note for the payee (or for the user herelf) related to the payment, 809. The user can also include strings attached to the payment. For example, the user can provide that the payment processing should occur only if the payee re-posts the user's note on a social networking site, 810. The user can, at any time, modify the funding sources to utilize in the payment, 811. Also, the user can utilize a number of different payment modes for each user, 812. For example, additional modes such as those described in the discussion with reference to
With reference to
In one embodiment, the social tab 931 may facilitate integration of the wallet application with social channels 932. In one implementation, a user may select one or more social channels 932 and may sign in to the selected social channel from the wallet application by providing to the wallet application the social channel user name and password 933 and signing in 934. The user may then use the social button 935 to a send or receive money through the integrated social channels. In a further implementation, the user may send social share data such as purchase information or links through integrated social channels. In another embodiment, the user supplied login credentials may allow UEP to engage in interception parsing.
In one embodiment, a user may select the history mode 1011 to view a history of filtered prior purchases and perform various actions on those prior purchases. For example, a user may enter a merchant identifying information such as name, a product, MCC, and/or the like in the search bar 1012. In another implementation, the user may use voice activated search feature to search the history. In another implementations, the wallet application may display a pop up screen 1016, in which the user may enter advanced search filters, keywords, and/or the like. The wallet application may query the storage areas in the mobile device or elsewhere (e.g., one or more databases and/or tables remote from the mobile device) for transactions matching the search keywords. The user interface may then display the results of the query such as transactions 1003. The user interface may identify 1014: a type of the transaction (e.g., previously shopped for items, bills that have been captured by camera in a snap mode, a person-to-person transfer [e.g., via social payment mechanism as described below in the discussion with reference to
With reference to
In one implementation, the user may select a transaction, for example transaction 1106, to view the details of the transaction. For example, the user may view the details of the items associated with the transaction and the amount(s) of each item, the merchant, etc., 1112. In various implementations, the user may be able to perform additional operations in this view. For example, the user may (re)buy the item 1113, obtain third-party reviews of the item, and write reviews of the item 1114, add a photo to the item so as to organize information related to the item along with the item 1115, add the item to a group of related items (e.g., a household), provide ratings 1117, or view quick ratings from the user's friends or from the web at large. For example, such systems may be implemented using the example centralized personal information platform components described below in the discussion with reference to
The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 1117 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITER or FACEBOOK). For example, the display area 1118 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 1119. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
In some implementations, the wallet application may display a shop trail for the user, e.g., 1120. For example, a user may have reviewed a product at a number of websites (e.g., ElecReports, APPL FanBoys, Gizmo, Bing, Amazon, Visa Smartbuy feature (e.g., that checks various sources automatically for the best price available according to the user preferences, and provides the offer to the user), etc.), which may have led the user to a final merchant website where the user finally bought the product. In some implementations, the UEP may identify the websites that the user visited, that contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. Accordingly, the UEP may calculate a revenue share for each of the websites in the user's shopping trail using a revenue sharing model, and provide revenue sharing for the a websites.
In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 1121 for the product 1112 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 1122 for the product. When the market price available for the user falls below the user's target price 1121, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user.
If the user engaged in browsing activity at a current URL (1105, option “Yes”), the device may identify the URL associated with the browsing activity (e.g., if the browsing can be performed on the device across multiple windows or tabs, etc.). The device may increment an activity counter to determine a level of user activity of the user at the URL where the browsing activity is occurring, 1106. The device may update the shop trail database with the activity count for the URL, 1107.
If the user desires to engage in a purchase transaction, e.g., after visiting a number of URLs about the product (e.g., after reading reviews about a product at a number of consumer report websites, the user navigates to amazon.com to buy the product), see 1103, option “Yes,” the device may set the current URL as the “point-of-sale” URL (e.g., the merchant at which the user finally bought the product—e.g., amazon.com), 1112. The device may stop the time for the current URL, and update the shop trail database for the current URL, 1113. The device may generate a card authorization request to initiate the purchase transaction, 1114, and provide the card authorization request for transaction processing (see, e.g., PTA 5700 component described below in the discussion with reference to
In some implementations, the device may also invoke a revenue sharing component, such as the example STRS 1120 component described below in the discussion with reference to
Accordingly, in some implementations, a server may obtain a list of URLs included in a suer's shopping trail, and their associated activity and time counts, 1121. The server may identify a point-of-sale URL where the user made the purchase for which revenue is being shared among the URLs in the shopping trail, 1122. The server may calculate a total activity count, and a total time count, by summing up activity and time counts, respectively, of all the URLs in the user's shopping trail, 1123. The server may calculate activity and time ratios of each of the URLs, 1124. The server may obtain a rvenue sharing model (e.g., a database table/matrix of weighting values) for converting activity and time ratios for each URL into a revenue ratio for that URL, 1125. The server may calculate a revenue share, 1126, for each of the URLs in the user's shopping trail using the revenue sharing model and the revenue ratios calculated for each URL. The server may provide a notification of the revenue for each URL (e.g., to each of the URLs and/or the point-of-sale URL from whom revenue will be obtained to pay the revenue shares of the other URLs in the user's shopping trail), 1127. In some implementations, the server may generate card authorization requests and/or batch clearance requests for each of the revenue payments due to the URLs in the user's shopping trail, to process those transactions for revenue sharing.
With reference to
In one implementation, in particular when the user has previously interacted with the item that is snapped, the user may view the details of the items 1232 and the amount(s) of each item, the merchant, etc., 1232. In various implementations, the user may be able to perform additional operations in this view. For example, the user may (re)buy the item 1233, obtain third-party reviews of the item, and write reviews of the item 1234, add a photo to the item so as to organize information related to the item along with the item 1235, add the item to a group of related items (e.g., a household), provide ratings 1237, or view quick ratings from the user's friends or from the web at large. For example, such systems may be implemented using the example centralized personal information platform components described below in the discussion with reference to
The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 1237 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 1238 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 1239. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
In some implementations, the wallet application may display a shop trail for the user, e.g., 1240. For example, a user may have reviewed a product at a number of websites (e.g., ElecReports, APPL FanBoys, Gizmo, Bing, Amazon, Visa Smartbuy feature (e.g., that checks various sources automatically for the best price available according to the user preferences, and provides the offer to the user), etc.), which may have led the user to a final merchant website where the user finally bought the product. In some implementations, the UEP may identify the websites that the user visited, that a contributed to the user deciding to buy the product, and may reward them with a share of the revenues obtained by the “point-of-sale” website for having contributed to the user going to the point-of-sale website and purchasing the product there. For example, the websites may have agreements with product manufacturers, wholesalers, retail outlets, payment service providers, payment networks, amongst themselves, and/or the like with regard to product placement, advertising, user redirection and/or the like. Accordingly, the UEP may calculate a revenue share for each of the websites in the user's shopping trail using a revenue sharing model, and provide revenue sharing for the is websites.
In some implementations, the virtual wallet may provide a SmartBuy targeted shopping feature. For example, the user may set a target price 1241 for the product 1232 that the user wishes to buy. The virtual wallet may provide a real-time market watch status update 1242 for the product. When the market price available for the user falls below the user's target price 1241, the virtual wallet may automatically buy the product for the user, and provide a shipment/notification to the user.
With reference to
As shown, the user may snap 1251, 1261 a picture of a barcode on an receipt 1253, 1263, upon which the virtual wallet application may present the receipt data 1252, 1262 using information from the pay code. The user may now reallocate expenses to their optimum accounts 1254, 1264. In some implementations, the user may also dispute the transaction 1255, 1265 or archive the receipt 1256, 1266.
In one implementation, when the reallocate button is selected, the wallet application may perform optical character recognition (OCR) of the receipt. Each of the items in the receipt may then be examined to identify one or more items which could be charged to which payment device or account for tax or other benefits such as cash back, reward points, etc. In this example, there is a tax benefit if the prescription medication charged to the user's Visa card is charged to the user's FSA. The wallet application may then perform the reallocation as the back end. The reallocation process may include the wallet contacting the payment processor to credit the amount of the prescription medication to the Visa card and debit the same amount to the user's FSA account. In an alternate implementation, the payment processor (e.g., Visa or MasterCard) may obtain and OCR the receipt, identify items and payment accounts for reallocation and perform the reallocation. In one implementation, the wallet application may request the user to confirm reallocation of charges for the selected items to another payment account. The receipt may be generated after the completion of the reallocation process. As discussed, the receipt shows that some charges have been moved from the Visa account to the FSA.
With reference to
In one embodiment, the snap mode may also offer facilities for adding a funding source to the wallet application. In one implementation, a pay card such as a credit card, debit card, pre-paid card, smart card and other pay accounts may have an associated code such as a bar code or QR code. Such a code may have encoded therein pay card information including, but not limited to, name, address, pay card type, pay card account details, balance amount, spending limit, rewards balance, and/or the like. In one implementation, the code may be found on a face of the physical pay card. In another implementation, the code may be obtained by accessing an associated online account or another secure location. In yet another implementation, the code may be printed on a letter accompanying the pay card. A user, in one implementation, may snap a picture of the code. The wallet application may identify the pay card and may display the textual information encoded in the pay card. The user may then perform verification of the information by selecting a verify button. In one implementation, the verification a may include contacting the issuer of the pay card for confirmation of the decoded information and any other relevant information. In one implementation, the user may add the pay card to the wallet by selecting a ‘add to wallet’ button. The instruction to add the pay card to the wallet may cause the pay card to appear as one of the forms of payment under the funds tab discussed above.
With reference to
In response to obtaining the product data, the merchant server may generate, e.g., 1206, a QR pay code, and/or secure display element according to the security settings of the user. For example, the merchant server may generate a QR code embodying the product information, as well as merchant information required by a payment network to process the purchase transaction. For example, the merchant server may first generate in real-time, a custom, user-specific merchant-product XML data structure having a time-limited validity period, such as the example ‘QR_data’
In some implementations, the merchant may generate QR code using the XML data. For example, the merchant server may utilize the PHP QR Code open-source (LGPL) library for generating QR Code, 2-dimensional barcode, available at http://phpqrcode.sourceforge.net/. For example, the merchant server may issue PHP commands similar to the example commands provided below:
The merchant server may provide the QR pay code to the client, e.g., 1206. The client may obtain the QR pay code, and display the QR code, e.g., 1207 on a display screen associated with the client device. In some implementations, the user may utilize a user device, e.g., 1209, to capture the QR code presented by the client device for payment processing. The client device may decode the QR code to extract the information embedded in the QR code. For example, the client device may utilize an application such as the ZXing multi-format 1D/2D barcode image processing library, available at http://code.google.com/p/zxing/ to extract the information from the QR code. In some implementations, the user may provide payment input into the user device, e.g., 1208. Upon obtaining the user purchase input, the user device may generate a card authorization request, e.g., 1209, and provide the card authorization request to a pay network server (see, e.g.,
In some embodiments, the QR code may include data on a new account to be added to the virtual wallet application (see 1219). The virtual wallet application may query an issuer of the new account (as obtained from the extracted data), for the data associated with the new account, 1220. The virtual wallet application may compare the issuer-provided data to the data extracted from the QR code, 611. If the new account is validated (1221, option “Yes”), the virtual wallet application may update the wallet credentials with the details of the new account, 1223, and update the snap history of the virtual wallet application using the data from the QR code, 1224.
With reference to
In some embodiments, the QR code may include product information, commands, user navigation instructions, etc. for the virtual wallet application (see 1231). The virtual wallet application may query a product database using the information encodd in the QR. The virtual wallet application may provide various features including, without limitation, displaying product information, redirecting the user to: a product page, a merchant website, a product page on a merchant website, add item(s) to a user shopping cart at a merchant website, etc. In some implementations, the virtual wallet application may perform a procedure such as described above for any image frame pending to be processed, and/or selected for processing by the user (e.g., from the snap history).
In some implemetations, the pay network server may parse the offer generation/exchange request, 1307, using parsers such as the example parser described a below in the discussion with reference to
In a category of general settings (1411), a user may be able to modify settings such as, but not limited to: user information 1421, user device 1422, user accounts 1423, shopping sessions 1424, merchants that are preferred 1425, preferrd products and brand names, preferred modes (e.g., settings regarding use of NFC, Bluetooth, and/or the like), etc.
In one implementation, the consumer may configure the purchase control settings to detect and block all susceptible transactions. For example, when an attempted transaction of an amount that exceeds the maximum specified transaction amount occurs, the electronic wallet may be configured to reject the transaction and send an alert to the consumer. The transaction may be resumed once the consumer approves the transaction. In another implementation, if the UEP does not receive confirmation from the consumer to resume a susceptible transaction, the UEP may send a notification to the merchant to cancel the transaction. In one implementation, the consumer may configure the time period of clearance (e.g., 12 hours, etc.). In another implementation, UEP may determine a default maximum clearance period in compliance with regulatory requirements (e.g., 24 hours after soft posting, etc.).
In one implementation, the UEP may provide the consumer with a universal payment platform, wherein a user may associated one or more payment accounts with a universal payment platform and pay with the universal payment platform. Within embodiments, the consumer may create an electronic wallet service account and enroll with the electronic wallet (e.g., Visa V-Wallet, etc.) via UEP. In alternative embodiments, a consumer may associate a consumer bank account with an existing electronic wallet. For example, a consumer may provide payment information, a such as bank account number, bank routing number, user profile information, to an electronic wallet management consumer onboarding user interface, to associate an account with the electronic wallet. In another implementation, a consumer may enroll with the electronic wallet during online checkout. For example, a merchant site may provide an electronic wallet button at the checkout page (e.g., a Visa V-Wallet logo, etc.), and upon consumer selection of the electronic wallet button, the consumer may be prompted to enter bank account information (e.g., card number, etc.) to register a payment card (e.g., a credit card, a debit card, etc.) with the electronic wallet via a pop-up window.
In one implementation, upon receiving consumer enrollment bank account data, the UEP may generate an enrollment request to the electronic wallet platform (e.g., Visa V-Wallet payment network, etc.). In one implementation, an exemplary consumer enrollment data request in eXtensible Markup Language (XML). In further implementations, the consumer may be issued a UEP electronic wallet device upon enrollment, e.g., a mobile application, a magnetic card, etc.
In one implementation, a user may configure transaction restriction parameters via a consumer enrollment user interface. For example, in one implementation, an electronic wallet user may receive an invitation from UEP to sign up with UEP service, and following a link provided in the invitation (e.g., an email, etc.), the user may provide registration information in a registration form.
In one implementation, a user may configure payment methods and alerts with UEP. For example, the user may add a payment account to the wallet, and register a for timely alerts with transactions associated with the payment account. In one implementation, the user may establish customized rules for triggers of a transaction alert. For example, an alert message may be triggered when a susceptible transaction occurs as the transaction amount exceeds a maximum one time transaction amount (e.g., $500.00, etc.). For another example, an alert may be triggered when a transaction occurs within a susceptible time range (e.g., all transactions occurring between 2 am-6 am, etc.). For another example, an alert may be triggered when the frequency of transactions exceeds a maximum number of transactions per day (e.g., 20 per day, etc.). For further examples, an alert may be triggered when the transacting merchant is one of a consumer specified susceptible merchants (e.g., Internet spam sites, etc.). For another example, an alert may be triggered when the type of the transaction is a blocked transaction type (e.g., a user may forbid wallet transactions at a gas station for gas fill, etc.).
In one implementation, the user may subscribe to UEP alerts by selecting alert channels. For example, the user may providing his mobile number, email address, mailing address and/or the like to UEP, and subscribe to alerts via email, text messages, consumer service calls, mail, and/or the like. In one implementation, the user may configure rules and subscription channels for different payment account associated with the electronic wallet.
In one implementation, upon receiving user configured parameters via a user interface, UEP (e.g., a Visa Wallet network) may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) PUT message including the user leash parameters in the form of data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) PUT message including an XML-formatted user leash parameters for storage in a database:
In one implementation, upon configuring the leash parameters, when a consumer shops with a merchant (e.g., a shopping site, etc.), the payment processor network may forward the purchasing request to Visa network, which may apply the consumer's UEP enrollment with the electronic wallet (e.g., Visa wallet network, etc.). For example, in one implementation, the UEP may retrieve the user leash parameters, and inspect the transaction amount, transaction type, transaction frequency, and/or the like of the received transaction request based on the leash parameters.
In one implementation, if the proposed transaction triggers an alert, UEP may generate an alert message, e.g., by providing a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) PUT message including the alert content in the form of data formatted according to the XML. Below is an example H′ITP(S) PUT message including an XML-formatted alert:
In one implementation, the UEP may also generate a message and send it to the issuing bank, e.g., the user's bank that issues the payment account, etc., to alert the issuing bank not to credit funds to the merchant unless a clearance message is received subsequently.
With reference to
With reference to
With reference to
A non-limiting, example listing of data that the UEP may return based on a query is provided below. In this example, a user may log into a website via a computing device. The computing device may provide a IP address, and a timestamp to the UEP. In response, the UEP may identify a profile of the user from its database, and based on the profile, return potential merchants for offers or coupons:
In some embodiments, the UEP may provide access to information on a need-to-know basis to ensure the security of data of entities on which the UEP stores information. Thus, in some embodiments, access to information from the centralized platform may be restricted based on the originator as well as application services for which the data is requested. In some embodiments, the UEP may thus allow a variety of flexible application services to be built on a common database infrastructure, while preserving the integrity, security, and accuracy of entity data. In some implementations, the UEP may generate, update, maintain, store and/or provide profile information on entities, as well as a social graph that maintains and updates interrelationships between each of the entities stored within the UEP. For example, the a UEP may store profile information on an issuer bank 1802a (see profile 1803a), a acquirer bank 1802b (see profile 1803b), a consumer 1802c (see profile 1803c), a user 1802d (see profile 1803d), a merchant 1802e (see profile 1803e), a second merchant 1802f (see profile 18030. The UEP may also store relationships between such entities. For example, the UEP may store information on a relationship of the issuer bank 1802a to the consumer 1802c shopping at merchant 1802e, who in turn may be related to user 1802d, who might bank at the back 1802b that serves as acquirer for merchant 1802f.
In alternate examples, the UEP may store data in a JavaScript Object Notation (“JSON”) format. The stored information may include data regarding the object, such as, but not limited to: commands, attributes, group information, payment information, account information, etc., such as in the example below:
In some embodiments, the UEP may acquire the aggregated data, and normalize the data into formats that are suitable for uniform storage, indexing, maintenance, and/or further processing via data record normalization component(s) 2006 (e.g., such as described in
For example, the updating of a profile and/or social graph may trigger searches across the Internet, social networking websites, transaction data from payment networks, services enrolled into and/or utilized by the entities, and/or the like. In some embodiments, such updating of entity profiles and/or social graphs may be performed continuously, periodically, on-demand, and/or the like.
In some embodiments, the search engine servers may query, e.g., 2117a-c, their search databases, e.g., 2102a-c, for search results falling within the scope of the search keywords. In response to the search queries, the search databases may provide search results, e.g., 2118a-c, to the search engine servers. The search engine servers may return the search results obtained from the search databases, e.g., 2119a-c, to the pay network server making the search requests. An example listing of search results 2119a-c, substantially in the form of JavaScript Object Notation (JSON)-formatted data, is e provided below:
In some embodiments, the pay network server may store the aggregated search results, e.g., 2120, in an aggregated search database, e.g., 2110.
In some implementations, the client may generate a purchase order message, e.g., 2312, and provide, e.g., 2313, the generated purchase order message to the merchant server. For example, a browser application executing on the client may provide, on behalf of the user, a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) GET message including the product order details for the merchant server in the form of data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) GET message including an XML-formatted purchase order message for the merchant server:
In some implementations, the merchant server may obtain the purchase order message from the client, and may parse the purchase order message to extract details of the purchase order from the user. The merchant server may generate a card query request, e.g., 2314 to determine whether the transaction can be processed. For example, the merchant server may attempt to determine whether the user has sufficient funds to pay for the purchase in a card account provided with the purchase order. The merchant server may provide the generated card query request, e.g., 2315, to an acquirer server, e.g., 2304. For example, the acquirer server may be a server of an acquirer financial institution (“acquirer”) maintaining an account of the merchant. For example, the proceeds of transactions processed by the merchant may be deposited into an account maintained by the acquirer. In some implementations, the card query request may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. For example, the merchant server may provide a HTTP(S) POST message including an XML-formatted card query request similar to the example listing provided below:
In some implementations, the acquirer server may generate a card authorization request, e.g., 2316, using the obtained card query request, and provide the card authorization request, e.g., 2317, to a pay network server, e.g., 2305. For example, the acquirer server may redirect the HTTP(S) POST message in the example above from the merchant server to the pay network server.
In some implementations, the pay network server may determine whether the user has enrolled in value-added user services. For example, the pay network server may query 2318 a database, e.g., pay network database 2307, for user service enrollment data. For example, the server may utilize PHP/SQL commands similar to the example provided above to query the pay network database. In some implementations, the a database may provide the user service enrollment data, e.g., 2319. The user enrollment data may include a flag indicating whether the user is enrolled or not, as well as instructions, data, login URL, login API call template and/or the like for facilitating access of the user-enrolled services. For example, in some implementations, the pay network server may redirect the client to a value-add server (e.g., such as a social network server where the value-add service is related to social networking) by providing a HTTP(S) REDIRECT 300 message, similar to the example below:
In some implementations, the pay network server may provide payment information extracted from the card authorization request to the value-add server as part of a value add service request, e.g., 2320. For example, the pay network server may provide a HTTP(S) POST message to the value-add server, similar to the example below:
In some implementations, the value-add server may provide a service input request, e.g., 2321, to the client. For example, the value-add server may provide a HTML input/login form to the client. The client may display, e.g., 2322, the login form for the user. In some implementations, the user may provide login input into the client, e.g., 2323, and the client may generate a service input response, e.g., 2324, for the value-add server. In some implementations, the value-add server may provide value-add services according to user value-add service enrollment data, user profile, etc., stored on the value-add server, and based on the user service input. Based on the provision of value-add services, the value-add server may generate a value-add service response, e.g., 2326, and provide the response to the pay network server. For example, the value-add server may provide a HTTP(S) POST message similar to the example below:
In some implementations, upon receiving the value-add service response from the value-add server, the pay network server may extract the enrollment service data from the response for addition to a transaction data record. In some implementations, the pay network server may forward the card authorization request to an appropriate pay network server, e.g., 2328, which may parse the card authorization request to extract details of the request. Using the extracted fields and field values, the pay network server may generate a query, e.g., 2329, for an issuer server corresponding to the user's card account. For example, the user's card account, the details of which the user may have provided via the client-generated purchase order message, may be linked to an issuer financial institution (“issuer”), such as a banking institution, which issued the card account for the user. An issuer server, e.g., 2308a-n, of the issuer may maintain details of the user's card account. In some implementations, a database, e.g., pay network database 2307, may store details of the issuer servers and card account numbers associated with the issuer servers. For example, the database may be a relational database responsive to Structured Query Language (“SQL”) commands. The pay network server may execute a hypertext preprocessor (“PHP”) script including SQL commands to query the database for details of the issuer server. An example PHP/SQL command listing, illustrating substantive aspects of querying the database, is provided
In response to obtaining the issuer server query, e.g., 2329, the pay network database may provide, e.g., 2330, the requested issuer server data to the pay network server. In some implementations, the pay network server may utilize the issuer server data to generate a forwarding card authorization request, e.g., 2331, to redirect the card authorization request from the acquirer server to the issuer server. The pay network server may provide the card authorization request, e.g., 2332a-n, to the issuer server. In some implementations, the issuer server, e.g., 2308a-n, may parse the card authorization request, and based on the request details may query 2333a-n database, e.g., user profile database 2309a-n, for data of the user's card account. For example, the
In some implementations, on obtaining the user data, e.g., 2334a-n, the issuer server may determine whether the user can pay for the transaction using funds available in the account, e.g., 2335a-n. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. If the issuer server determines that the user can pay for the transaction using the funds available in the account, the server may provide an authorization message, e.g., 2336a-n, to the pay network server. For example, the server may provide a HTTP(S) POST message similar to the examples above.
In some implementations, the pay network server may obtain the authorization message, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, the pay network server may generate a transaction data record from the card authorization request it received, and store, e.g., 2339, the details of the transaction and authorization relating to the transaction in a database, e.g., pay network database 2307. For example, the pay network server may issue PHP/SQL commands similar to the example listing below to store the transaction data in a database:
In some implementations, the pay network server may forward the authorization message, e.g., 2340, to the acquirer server, which may in turn forward the authorization message, e.g., 2340, to the merchant server. The merchant may obtain the authorization message, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction. The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 2341, and store the XML data file, e.g., 2342, in a database, e.g., merchant database 2304. For example, a batch XML data file may be structured similar to the example XML data structure template provided below:
In some implementations, the server may also generate a purchase receipt, e.g., 2343, and provide the purchase receipt to the client. The client may render and display, e.g., 2344, the purchase receipt for the user. For example, the client may render a webpage, electronic message, text/SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.
With reference to
In some implementations, the issuer server may generate a payment command, e.g., 2358. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 2359, to a database storing the user's account information, e.g., user profile database 2308. The issuer server may provide a funds transfer message, e.g., 2360, to the pay network server, which may forward, e.g., 2361, the funds transfer message to the acquirer server. An example HTTP(S) POST funds transfer message is provided below:
In some implementations, the acquirer server may parse the funds transfer message, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant, e.g., 2362.
In some implementations, the pay network server may determine whether the user has enrolled in value-added user services. For example, the pay network server may query a database, e.g., 2407, for user service enrollment data. For example, the server may utilize PHP/SQL commands similar to the example provided above to query the pay network database. In some implementations, the database may provide the user service enrollment data, e.g., 2408. The user enrollment data may include a flag indicating whether the user is enrolled or not, as well as instructions, data, login URL, login API call template and/or the like for facilitating access of the user-enrolled services. For example, in some implementations, the pay network server may redirect the client to a value-add server (e.g., such as a social network server where the value-add service is related to social networking) by providing a HTTP(S) REDIRECT 300 message. In some implementations, the pay network server may provide payment information extracted from the card authorization request to the value-add server as part of a value add service request, e.g., 2410.
In some implementations, the value-add server may provide a service input request, e.g., 2411, to the client. The client may display, e.g., 2412, the input request for the user. In some implementations, the user may provide input into the client, e.g., 2413, and the client may generate a service input response for the value-add server. In some implementations, the value-add server may provide value-add services according to user value-add service enrollment data, user profile, etc., stored on the value-add server, and based on the user service input. Based on the provision of value-add services, the value-add server may generate a value-add service response, e.g., 2417, and provide the response to the pay network server. In some implementations, upon receiving the value-add service response from the value-add server, the pay network server may extract the enrollment service data from the response for addition to a transaction data record, e.g., 2419-2420.
With reference to
In some implementations, the pay network server may obtain the authorization message, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction (e.g., 2430, option “Yes”), the pay network server may extract the transaction card from the authorization message and/or card authorization request, e.g., 2433, and generate a transaction data record using the card transaction details. The pay network server may provide the transaction data record for storage, e.g., 2434, to a database. In some implementations, the pay network server may forward the authorization message, e.g., 2435, to the acquirer server, which may in turn forward the authorization message, e.g., 2436, to the merchant server. The merchant may obtain the authorization message, and parse the authorization message o extract its contents, e.g., 2437. The merchant server may determine whether the user possesses sufficient funds in the card account to conduct the transaction. If the merchant server determines that the user possess sufficient funds, e.g., 2438, option “Yes,” the merchant server may add the record of the transaction for the user to a batch of transaction data relating to authorized transactions, e.g., 2439-2440. The merchant server may also generate a purchase receipt, e.g., 2441, for the user. If the merchant server determines that the user does not possess sufficient funds, e.g., 2438, option “No,” the merchant server may generate an “authorization fail” message, e.g., 2442. The merchant server may provide the purchase receipt or the “authorization fail” message to the client. The client may render and display, e.g., 2443, the purchase receipt for the user.
In some implementations, the merchant server may initiate clearance of a batch of authorized transactions by generating a batch data request, e.g., 2444, and providing the request to a database. In response to the batch data request, the database may provide the requested batch data, e.g., 2445, to the merchant server. The server may generate a batch clearance request, e.g., 2446, using the batch data obtained from the database, and provide the batch clearance request to an acquirer server. The acquirer server may generate, e.g., 2448, a batch payment request using the obtained batch clearance request, and provide the batch payment request to a pay network server. The pay network server may parse, e.g., 2449, the batch payment request, select a transaction stored within the batch data, e.g., 2450, and extract the transaction data for the transaction stored in the batch payment request, e.g., 2451. The pay network server may generate a transaction data record, e.g., 2452, and store the transaction data, e.g., 2453, the transaction in a database. For the extracted transaction, the pay network server may generate an issuer server query, e.g., 2454, for an address of an issuer server maintaining the account of the user requesting the transaction. The pay network server may provide the query to a database. In response, the database may provide the issuer server data requested by the pay network server, e.g., 2455. The pay network server may generate an individual payment request, e.g., 2456, for the transaction for which it has extracted transaction data, and provide the individual payment request to the issuer server using the issuer server data from the database.
In some implementations, the issuer server may obtain the individual payment request, and parse, e.g., 2457, the individual payment request to extract details of the request. Based on the extracted data, the issuer server may generate a payment command, e.g., 2458. For example, the issuer server may issue a command to deduct a funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 2459, to a database storing the user's account information. In response, the database may update a data record corresponding to the user's account to reflect the debit/charge made to the user's account. The issuer server may provide a funds transfer message, e.g., 2460, to the pay network server after the payment command has been executed by the database.
In some implementations, the pay network server may check whether there are additional transactions in the batch that need to be cleared and funded. If there are additional transactions, e.g., 2461, option “Yes,” the pay network server may process each transaction according to the procedure described above. The pay network server may generate, e.g., 2462, an aggregated funds transfer message reflecting transfer of all transactions in the batch, and provide, e.g., 2463, the funds transfer message to the acquirer server. The acquirer server may, in response, transfer the funds specified in the funds transfer message to an account of the merchant, e.g., 2464.
In some embodiments, the social network servers may query, e.g., 2717a-c, their databases, e.g., 2702a-c, for social data results falling within the scope of the social keywords. In response to the queries, the databases may provide social data, e.g., 2718a-c, to the search engine servers. The social network servers may return the social data obtained from the databases, e.g., 2719a-c, to the pay network server making the social data requests. An example listing of social data 2719a-c, substantially in the form of JavaScript Object Notation (JSON)-formatted data, is provided below:
In some embodiments, the pay network server may store the aggregated search results, e.g., 2720, in an aggregated search database, e.g., 2710.
In some implementations, using the user's input, the client may generate an enrollment request, e.g., 2912, and provide the enrollment request, e.g., 2913, to the pay network server. For example, the client may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) POST message including data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) POST message including an XML-formatted enrollment request for the pay network server:
In some implementations, the pay network server may obtain the enrollment request from the client, and extract the user's payment detail (e.g., XML data) from the enrollment request. For example, the pay network server may utilize a parser such as the example parsers described below in the discussion with reference to
In some implementations, the pay network server may redirect the client to a social network server by providing a HTTP(S) REDIRECT 300 message, similar to the example below:
In some implementations, the pay network server may provide payment information extracted from the card authorization request to the social network server as part of a social network authentication enrollment request, e.g., 2917. For example, the pay network server may provide a HTIP(S) POST message to the social network server, similar to the example below:
In some implementations, the social network server may provide a social network login request, e.g., 2918, to the client. For example, the social network server a may provide a HTML input form to the client. The client may display, e.g., 2919, the login form for the user. In some implementations, the user may provide login input into the client, e.g., 2920, and the client may generate a social network login response, e.g., 2921, for the social network server. In some implementations, the social network server may authenticate the login credentials of the user, and access payment account information of the user stored within the social network, e.g., in a social network database. Upon authentication, the social network server may generate an authentication data record for the user, e.g., 2922, and provide an enrollment notification, e.g., 2924, to the pay network server. For example, the social network server may provide a HTTP(S) POST message similar to the example below:
Upon receiving notification of enrollment from the social network server, the pay network server may generate, e.g., 2925, a user enrollment data record, and store the enrollment data record in a pay network database, e.g., 2926, to complete enrollment. In some implementations, the enrollment data record may include the information from the enrollment notification 2924.
In some implementations, the server may query a database for a normalized data record template, e.g., 3101. The server may parse the normalized data record template, e.g., 3102. Based on parsing the normalized data record template, the server may determine the data fields included in the normalized data record template, and the format of the data stored in the fields of the data record template, e.g., 3103. The server may obtain transaction data records for normalization. The server may query a database, e.g., 3104, for non-normalized records. For example, the server may issue PHP/SQL commands to retrieve records that do not have the ‘norm_flag’ field from the example template above, or those where the value of the ‘norm_flag’ field is ‘false’. Upon obtaining the non-normalized transaction data records, the server may select one of the non-normalized transaction data records, e.g., 3105. The server may parse the non-normalized transaction data record, e.g., 3106, and determine the fields present in the non-normalized transaction data record, e.g., 3107. For example, the server may utilize a procedure similar to one described below with reference to
With reference to
In some embodiments, the server may obtain the structured data, and perform a standardization routine using the structured data as input (e.g., including script commands, for illustration). For example, the server may remove extra line breaks, spaces, tab spaces, etc. from the structured data, e.g. 3131. The server may determine and load a metadata library, e.g., 3132, using which the server may parse subroutines or functions within the script, based on the metadata, e.g., 3133-3134. In some embodiments, the server may pre-parse conditional statements based on the metadata, e.g., 3135-3136. The server may also parse data 3137 to populate a data/command object based on the metadata and prior parsing, e.g., 3138. Upon finalizing the data/command object, the server may export 3139 the data/command object as XML in standardized encryptmatics format.
The server may select an unclassified data record for processing, e.g., 3303. The server may also select a classification rule for processing the unclassified data record, e.g., 3304. The server may parse the classification rule, and determine the inputs required for the rule, e.g., 3305. Based on parsing the classification rule, the server may parse the normalized data record template, e.g., 3306, and extract the values for the fields required to be provided as inputs to the classification rule. The server may parse the classification rule, and extract the operations to be performed on the inputs provided for the rule processing, e.g., 3307. Upon determining the operations to be performed, the server may perform the rule-specified operations on the inputs provided for the classification rule, e.g., 3308. In some implementations, the rule may provide threshold values. For example, the rule may specify that if the number of products in the transaction, total value of the transaction, average luxury rating of the products sold a in the transaction, etc. may need to cross a threshold in order for the label(s) associated with the rule to be applied to the transaction data record. The server may parse the classification rule to extract any threshold values required for the rule to apply, e.g., 3309. The server may compare the computed values with the rule thresholds, e.g., 3310. If the rule threshold(s) is crossed, e.g., 3311, option “Yes,” the server may apply one or more labels to the transaction data record as specified by the classification rule, e.g., 3312. For example, the server may apply a classification rule to an individual product within the transaction, and/or to the transaction as a whole. In some implementations, the server may process the transaction data record using each rule (see, e.g., 3313). Once all classification rules have been processed for the transaction record, e.g., 3313, option “No,” the server may store the transaction data record in a database, e.g., 3314. The server may perform such processing for each transaction data record until all transaction data records have been classified (see, e.g., 3315).
In some implementations, upon completing such an analysis for all the products in the card authorization request, the server may sort the queue according to their associated probability quotient and prediction confidence level, e.g., 3908. For example, if the prediction confidence level of a product is higher than a threshold, then it may be retained in the queue, but not if the prediction confidence level is lower than the threshold. Also, the retained products may be sorted in descending order of their associated probability quotients. In some implementations, the server may eliminate any duplicated products form the queue, e.g., 3909. The server may return the sorted queue of products for product offer recommendation, e.g., 3910.
In some embodiments, the UEP may utilize one or more social networking services (e.g., Facebook®, Twitter™, MySpace™, etc.). In some embodiments, the UEP may allow users across different social networks to transact with each other. For example, a user may make a request for payment on one social network. As an example, a Twitter™ user may tweet “johnq@facebook.com, you owe me 500 vpts #ID7890”). The UEP may provide an alert to the user with ID john@facebook.com either via the other social networking or via the user's virtual wallet. In response, the payee may social post to Facebook® a message “@jfdoe: here's your 500 vpts #ID7890”, and the UEP may facilitate the payment transaction and provide a receipt/acknowledgment to the two users on their respective social networks or virtual wallets.
In some embodiments, the UEP may facilitate transfers of funds to more than one payee by a payor via a single social post message. In some embodiments, the UEP may facilitate use of more than one source of funds of a payee to fund payment of funds to one or more payors via a single post message. For example, the UEP may a utilize default settings or customized rules, stored within a virtual wallet of a payor, to determine which funding sources to utilize to fund a payment transaction to one or more payees via a social post message.
In some implementations, the UEP may facilitate merchants to make offers of products and/or services to consumers via social networks 4020. For example, a merchant 4026 may sign up to participate in the UEP. The UEP may aggregate transactions of a user, and determine any products or services that may relevant for offering to the user. The UEP may determine whether any participating merchants are available to provide the products or services for the users. If so, the UEP may provide social post messages via a social network 4025 on behalf of the merchants (or, alternatively, inform the merchants who may then send social post messages to the users) providing the offers 4024a to the user 4021. An example of an offer to the followers of a merchant on may be “amazon offers the new Kindle™ at only $149.99-click here to buy.” In such an example, the offer posted on the social networking site may have a link embedded (e.g., “here”) that users can click to make the purchase (which may be automatically performed with one-click if they are currently logged into their virtual wallet accounts 4023). Another example of a merchant offer may be “amazon offers the new Kindle™ at only $149.99—reply with #offerID123456 to buy.” In such an example, the hash tag value serves as an identifier of the offer, which the users can reference when making their purchase via their social post messages (e.g., “buy from amazon #offerID123456”). In some embodiments, merchants may provide two or more offers via a single social post message. In some embodiments, users may reference two or more offers in the same social post message.
In some implementations, users and/or merchants may utilize alternate messaging modes. For example, a user may be able to utilize electronic mail, SMS messages, phone calls, etc., to communicate with the UEP and the social networks. For example, a merchant may provide a social post message offer such as “amazon offers the new Kindle™ at only $149.99—text #offerID123456 to buy”. When a user utilize a mobile phone to send a text message to redeem the offer, the UEP may utilize a user profile of the user store on the social networking service to identify an identifying attribute of the user's mobile phone (e.g., a phone number), using which the UEP may correlate the text message to a particular user. Thus, the UEP may be able to process a transaction with the merchant on behalf of the user, using user information from the user's virtual wallet. In some embodiments where a social network is incapable of handling a particular mode of communication, the UEP may serve as an intermediary translator to convert the message to a form that can be utilized by the social network.
In some implementations, using the user's input, the client may generate a social pay enrollment request, e.g., 4112, and provide the enrollment request to the social pay server 4103a. For example, the client may provide a (Secure) Hypertext Transfer Protocol (“HTTP(S)”) POST message including data formatted according to the eXtensible Markup Language (“XML”). Below is an example HTTP(S) POST message including an XML-formatted enrollment request for the social pay server:
In some embodiments, the social pay server may obtain the enrollment request from the client, and extract the user's payment detail (e.g., XML data) from the enrollment request. For example, the social pay server may utilize a parser such as the example parsers described below in the discussion with reference to
In some implementations, the social pay server may redirect the client to a social network server, e.g., 4104a, by providing a HTTP(S) REDIRECT 300 message, similar to the example below:
In some implementations, the social pay server may provide information extracted from the social pay enrollment request to the social network server as part of a user authentication/social pay app enroll request, e.g., 4115. For example, the social pay server may provide a H′ITP(S) POST message to the social network server, similar to the example below:
In some implementations, the social network server may provide a social network login request, e.g., 4116, to the client. For example, the social network server may provide a HTML input form to the client. The client may display, e.g., 4117, the a login form for the user. In some implementations, the user may provide login input into the client, e.g., 4118, and the client may generate a social network login response, e.g., 4119, for the social network server. In some implementations, the social network server may authenticate the login credentials of the user, and upon doing so, update the profile of the user to indicate the user's enrollment in the social pay system. For example, in a social networking service such as Facebook®, the social network server may provide permission to a social pay third-party developer app to access the user's information stored within the social network. In some embodiments, such enrollment may allow a virtual wallet application installed on a user device of to access the user's social profile information stored within the social network. Upon authentication, the social network 1e server may generate an updated data record for the user, e.g., 4120, and provide an enrollment notification, e.g., 4121, to the social pay server. For example, the social network server may provide a HTTP(S) POST message similar to the example below:
Upon receiving notification of enrollment from the social network server, the social pay server may generate, e.g., 4122, a user enrollment data record, and store the enrollment data record in a social pay database, e.g., 4123, to complete enrollment. In some implementations, the enrollment data record may include the information from the enrollment notification 4121.
In some embodiments, the social network server 4304a may query its social network database for a social graph of the user, e.g., 4313. For example, the social network server may issue PHP/SQL commands to query a database table (such as
In some embodiments, the social network database may provide the requested social graph data in response, e.g., 4314. Using the social graph data, the social network server may generate message(s) as appropriate for the user and/or members of the user's social graph, e.g., 4315, and store the messages 4316 for the user and/or social graph members.
With reference to
In response, the social pay database may provide the requested information, e.g., 4323. In some embodiments, the social pay server may provide a user social data request 4324 to the social network server. An example listing of commands to issue a user social data request 4324, substantially in the form of PHP commands, is
In some embodiments, the social network server may query, e.g., 4326, it social network database 4304b for social data results falling within the scope of the request. In response to the query, the database may provide social data, e.g., 4327. The social network server may return the social data obtained from the databases, e.g., 4328, to the social pay server. An example listing of user social data 4328, substantially in the form of JavaScript Object Notation (JSON)-formatted data, is provided below:
In some embodiments, the social pay server may query the social pay database for social pay rules, e.g., 4329. For example, the social pay server may issue PHP/SQL commands to query a database table (such as
In some embodiments, the social pay server may process the user social data using the social pay rules to identify pay commands, pay requests, merchant offers, and/or like content of the user social data. In some embodiments, rules may be provided by the UEP to ensure the privacy and security of the user's social data and virtual wallet. As another example, the rules may include procedures to detect fraudulent transaction attempts, and request user verification before proceeding, or cancel the transaction request entirely. In some embodiments, the social pay server may utilize a wallet security and settings component, such as the example WSS 4500 component described further below in the discussion with reference to
With reference to
In some embodiments, the user may provide a verification input 4335 into the client, which may provide a pay command verification response to the social pay server. The social pay server may determine whether the payor verified payment, whether payee information available is sufficient to process the transaction, and/or the like. In scenarios where sufficient payee information is unavailable, the social pay server may optionally provide a social post message 4338 to a social networking service associated with the potential payee requesting the payee to enroll in social pay service a (e.g., using the SPE 4200 component described above in the discussion with reference to
With reference to
In some embodiments, the social network server may extract a user ID from the user social data request, e.g., 4411. The social network server may query, e.g., 4412, it social network database to determine whether the user is enrolled in UEP with the social network (e.g., “did the user allow the UEP Facebook® app to access user data?”). In response, the social network database may provide user enrollment data a relating to UEP. The social network server may determine whether the user is enrolled, and thus whether the social pay server is authorized to access the user social data, 4414. If the social network server determines that the social pay server is not authorized, 4415, option “No,” it may generate a service denial message, 4416, and provide the message to the social pay server. If the social network server determines that the social pay server is authorized to access the user social data, 4415, option “Yes,” the social network server may generate a user social data query 4417, and provide it to the social network database. In response, the social network database may provide the user social data requested, 4418. The social network server may provide the user social data 4419 to the social pay server.
In some embodiments, the social pay server may query the social pay database for social pay rules, e.g., 4420-4421. In some embodiments, the social pay server may process the user social data using the social pay rules to identify pay commands, pay requests, merchant offers, and/or like content of the user social data, 4422. In some embodiments, rules may be provided by the UEP to ensure the privacy and security of the user's social data and virtual wallet. As another example, the rules may include procedures to detect fraudulent transaction attempts, and request user verification before proceeding, or cancel the transaction request entirely. In some embodiments, the social pay server may utilize a wallet security and settings component, such as the example WSS 4500 component described further below in the discussion with reference to
With reference to
Accordingly, with reference to
In some embodiments, the UEP may process each pay command identified from the user social data, 4520. For example, the UEP may select a pay command string from the queue and its associated template/identification rule, 4521. Using the rule/template and pay command string, the UEP may determine whether the string represents a request for payment, or an order to pay, 4523. If the pay command string represents a request for payment (e.g., “hey @jfdoe, you owe me 25 bucks #cashflowblues”), 4524, option “Yes,” the UEP may determine whether the user for whom the WSS component is executing is the requested payor, or the payee, 4525. If the user has been requested to pay, 4526, option “Yes,” the UEP may add a payment reminder to the user wallet account, 4527. Otherwise, the UEP may generate a user pay request record including the pay command details, 4528, and store the pay request record in the user's wallet account for recordkeeping purposes or future analytics processing, 4529.
With reference to
In one embodiment, for example, a user may select the option current items 4915, as shown in the left most user interface of
With reference to
With reference to
In one implementation, a user may select Joe P. for payment. Joe P., as shown in the user interface, has an email icon 4917g next to his name indicating that Joe P. accepts payment via email. When his name is selected, the user interface may display his contact information such as email, phone, etc. If a user wishes to make a payment to Joe P. by a method other than email, the user may add another transfer mode 4917j to his contact information and make a payment transfer. With reference to
With reference to
With reference to
With reference to
In one implementation, the user may combine funds from multiple sources to pay for the transaction. The amount 5015 displayed on the user interface may provide an indication of the amount of total funds covered so far by the selected forms of payment (e.g., Discover card and rewards points). The user may choose another form of payment or adjust the amount to be debited from one or more forms of payment until the amount 5015 matches the amount payable 5014. Once the amounts to be debited from one or more forms of payment are finalized by the user, payment authorization may begin.
In one implementation, the user may select a secure authorization of the transaction by selecting the cloak button 5022 to effectively cloak or anonymize some (e.g., pre-configured) or all identifying information such that when the user selects pay button 5021, the transaction authorization is conducted in a secure and anonymous a manner. In another implementation, the user may select the pay button 5021 which may a use standard authorization techniques for transaction processing. In yet another implementation, when the user selects the social button 5023, a message regarding the transaction may be communicated to one of more social networks (set up by the user) which may post or announce the purchase transaction in a social forum such as a wall post or a tweet. In one implementation, the user may select a social payment processing option 5023. The indicator 5024 may show the authorizing and sending social share data in progress.
In another implementation, a restricted payment mode 5025 may be activated for certain purchase activities such as prescription purchases. The mode may be activated in accordance with rules defined by issuers, insurers, merchants, payment processor and/or other entities to facilitate processing of specialized goods and services. In this mode, the user may scroll down the list of forms of payments 5026 under the funds tab to select specialized accounts such as a flexible spending account (FSA) 5027, health savings account (HAS), and/or the like and amounts to be debited to the selected accounts. In one implementation, such restricted payment mode 5025 processing may disable social sharing of purchase information.
In one embodiment, the wallet mobile application may facilitate importing of funds via the import funds user interface 5028. For example, a user who is unemployed may obtain unemployment benefit fund 5029 via the wallet mobile application. In one implementation, the entity providing the funds may also configure rules for using the fund as shown by the processing indicator message 5030. The wallet may read and apply the rules prior, and may reject any purchases with the unemployment funds that fail to meet the criteria set by the rules. Example criteria may include, for example, merchant category code (MCC), time of transaction, location of transaction, and/or the like. As an example, a transaction with a grocery merchant having MCC 5411 may be approved, while a transaction with a bar merchant having an MCC 5813 may be refused.
With reference to
Similarly, when a German user operates a wallet in Germany, the mobile wallet application user interface may be dynamically updated to reflect the country of operation 5032 and the currency 5034. In a further implementation, the wallet application may rearrange the order in which different forms of payment 5036 are listed based on their acceptance level in that country. Of course, the order of these forms of payments may be modified by the user to suit his or her own preferences.
With reference to
With reference to
With reference to
With reference to
In one implementation, the user may select a transaction, for example transaction 5115, to view the details of the transaction. For example, the user may view the details of the items associated with the transaction and the amounts 5116 of each item. In a further implementation, the user may select the show option 5117 to view actions 5118 that the user may take in regards to the transaction or the items in the transaction. For example, the user may add a photo to the transaction (e.g., a picture of the user and the iPad the user bought). In a further implementation, if the user previously shared the purchase via social channels, a post including the photo may be generated and sent to the social channels for publishing. In one implementation, any sharing may be optional, and the user, who did not share the purchase via social channels, may still share the photo through one or more social channels of his or her choice directly from the history mode of the wallet application. In another implementation, the user may add the transaction to a group such as company expense, home expense, travel expense or other categories set up by the user. Such grouping may facilitate year-end accounting of expenses, submission of work expense reports, submission for value added tax (VAT) refunds, personal expenses, and/or the like. In yet another implementation, the user may buy one or more items purchased in the a transaction. The user may then execute a transaction without going to the merchant catalog or site to find the items. In a further implementation, the user may also cart one or more items in the transaction for later purchase.
The history mode, in another embodiment, may offer facilities for obtaining and displaying ratings 5119 of the items in the transaction. The source of the ratings may be the user, the user's friends (e.g., from social channels, contacts, etc.), reviews aggregated from the web, and/or the like. The user interface in some implementations may also allow the user to post messages to other users of social channels (e.g., TWITTER or FACEBOOK). For example, the display area 5120 shows FACEBOOK message exchanges between two users. In one implementation, a user may share a link via a message 5121. Selection of such a message having embedded link to a product may allow the user to view a description of the product and/or purchase the product directly from the history mode.
In one embodiment, the history mode may also include facilities for exporting receipts. The export receipts pop up 5122 may provide a number of options for exporting the receipts of transactions in the history. For example, a user may use one or more of the options 5125, which include save (to local mobile memory, to server, to a cloud account, and/or the like), print to a printer, fax, email, and/or the like. The user may utilize his or her address book 5123 to look up email or fax number for exporting. The user may also specify format options 5124 for exporting receipts. Example format options may include, without limitation, text files (.doc, .txt, .rtf, iif, etc.), spreadsheet (.csv, .xls, etc.), image files (.jpg, .tff, .png, etc.), portable document format (.pdf), postscript (.ps), and/or the like. The user may then click or tap the export button 5127 to a initiate export of receipts.
With reference to
As shown, the user may enter a search term (e.g., bills) in the search bar 2121. The user may then identify in the tab 5222 the receipt 5223 the user wants to reallocate. Alternatively, the user may directly snap a picture of a barcode on a receipt, and the snap mode may generate and display a receipt 5223 using information from the barcode. The user may now reallocate 5225. In some implementations, the user may also dispute the transaction 5224 or archive the receipt 5226.
In one implementation, when the reallocate button 5225 is selected, the wallet application may perform optical character recognition (OCR) of the receipt. Each of the items in the receipt may then be examined to identify one or more items which could be charged to which payment device or account for tax or other benefits such as cash back, reward points, etc. In this example, there is a tax benefit if the prescription medication charged to the user's Visa card is charged to the user's FSA. The wallet application may then perform the reallocation as the back end. The reallocation process may include the wallet contacting the payment processor to credit the amount of the prescription medication to the Visa card and debit the same amount to the user's FSA account. In an alternate implementation, the payment processor (e.g., Visa or MasterCard) may obtain and OCR the receipt, identify items and payment accounts for reallocation and perform the reallocation. In one implementation, the wallet application may request the user to confirm reallocation of charges for the selected items to another payment account. The receipt 5227 may be generated after the completion of the a reallocation process. As discussed, the receipt shows that some charges have been moved from the Visa account to the FSA.
With reference to
In one implementation, the user may decide to pay with default 5234. The wallet application may then use the user's default method of payment, in this example the wallet, to complete the purchase transaction. Upon completion of the transaction, a receipt may be automatically generated for proof of purchase. The user interface may also be updated to provide other options for handling a completed transaction. Example options include social 5237 to share purchase information with others, reallocate 5238 as discussed with regard to
With reference to
In one implementation, after the offer or coupon 5246 is applied, the user may have the option to find qualifying merchants and/or products using find, the user may go to the wallet using 5248, and the user may also save the offer or coupon 5246 for later use.
With reference to
For example, a user may go to doctor's office and desire to pay the co-pay for doctor's appointment. In addition to basic transactional information such as account number and name, the app may provide the user the ability to select to transfer medical records, health information, which may be provided to the medical provider, insurance company, as well as the transaction processor to reconcile payments between the parties. In some implementations, the records may be sent in a Health Insurance Portability and Accountability Act (HIPAA)-compliant data format and encrypted, and only the recipients who are authorized to view such records may have appropriate decryption keys to decrypt and view the private user information.
With reference to
In some implementations, the UEP may utilize a text challenge procedure to verify the authenticity of the user, e.g., 5425. For example, the UEP may communicate with the user via text chat, SMS messages, electronic mail, Facebook® messages, Twitter™ tweets, and/or the like. The UEP may pose a challenge question, e.g., 5426, for the user. The app may provide a user input interface element(s) (e.g., virtual keyboard 5428) to answer the challenge question posed by the UEP. In some implementations, the challenge question may be randomly selected by the UEP a automatically; in some implementations, a customer service representative may manually communicate with the user. In some implementations, the user may not have initiated the transaction, e.g., the transaction is fraudulent. In such implementations, the user may cancel the text challenge. The UEP may cancel the transaction, and/or initiate fraud investigation on behalf of the user.
In some embodiments, the merchant server may obtain the checkout request from the client, and extract the checkout detail (e.g., XML data) from the checkout request. For example, the merchant server may utilize a parser such as the example parsers described below in the discussion with reference to
In some embodiments, in response to obtaining the product data, the merchant server may generate, e.g., 5516, checkout data to provide for the PoS client. In some embodiments, such checkout data, e.g., 5517, may be embodied, in part, in a HyperText Markup Language (“HTML”) page including data for display, such as product detail, product pricing, total pricing, tax information, shipping information, offers, discounts, rewards, value-added service information, etc., and input fields to provide payment information to process the purchase transaction, such as account holder name, account number, billing address, shipping address, tip amount, etc. In some embodiments, the checkout data may be embodied, in part, in a Quick Response (“QR”) code image that the PoS client can display, so that the user may capture the QR code using a user's device to obtain merchant and/or product data for generating a purchase transaction processing request. In some embodiments, a user alert mechanism may be built into the checkout data. For example, the merchant server may embed a URL specific to the transaction into the checkout data. In some embodiments, the alerts URL may further be embedded into optional level 3 data in card authorization requests, such as those discussed further below with reference to
Upon obtaining the checkout data, e.g., 5517, the PoS client may render and display, e.g., 5518, the checkout data for the user.
In some embodiments, upon authenticating the user for access to virtual wallet features, the user wallet device may provide a transaction authorization input, e.g., 5714, to a point-of-sale (“PoS”) client, e.g., 5702. For example, the user wallet device may communicate with the PoS client via Bluetooth, Wi-Fi, cellular communication, one- or two-way near-field communication (“NFC”), and/or the like. In embodiments where the user utilizes a plastic card instead of the user wallet device, the user may swipe the plastic card at the PoS client to transfer information from the plastic card into the PoS client. For example, the PoS client may obtain, as transaction authorization input 5714, track 1 data from the user's plastic card (e.g., credit card, debit card, prepaid card, charge card, etc.), such as the example track 1 data provided below:
In embodiments where the user utilizes a user wallet device, the user wallet device may provide payment information to the PoS client, formatted according to a data formatting protocol appropriate to the communication mechanism employed in the communication between the user wallet device and the PoS client. An example listing of transaction authorization input 5714, substantially in the form of XML-formatted data, is provided below:
In some embodiments, the PoS client may generate a card authorization request, e.g., 5715, using the obtained transaction authorization input from the user wallet device, and/or product/checkout data (see, e.g.,
In some embodiments, the card authorization request generated by the user device may include a minimum of information required to process the purchase transaction. For example, this may improve the efficiency of communicating the purchase transaction request, and may also advantageously improve the privacy protections provided to the user and/or merchant. For example, in some embodiments, the card authorization request may include at least a session ID for the user's shopping session with the merchant. The session ID may be utilized by any component and/or entity having the appropriate access authority to access a secure site on the merchant server to obtain alerts, reminders, and/or other data about the transaction(s) within that shopping session between the user and the merchant. In some embodiments, the PoS client may provide the generated card authorization request to the merchant server, e.g., 5716. The merchant server may forward the card authorization request to a pay gateway server, e.g., 5704a, for routing the card authorization request to the appropriate payment network for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the merchant server may query a database, e.g., merchant/acquirer database 5703b, for a network address of the payment gateway server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the merchant server may issue PHP/SQL commands to query a database table (such as
In response, the merchant/acquirer database may provide the requested payment gateway address, e.g., 5718. The merchant server may forward the card authorization request to the pay gateway server using the provided address, e.g., 5719. In some embodiments, upon receiving the card authorization request from the merchant server, the pay gateway server may invoke a component to provide one or more services associated with purchase transaction authorization. For example, the pay gateway server may invoke components for fraud prevention, loyalty and/or rewards, and/or other services for which the user-merchant combination is authorized. The pay gateway server may forward the card authorization request to a pay network server, e.g., 5705a, for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the pay gateway server may query a database, e.g., pay gateway database 5704b, for a network address of the payment network server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the pay gateway server may issue PHP/SQL commands to query a database table (such as
In response, the payment gateway database may provide the requested payment network address, e.g., 5722. The pay gateway server may forward the card authorization request to the pay network server using the provided address, e.g., 5723.
With reference to
In some embodiments, the pay network server may generate a query, e.g., 5724, for issuer server(s) corresponding to the user-selected payment options. For example, the user's account may be linked to one or more issuer financial institutions (“issuers”), such as banking institutions, which issued the account(s) for the user. For example, such accounts may include, but not be limited to: credit card, debit card, a prepaid card, checking, savings, money market, certificates of deposit, stored (cash) value accounts and/or the like. Issuer server(s), e.g., 5706a, of the issuer(s) may maintain details of the user's account(s). In some embodiments, a database, e.g., pay network database 5705b, may store details of the issuer server(s) associated with the issuer(s). In some embodiments, the pay network server may query a database, e.g., pay network database 5705b, for a network address of the issuer(s) server(s), for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. For example, the merchant server may issue PHP/SQL commands to query a database table (such as
In response to obtaining the issuer server query, e.g., 5724, the pay network database may provide, e.g., 5725, the requested issuer server data to the pay network server. In some embodiments, the pay network server may utilize the issuer server data to generate funds authorization request(s), e.g., 5726, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's a virtual wallet, and/or the user's payment options input, and provide the funds authorization request(s) to the issuer server(s). In some embodiments, the funds authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. An example listing of a funds authorization request 5726, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:
In some embodiments, an issuer server may parse the authorization request(s), and based on the request details may query a database, e.g., user profile database 5706b, for data associated with an account linked to the user. For example, the merchant server may issue PHP/SQL commands to query a database table (such as
In some embodiments, on obtaining the user account(s) data, e.g., 5728, the issuer server may determine whether the user can pay for the transaction using funds available in the account, 5729. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide a funds authorization response, e.g., 5730, to the pay network server. For example, the issuer server(s) may provide a HTTP(S) POST message similar to the examples above. In some embodiments, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message to the user device and requesting the user device to provide new payment options), and re-attempt authorization for the purchase transaction. In some embodiments, if the number of failed authorization attempts a exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.
In some embodiments, the pay network server may obtain the funds authorization response including a notification of successful authorization, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, e.g., 5731, the pay network server may invoke a component to provide value-add services for the user.
In some embodiments, the pay network server may generate a transaction data record from the authorization request and/or authorization response, and store the details of the transaction and authorization relating to the transaction in a transactions database. For example, the pay network server may issue PHP/SQL commands to store the data to a database table (such as
In some embodiments, the pay network server may forward a transaction authorization response, e.g., 5732, to the user wallet device, PoS client, and/or merchant server. The merchant may obtain the transaction authorization response, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction. The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 5733, and store the XML data file, e.g., 5734, in a database, e.g., merchant database 404. For example, a batch XML data file may be structured similar to the example XML data structure template provided below:
In some embodiments, the server may also generate a purchase receipt, e.g., 5733, and provide the purchase receipt to the client, e.g., 5735. The client may render and display, e.g., 5736, the purchase receipt for the user. In some embodiments, the user's wallet device may also provide a notification of successful authorization to the user. For example, the PoS client/user device may render a webpage, electronic message, text/SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.
In some embodiments, upon authenticating the user for access to virtual wallet features, the user wallet device may provide a transaction authorization input, e.g., 5804, to a point-of-sale (“PoS”) client. For example, the user wallet device may communicate with the PoS client via Bluetooth, Wi-Fi, cellular communication, one- or two-way near-field communication (“NFC”), and/or the like. In embodiments where the user utilizes a plastic card instead of the user wallet device, the user may swipe the plastic card at the PoS client to transfer information from the plastic card into the PoS client. In embodiments where the user utilizes a user wallet device, the user wallet device may provide payment information to the PoS client, formatted according to a data formatting protocol appropriate to the communication mechanism employed in the communication between the user wallet device and the PoS client.
In some embodiments, the PoS client may obtain the transaction authorization input, and parse the input to extract payment information from the transaction authorization input, e.g., 5805. For example, the PoS client may utilize a parser, such as the example parsers provided below in the discussion with reference to
In some embodiments, the PoS client may provide the generated card authorization request to the merchant server. The merchant server may forward the card authorization request to a pay gateway server, for routing the card authorization request to the appropriate payment network for payment processing. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In some embodiments, the merchant server may query a database, e.g., 5808, for a network address of the payment gateway server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. In response, the merchant/acquirer database may provide the requested payment gateway address, e.g., 5810. The merchant server may forward the card authorization request to the pay gateway server using the provided address. In some embodiments, upon receiving the card authorization request from the merchant server, the pay gateway server may invoke a component to provide one or more service associated with purchase transaction authorization, e.g., 5811. For example, the pay gateway server may invoke components for fraud prevention, loyalty and/or rewards, and/or other services for which the user-merchant combination is authorized.
The pay gateway server may forward the card authorization request to a pay network server for payment processing, e.g., 5814. For example, the pay gateway server may be able to select from payment networks, such as Visa, Mastercard, American Express, Paypal, etc., to process various types of transactions including, but not limited to: credit card, debit card, prepaid card, B2B and/or like transactions. In a some embodiments, the pay gateway server may query a database, e.g., 5812, for a network address of the payment network server, for example by using a portion of a user payment card number, or a user ID (such as an email address) as a keyword for the database query. In response, the payment gateway database may provide the requested payment network address, e.g., 5813. The pay gateway server may forward the card authorization request to the pay network server using the provided address, e.g., 5814.
With reference to
In response to obtaining the issuer server query, the pay network database may provide, e.g., 5816, the requested issuer server data to the pay network server. In some embodiments, the pay network server may utilize the issuer server data to generate funds authorization request(s), e.g., 5817, for each of the issuer server(s) selected based on the pre-defined payment settings associated with the user's virtual wallet, and/or the user's payment options input, and provide the funds authorization request(s) to the issuer server(s). In some embodiments, the funds authorization request(s) may include details such as, but not limited to: the costs to the user involved in the transaction, card account details of the user, user billing and/or shipping information, and/or the like. In some embodiments, an issuer server may parse the authorization request(s), e.g., 5818, and based on the request details may query a database, e.g., 5819, for data associated with an account linked to the user.
In some embodiments, on obtaining the user account(s) data, e.g., 5820, the issuer server may determine whether the user can pay for the transaction using funds available in the account, e.g., 5821. For example, the issuer server may determine whether the user has a sufficient balance remaining in the account, sufficient credit associated with the account, and/or the like. Based on the determination, the issuer server(s) may provide a funds authorization response, e.g., 5822, to the pay network server. In some embodiments, if at least one issuer server determines that the user cannot pay for the transaction using the funds available in the account, the pay network server may request payment options again from the user (e.g., by providing an authorization fail message to the user device and requesting the user device to provide a new payment options), and re-attempt authorization for the purchase transaction. In some embodiments, if the number of failed authorization attempts exceeds a threshold, the pay network server may abort the authorization process, and provide an “authorization fail” message to the merchant server, user device and/or client.
In some embodiments, the pay network server may obtain the funds authorization response including a notification of successful authorization, and parse the message to extract authorization details. Upon determining that the user possesses sufficient funds for the transaction, e.g., 5823, the pay network server may invoke a component to provide value-add services for the user, e.g., 5823.
In some embodiments, the pay network server may forward a transaction authorization response to the user wallet device, PoS client, and/or merchant server. The merchant may parse, e.g., 5824, the transaction authorization response, and determine from it that the user possesses sufficient funds in the card account to conduct the transaction, e.g., 5825, option “Yes.” The merchant server may add a record of the transaction for the user to a batch of transaction data relating to authorized transactions. For example, the merchant may append the XML data pertaining to the user transaction to an XML data file comprising XML data for transactions that have been authorized for various users, e.g., 5826, and store the XML data file, e.g., 5827, in a database. In some embodiments, the server may also generate a purchase receipt, e.g., 5828, and provide the purchase receipt to the client. The client may render and display, e.g., 5829, the purchase receipt for the user. In some embodiments, the user's wallet device may also provide a notification of successful authorization to the user. For example, the PoS client/user device may render a webpage, electronic message, text SMS message, buffer a voicemail, emit a ring tone, and/or play an audio message, etc., and provide output including, but not limited to: sounds, music, audio, video, images, tactile feedback, vibration alerts (e.g., on vibration-capable client devices such as a smartphone etc.), and/or the like.
With reference to
In some embodiments, the issuer server may generate a payment command, e.g., 5927. For example, the issuer server may issue a command to deduct funds from the user's account (or add a charge to the user's credit card account). The issuer server may issue a payment command, e.g., 5927, to a database storing the user's account information, e.g., user profile database 5906b. The issuer server may provide an individual payment confirmation, e.g., 5928, to the pay network server, which may forward, e.g., 5929, the funds transfer message to the acquirer server. An example listing of an individual payment confirmation 5928, substantially in the form of a HTTP(S) POST message including XML-formatted data, is provided below:
In some embodiments, the acquirer server may parse the individual payment confirmation, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant. For example, the acquirer server may query, e.g. 5930, an acquirer database 5907b for payment ledger and/or merchant account data, e.g., 5931. The acquirer server may utilize payment ledger and/or merchant account data from the acquirer database, along with the individual payment confirmation, to generate updated payment ledger and/or merchant account data, e.g., 5932. The acquirer server may then store, e.g., 5933, the updated payment ledger and/or merchant account data to the acquire database.
The pay network server may parse the batch payment request obtained from the acquirer server, and extract the transaction data for each transaction stored in the batch payment request, e.g., 6008. The pay network server may store the transaction data, e.g., 6009, for each transaction in a pay network database. In some embodiments, the pay network server may invoke a component, e.g., 6010, to provide analytics based on the transactions of the merchant for whom purchase transaction are being cleared.
With reference to
In some embodiments, the acquirer server may parse the individual payment confirmation, and correlate the transaction (e.g., using the request_ID field in the example above) to the merchant. The acquirer server may then transfer the funds specified in the funds transfer message to an account of the merchant. For example, the acquirer server may query, e.g. 6019, an acquirer database for payment ledger and/or merchant account data, e.g., 6020. The acquirer server may utilize payment ledger and/or merchant account data from the acquirer database, along with the individual payment confirmation, to generate updated payment ledger and/or merchant account data, e.g., 6021. The acquirer server may then store, e.g., 6022, the updated payment ledger and/or merchant account data to the acquire database.
Typically, users, e.g., 6133a, which may be people and/or other systems, may engage information technology systems (e.g., computers) to facilitate information processing. In turn, computers employ processors to process information; such processors 6103 may be referred to as central processing units (CPU). One form of processor is referred to as a microprocessor. CPUs use communicative circuits to pass binary encoded signals acting as instructions to enable various operations. These instructions may be operational and/or data instructions containing and/or referencing other instructions and data in various processor accessible and operable areas of memory 6129 (e.g., registers, cache memory, random access memory, etc.). Such a communicative instructions may be stored and/or transmitted in batches (e.g., batches of instructions) as programs and/or data components to facilitate desired operations. These stored instruction codes, e.g., programs, may engage the CPU circuit components and other motherboard and/or system components to perform desired operations. One type of program is a computer operating system, which, may be executed by CPU on a computer; the operating system enables and facilitates users to access and operate computer information technology and resources. Some resources that may be employed in information technology systems include: input and output mechanisms through which data may pass into and out of a computer; memory storage into which data may be saved; and processors by which information may be processed. These information technology systems may be used to collect data for later retrieval, analysis, and manipulation, which may be facilitated through a database program. These information technology systems provide interfaces that allow users to access and operate various system components.
In one embodiment, the UEP controller 6101 may be connected to and/or communicate with entities such as, but not limited to: one or more users from user input devices 6111; peripheral devices 6112; an optional cryptographic processor device 6128; and/or a communications network 6113. For example, the UEP controller 6101 may be connected to and/or communicate with users, e.g., 6133a, operating client device(s), e.g., 6133b, including, but not limited to, personal computer(s), server(s) and/or various mobile device(s) including, but not limited to, cellular telephone(s), smartphone(s) (e.g., iPhone®, Blackberry®, Android OS-based phones etc.), tablet computer(s) (e.g., Apple iPad™, HP Slate™, Motorola Xoom™, etc.), eBook reader(s) (e.g., Amazon Kindle™, Barnes and Noble's Nook™ eReader, etc.), laptop computer(s), a notebook(s), netbook(s), gaming console(s) (e.g., XBOX Live™, Nintendo® DS, Sony PlayStation® Portable, etc.), portable scanner(s), and/or the like.
Networks are commonly thought to comprise the interconnection and interoperation of clients, servers, and intermediary nodes in a graph topology. It should be noted that the term “server” as used throughout this application refers generally to a computer, other device, program, or combination thereof that processes and responds to the requests of remote users across a communications network. Servers serve their information to requesting “clients.” The term “client” as used herein refers generally to a computer, program, other device, user and/or combination thereof that is capable of processing and making requests and obtaining and processing any responses from servers across a communications network. A computer, other device, program, or combination thereof that facilitates, processes information and requests, and/or furthers the passage of information from a source user to a destination user is commonly referred to as a “node.” Networks are generally thought to facilitate the transfer of information from source points to destinations. A node specifically tasked with furthering the passage of information from a source to a destination is commonly called a “router.” There are many forms of networks such as Local Area Networks (LANs), Pico networks, Wide Area Networks (WANs), Wireless Networks (WLANs), etc. For example, the Internet is generally accepted as being an interconnection of a multitude of networks whereby remote clients and servers may access and interoperate with one another.
The UEP controller 6101 may be based on computer systems that may comprise, but are not limited to, components such as: a computer systemization 6102 connected to memory 6129.
A computer systemization 6102 may comprise a clock 6130, central processing unit (“CPU(s)” and/or “processor(s)” (these terms are used interchangeable throughout the disclosure unless noted to the contrary)) 6103, a memory 6129 (e.g., a read only memory (ROM) 6106, a random access memory (RAM) 6105, etc.), and/or an interface bus 6107, and most frequently, although not necessarily, are all interconnected and/or communicating through a system bus 6104 on one or more (mother)board(s) 6102 having conductive and/or otherwise transportive circuit pathways through which instructions (e.g., binary encoded signals) may travel to effectuate communications, operations, storage, etc. The computer systemization may be connected to a power source 6186; e.g., optionally the power source may be internal. Optionally, a cryptographic processor 6126 and/or transceivers (e.g., ICs) 6174 may be connected to the system bus. In another embodiment, the cryptographic processor and/or transceivers may be connected as either internal and/or external peripheral devices 6112 via the interface bus I/O. In turn, the transceivers may be connected to antenna(s) 6175, thereby effectuating wireless transmission and reception of various communication and/or sensor protocols; for example the antenna(s) may connect to: a Texas Instruments WiLink WL1283 transceiver chip (e.g., providing 802.11n, Bluetooth 3.0, FM, global positioning system (GPS) (thereby allowing UEP controller to determine its location)); Broadcom BCM4329FKUBG transceiver chip (e.g., providing 802.1n, Bluetooth 2.1+EDR, FM, etc.); a Broadcom BCM4750IUB8 receiver chip (e.g., GPS); an Infineon Technologies X-Gold 618-PMB9800 (e.g., providing 2G/3G HSDPA/HSUPA communications); and/or the like. The system clock typically has a crystal oscillator and a generates a base signal through the computer systemization's circuit pathways. The clock is typically coupled to the system bus and various clock multipliers that will increase or decrease the base operating frequency for other components interconnected in the computer systemization. The clock and various components in a computer systemization drive signals embodying information throughout the system. Such transmission and reception of instructions embodying information throughout a computer systemization may be commonly referred to as communications. These communicative instructions may further be transmitted, received, and the cause of return and/or reply communications beyond the instant computer systemization to: communications networks, input devices, other computer systemizations, peripheral devices, and/or the like. It should be understood that in alternative embodiments, any of the above components may be connected directly to one another, connected to the CPU, and/or organized in numerous variations employed as exemplified by various computer systems.
The CPU comprises at least one high-speed data processor adequate to execute program components for executing user and/or system-generated requests. Often, the processors themselves will incorporate various specialized processing units, such as, but not limited to: integrated system (bus) controllers, memory management control units, floating point units, and even specialized processing sub-units like graphics processing units, digital signal processing units, and/or the like. Additionally, processors may include internal fast access addressable memory, and be capable of mapping and addressing memory 6129 beyond the processor itself; internal memory may include, but is not limited to: fast registers, various levels of cache memory (e.g., level 1, 2, 3, etc.), RAM, etc. The processor may access this memory through the use of a a memory address space that is accessible via instruction address, which the processor can construct and decode allowing it to access a circuit path to a specific memory address space having a memory state. The CPU may be a microprocessor such as: AMD's Athlon, Duron and/or Opteron; ARM's application, embedded and secure processors; IBM and/or Motorola's DragonBall and PowerPC; IBM's and Sony's Cell processor; Intel's Celeron, Core (2) Duo, Itanium, Pentium, Xeon, and/or XScale; and/or the like processor(s). The CPU interacts with memory through instruction passing through conductive and/or transportive conduits (e.g., (printed) electronic and/or optic circuits) to execute stored instructions (i.e., program code) according to conventional data processing techniques. Such instruction passing facilitates communication within the UEP controller and beyond through various interfaces. Should processing requirements dictate a greater amount speed and/or capacity, distributed processors (e.g., Distributed UEP), mainframe, multi-core, parallel, and/or super-computer architectures may similarly be employed. Alternatively, should deployment requirements dictate greater portability, smaller Personal Digital Assistants (PDAs) may be employed.
Depending on the particular implementation, features of the UEP may be achieved by implementing a microcontroller such as CAST's R8051XC2 microcontroller; Intel's MCS 51 (i.e., 8051 microcontroller); and/or the like. Also, to implement certain features of the UEP, some feature implementations may rely on embedded components, such as: Application-Specific Integrated Circuit (“ASIC”), Digital Signal Processing (“DSP”), Field Programmable Gate Array (“FPGA”), and/or the like embedded technology. For example, any of the UEP component collection (distributed or a otherwise) and/or features may be implemented via the microprocessor and/or via embedded components; e.g., via ASIC, coprocessor, DSP, FPGA, and/or the like. Alternately, some implementations of the UEP may be implemented with embedded components that are configured and used to achieve a variety of features or signal processing.
Depending on the particular implementation, the embedded components may include software solutions, hardware solutions, and/or some combination of both hardware/software solutions. For example, UEP features discussed herein may be achieved through implementing FPGAs, which are a semiconductor devices containing programmable logic components called “logic blocks”, and programmable interconnects, such as the high performance FPGA Virtex series and/or the low cost Spartan series manufactured by Xilinx. Logic blocks and interconnects can be programmed by the customer or designer, after the FPGA is manufactured, to implement any of the UEP features. A hierarchy of programmable interconnects allow logic blocks to be interconnected as needed by the UEP system designer/administrator, somewhat like a one-chip programmable breadboard. An FPGA's logic blocks can be programmed to perform the operation of basic logic gates such as AND, and XOR, or more complex combinational operators such as decoders or simple mathematical operations. In most FPGAs, the logic blocks also include memory elements, which may be circuit flip-flops or more complete blocks of memory. In some circumstances, the UEP may be developed on regular FPGAs and then migrated into a fixed version that more resembles ASIC implementations. Alternate or coordinating implementations may migrate UEP controller features to a final ASIC instead of or in addition to FPGAs. Depending on the implementation all of the aforementioned embedded components and a microprocessors may be considered the “CPU” and/or “processor” for the UEP.
The power source 6186 may be of any standard form for powering small electronic circuit board devices such as the following power cells: alkaline, lithium hydride, lithium ion, lithium polymer, nickel cadmium, solar cells, and/or the like. Other types of AC or DC power sources may be used as well. In the case of solar cells, in one embodiment, the case provides an aperture through which the solar cell may capture photonic energy. The power cell 6186 is connected to at least one of the interconnected subsequent components of the UEP thereby providing an electric current to all subsequent components. In one example, the power source 6186 is connected to the system bus component 6104. In an alternative embodiment, an outside power source 6186 is provided through a connection across the I/O 6108 interface. For example, a USB and/or IEEE 1394 connection carries both data and power across the connection and is therefore a suitable source of power.
Interface bus(ses) 6107 may accept, connect, and/or communicate to a number of interface adapters, conventionally although not necessarily in the form of adapter cards, such as but not limited to: input output interfaces (I/O) 6108, storage interfaces 6109, network interfaces 6110, and/or the like. Optionally, cryptographic processor interfaces 6127 similarly may be connected to the interface bus. The interface bus provides for the communications of interface adapters with one another as well as a with other components of the computer systemization. Interface adapters are adapted for a compatible interface bus. Interface adapters conventionally connect to the interface bus via a slot architecture. Conventional slot architectures may be employed, such as, but not limited to: Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and/or the like.
Storage interfaces 6109 may accept, communicate, and/or connect to a number of storage devices such as, but not limited to: storage devices 6114, removable disc devices, and/or the like. Storage interfaces may employ connection protocols such as, but not limited to: (Ultra) (Serial) Advanced Technology Attachment (Packet Interface) ((Ultra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics ((E)IDE), Institute of Electrical and Electronics Engineers (IEEE) 1394, fiber channel, Small Computer Systems Interface (SCSI), Universal Serial Bus (USB), and/or the like.
Network interfaces 6110 may accept, communicate, and/or connect to a communications network 6113. Through a communications network 6113, the UEP controller is accessible through remote clients 6133b (e.g., computers with web browsers) by users 6133a. Network interfaces may employ connection protocols such as, but not limited to: direct connect, Ethernet (thick, thin, twisted pair 10/100/1000 Base T, and/or the like), Token Ring, wireless connection such as IEEE 802.11a-x, and/or the like. Should processing requirements dictate a greater amount speed and/or capacity, distributed network controllers (e.g., Distributed UEP), architectures may similarly be employed to pool, load balance, and/or otherwise increase the communicative a bandwidth required by the UEP controller. A communications network may be any one and/or the combination of the following: a direct interconnection; the Internet; a Local Area Network (LAN); a Metropolitan Area Network (MAN); an Operating Missions as Nodes on the Internet (OMNI); a secured custom connection; a Wide Area Network (WAN); a wireless network (e.g., employing protocols such as, but not limited to a Wireless Application Protocol (WAP), I-mode, and/or the like); and/or the like. A network interface may be regarded as a specialized form of an input output interface. Further, multiple network interfaces 6110 may be used to engage with various communications network types 6113. For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and/or unicast networks.
Input Output interfaces (I/O) 6108 may accept, communicate, and/or connect to user input devices 6111, peripheral devices 6112, cryptographic processor devices 6128, and/or the like. I/O may employ connection protocols such as, but not limited to: audio: analog, digital, monaural, RCA, stereo, and/or the like; data: Apple Desktop Bus (ADB), IEEE 1394a-b, serial, universal serial bus (USB); infrared; joystick; keyboard; midi; optical; PC AT; PS/2; parallel; radio; video interface: Apple Desktop Connector (ADC), BNC, coaxial, component, composite, digital, Digital Visual Interface (DVI), high-definition multimedia interface (HDMI), RCA, RF antennae, S-Video, VGA, and/or the like; wireless transceivers: 802.11a/b/g/n/x; Bluetooth; cellular (e.g., code division multiple access (CDMA), high speed packet access (HSPA(+)), high-speed downlink packet access (HSDPA), global system for mobile communications (GSM), long term evolution (LTE), WiMax, etc.); and/or the like. One typical output device may include a video display, which typically comprises a Cathode Ray Tube (CRT) or Liquid a Crystal Display (LCD) based monitor with an interface (e.g., DVI circuitry and cable) that accepts signals from a video interface, may be used. The video interface composites information generated by a computer systemization and generates video signals based on the composited information in a video memory frame. Another output device is a television set, which accepts signals from a video interface. Typically, the video interface provides the composited video information through a video connection interface that accepts a video display interface (e.g., an RCA composite video connector accepting an RCA composite video cable; a DVI connector accepting a DVI display cable, etc.).
User input devices 6111 often are a type of peripheral device 6112 (see below) and may include: card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, microphones, mouse (mice), remote controls, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors (e.g., accelerometers, ambient light, GPS, gyroscopes, proximity, etc.), styluses, and/or the like.
Peripheral devices 6112 may be connected and/or communicate to I/O and/or other facilities of the like such as network interfaces, storage interfaces, directly to the interface bus, system bus, the CPU, and/or the like. Peripheral devices may be external, internal and/or part of the UEP controller. Peripheral devices may include: antenna, audio devices (e.g., line-in, line-out, microphone input, speakers, etc.), cameras (e.g., still, video, webcam, etc.), dongles (e.g., for copy protection, ensuring secure transactions with a digital signature, and/or the like), external processors (for added capabilities; e.g., crypto devices 6128), force-feedback devices (e.g., vibrating motors), network interfaces, printers, scanners, storage devices, transceivers (e.g., a cellular, GPS, etc.), video devices (e.g., goggles, monitors, etc.), video sources, visors, and/or the like. Peripheral devices often include types of input devices (e.g., cameras).
It should be noted that although user input devices and peripheral devices may be employed, the UEP controller may be embodied as an embedded, dedicated, and/or monitor-less (i.e., headless) device, wherein access would be provided over a network interface connection.
Cryptographic units such as, but not limited to, microcontrollers, processors 6126, interfaces 6127, and/or devices 6128 may be attached, and/or communicate with the UEP controller. A MC68HC16 microcontroller, manufactured by Motorola Inc., may be used for and/or within cryptographic units. The MC68HC16 microcontroller utilizes a 16-bit multiply-and-accumulate instruction in the 16 MHz configuration and requires less than one second to perform a 512-bit RSA private key operation. Cryptographic units support the authentication of communications from interacting agents, as well as allowing for anonymous transactions. Cryptographic units may also be configured as part of the CPU. Equivalent microcontrollers and/or processors may also be used. Other commercially available specialized cryptographic processors include: the Broadcom's CryptoNetX and other Security Processors; nCipher's nShield, SafeNet's Luna PCI (e.g., 7100) series; Semaphore Communications' MHz Roadrunner 184; Sun's Cryptographic Accelerators (e.g., Accelerator 6000 PCIe Board, Accelerator 500 Daughtercard); Via Nano Processor (e.g., L2100, L2200, U2400) line, which is capable of performing 500+MB/s of cryptographic instructions; VLSI Technology's 33 MHz 6868; and/or the like.
Generally, any mechanization and/or embodiment allowing a processor to affect the storage and/or retrieval of information is regarded as memory 6129. However, memory is a fungible technology and resource, thus, any number of memory embodiments may be employed in lieu of or in concert with one another. It is to be understood that the UEP controller and/or a computer systemization may employ various forms of memory 6129. For example, a computer systemization may be configured wherein the operation of on-chip CPU memory (e.g., registers), RAM, ROM, and any other storage devices are provided by a paper punch tape or paper punch card mechanism; however, such an embodiment would result in an extremely slow rate of operation. In a typical configuration, memory 6129 will include ROM 6106, RAM 6105, and a storage device 6114. A storage device 6114 may be any conventional computer system storage. Storage devices may include a drum; a (fixed and/or removable) magnetic disk drive; a magneto-optical drive; an optical drive (i.e., Blueray, CD ROM/RAM/Recordable (R)/ReWritable (RW), DVD R/RW, HD DVD R/RW etc.); an array of devices (e.g., Redundant Array of Independent Disks (RAID)); solid state memory devices (USB memory, solid state drives (SSD), etc.); other processor-readable storage mediums; and/or other devices of the like. Thus, a computer systemization generally requires and makes use of memory.
The memory 6129 may contain a collection of program and/or database components and/or data such as, but not limited to: operating system component(s) 6115 (operating system); information server component(s) 6116 (information server); user interface component(s) 6117 (user interface); Web browser component(s) 6118 (Web browser); database(s) 6119; mail server component(s) 6121; mail client component(s) 6122; cryptographic server component(s) 6120 (cryptographic server); the UEP component(s) 6135; and/or the like (i.e., collectively a component collection). These components may be stored and accessed from the storage devices and/or from storage devices accessible through an interface bus. Although non-conventional program components such as those in the component collection, typically, are stored in a local storage device 6114, they may also be loaded and/or stored in memory such as: peripheral devices, RAM, remote storage facilities through a communications network, ROM, various forms of memory, and/or the like.
The operating system component 6115 is an executable program component facilitating the operation of the UEP controller. Typically, the operating system facilitates access of I/O, network interfaces, peripheral devices, storage devices, and/or the like. The operating system may be a highly fault tolerant, scalable, and secure system such as: Apple Macintosh OS X (Server); AT&T Plan 9; Be OS; Unix and Unix-like system distributions (such as AT&T's UNIX; Berkley Software Distribution (BSD) variations such as FreeBSD, NetBSD, OpenBSD, and/or the like; Linux distributions such as Red Hat, Ubuntu, and/or the like); and/or the like operating systems. However, more limited and/or less secure operating systems also may be employed such as Apple Macintosh OS, IBM OS/2, Microsoft DOS, Microsoft Windows 2000/2003/3.1/95/98/CE/Millenium/NT/Vista/XP (Server), Palm OS, and/or the like. An operating system may communicate to and/or with other components in a component collection, including itself, and/or the like. Most frequently, the operating a system communicates with other program components, user interfaces, and/or the like. For example, the operating system may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. The operating system, once executed by the CPU, may enable the interaction with communications networks, data, I/O, peripheral devices, program components, memory, user input devices, and/or the like. The operating system may provide communications protocols that allow the UEP controller to communicate with other entities through a communications network 6113. Various communication protocols may be used by the UEP controller as a subcarrier transport mechanism for interaction, such as, but not limited to: multicast, TCP/IP, UDP, unicast, and/or the like.
An information server component 6116 is a stored program component that is executed by a CPU. The information server may be a conventional Internet information server such as, but not limited to Apache Software Foundation's Apache, Microsoft's Internet Information Server, and/or the like. The information server may allow for the execution of program components through facilities such as Active Server Page (ASP), ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, Common Gateway Interface (CGI) scripts, dynamic (D) hypertext markup language (HTML), FLASH, Java, JavaScript, Practical Extraction Report Language (PERL), Hypertext Pre-Processor (PHP), pipes, Python, wireless application protocol (WAP), WebObjects, and/or the like. The information server may support secure communications protocols such as, but not limited to, File Transfer Protocol (FTP); HyperText Transfer Protocol (HTTP); Secure a Hypertext Transfer Protocol (HTTPS), Secure Socket Layer (SSL), messaging protocols (e.g., America Online (AOL) Instant Messenger (AIM), Application Exchange (APEX), ICQ, Internet Relay Chat (IRC), Microsoft Network (MSN) Messenger Service, Presence and Instant Messaging Protocol (PRIM), Internet Engineering Task Force's (IETF's) Session Initiation Protocol (SIP), SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE), open XML-based Extensible Messaging and Presence Protocol (XMPP) (i.e., Jabber or Open Mobile Alliance's (OMA's) Instant Messaging and Presence Service (IMPS)), Yahoo! Instant Messenger Service, and/or the like. The information server provides results in the form of Web pages to Web browsers, and allows for the manipulated generation of the Web pages through interaction with other program components. After a Domain Name System (DNS) resolution portion of an HTTP request is resolved to a particular information server, the information server resolves requests for information at specified locations on the UEP controller based on the remainder of the HTTP request. For example, a request such as http://123.124.125.126/myInformation.html might have the IP portion of the request “123.124.125.126” resolved by a DNS server to an information server at that IP address; that information server might in turn further parse the http request for the “/myInformation.html” portion of the request and resolve it to a location in memory containing the information “myInformation.html.” Additionally, other information serving protocols may be employed across various ports, e.g., FTP communications across port 21, and/or the like. An information server may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the information server communicates with the UEP database 6119, operating systems, other program components, user interfaces, Web browsers, and/or the like.
Access to the UEP database may be achieved through a number of database bridge mechanisms such as through scripting languages as enumerated below (e.g., CGI) and through inter-application communication channels as enumerated below (e.g., CORBA, WebObjects, etc.). Any data requests through a Web browser are parsed through the bridge mechanism into appropriate grammars as required by the UEP. In one embodiment, the information server would provide a Web form accessible by a Web browser. Entries made into supplied fields in the Web form are tagged as having been entered into the particular fields, and parsed as such. The entered terms are then passed along with the field tags, which act to instruct the parser to generate queries directed to appropriate tables and/or fields. In one embodiment, the parser may generate queries in standard SQL by instantiating a search string with the proper join/select commands based on the tagged text entries, wherein the resulting command is provided over the bridge mechanism to the UEP as a query. Upon generating query results from the query, the results are passed over the bridge mechanism, and may be parsed for formatting and generation of a new results Web page by the bridge mechanism. Such a new results Web page is then provided to the information server, which may supply it to the requesting Web browser.
Also, an information server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
Computer interfaces in some respects are similar to automobile operation interfaces. Automobile operation interface elements such as steering wheels, gearshifts, and speedometers facilitate the access, operation, and display of automobile resources, and status. Computer interaction interface elements such as check boxes, cursors, menus, scrollers, and windows (collectively and commonly referred to as widgets) similarly facilitate the access, capabilities, operation, and display of data and computer hardware and operating system resources, and status. Operation interfaces are commonly called user interfaces. Graphical user interfaces (GUIs) such as the Apple Macintosh Operating System's Aqua, IBM's OS/2, Microsoft's Windows 2000/2003/3.1/95/98/CE/Millenium/NT/XP/Vista/7 (i.e., Aero), Unix's X-Windows (e.g., which may include additional Unix graphic interface libraries and layers such as K Desktop Environment (KDE), mythTV and GNU Network Object Model Environment (GNOME)), web interface libraries (e.g., ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, etc. interface libraries such as, but not limited to, Dojo, jQuery(UI), MooTools, Prototype, script.aculo.us, SWFObject, Yahoo! User Interface, any of which may be used and) provide a baseline and means of accessing and displaying information graphically to users.
A user interface component 6117 is a stored program component that is executed by a CPU. The user interface may be a conventional graphic user interface as provided by, with, and/or atop operating systems and/or operating environments such as already discussed. The user interface may allow for the display, execution, interaction, manipulation, and/or operation of program components and/or system facilities through textual and/or graphical facilities. The user interface provides a facility through which users may affect, interact, and/or operate a computer system. A user a interface may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the user interface communicates with operating systems, other program components, and/or the like. The user interface may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
A Web browser component 6118 is a stored program component that is executed by a CPU. The Web browser may be a conventional hypertext viewing application such as Microsoft Internet Explorer or Netscape Navigator. Secure Web browsing may be supplied with 128 bit (or greater) encryption by way of HTTPS, SSL, and/or the like. Web browsers allowing for the execution of program components through facilities such as ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, web browser plug-in APIs (e.g., FireFox, Safari Plug-in, and/or the like APIs), and/or the like. Web browsers and like information access tools may be integrated into PDAs, cellular telephones, and/or other mobile devices. A Web browser may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the Web browser communicates with information servers, operating systems, integrated program components (e.g., plug-ins), and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. Also, in place of a Web browser and information server, a combined application may be developed to perform similar operations of both. The combined application would a similarly affect the obtaining and the provision of information to users, user agents, and/or the like from the UEP enabled nodes. The combined application may be nugatory on systems employing standard Web browsers.
A mail server component 6121 is a stored program component that is executed by a CPU 6103. The mail server may be a conventional Internet mail server such as, but not limited to sendmail, Microsoft Exchange, and/or the like. The mail is server may allow for the execution of program components through facilities such as ASP, ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, CGI scripts, Java, JavaScript, PERL, PHP, pipes, Python, WebObjects, and/or the like. The mail server may support communications protocols such as, but not limited to: Internet message access protocol (IMAP), Messaging Application Programming Interface (MAPI)/Microsoft Exchange, post office protocol (POP3), simple mail transfer protocol (SMTP), and/or the like. The mail server can route, forward, and process incoming and outgoing mail messages that have been sent, relayed and/or otherwise traversing through and/or to the UEP.
Access to the UEP mail may be achieved through a number of APIs offered by the individual Web server components and/or the operating system.
Also, a mail server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses.
A mail client component 6122 is a stored program component that is a executed by a CPU 6103. The mail client may be a conventional mail viewing application such as Apple Mail, Microsoft Entourage, Microsoft Outlook, Microsoft Outlook Express, Mozilla, Thunderbird, and/or the like. Mail clients may support a number of transfer protocols, such as: IMAP, Microsoft Exchange, POP3, SMTP, and/or the like. A mail client may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the mail client communicates with mail servers, operating systems, other mail clients, and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program sl component, system, user, and/or data communications, requests, information, and/or responses. Generally, the mail client provides a facility to compose and transmit electronic mail messages.
A cryptographic server component 6120 is a stored program component that is executed by a CPU 6103, cryptographic processor 6126, cryptographic processor interface 6127, cryptographic processor device 6128, and/or the like. Cryptographic processor interfaces will allow for expedition of encryption and/or decryption requests by the cryptographic component; however, the cryptographic component, alternatively, may run on a conventional CPU. The cryptographic component allows for the encryption and/or decryption of provided data. The cryptographic component allows for both symmetric and asymmetric (e.g., Pretty Good Protection (PGP)) encryption and/or decryption. The cryptographic component may employ cryptographic techniques such as, but not limited to: digital certificates (e.g., X.509 authentication framework), digital a signatures, dual signatures, enveloping, password access protection, public key management, and/or the like. The cryptographic component will facilitate numerous (encryption and/or decryption) security protocols such as, but not limited to: checksum, Data Encryption Standard (DES), Elliptical Curve Encryption (ECC), International Data Encryption Algorithm (IDEA), Message Digest 5 (MD5, which is a one way hash operation), passwords, Rivest Cipher (RC5), Rijndael, RSA (which is an Internet encryption and authentication system that uses an algorithm developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman), Secure Hash Algorithm (SHA), Secure Socket Layer (SSL), Secure Hypertext Transfer Protocol (HTIPS), and/or the like. Employing such encryption security protocols, the UEP may encrypt all incoming and/or outgoing communications and may serve as node within a virtual private network (VPN) with a wider communications network. The cryptographic component facilitates the process of “security authorization” whereby access to a resource is inhibited by a security protocol wherein the cryptographic component effects authorized access to the secured resource. In addition, the cryptographic component may provide unique identifiers of content, e.g., employing and MD5 hash to obtain a unique signature for an digital audio file. A cryptographic component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. The cryptographic component supports encryption schemes allowing for the secure transmission of information across a communications network to enable the UEP component to engage in secure transactions if so desired. The cryptographic component facilitates the secure accessing of resources on the UEP and facilitates the access of secured resources on remote systems; i.e., it may act as a client and/or server of secured resources. Most frequently, the cryptographic component a communicates with information servers, operating systems, other program components, and/or the like. The cryptographic component may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
Alternatively, the UEP database may be implemented using various standard data-structures, such as an array, hash, (linked) list, struct, structured text file (e.g., XML), table, and/or the like. Such data-structures may be stored in memory and/or in (structured) files. In another alternative, an object-oriented database may be used, such as Frontier, ObjectStore, Poet, Zope, and/or the like. Object databases can a include a number of object collections that are grouped and/or linked together by common attributes; they may be related to other object collections by some common attributes. Object-oriented databases perform similarly to relational databases with the exception that objects are not just pieces of data but may have other types of capabilities encapsulated within a given object. If the UEP database is implemented as a data-structure, the use of the UEP database 6119 may be integrated into another component such as the UEP component 6135. Also, the database may be implemented as a mix of data structures, objects, and relational structures. Databases may be consolidated and/or distributed in countless variations through standard data processing techniques. Portions of databases, e.g., tables, may be exported and/or imported and thus decentralized and/or integrated.
In one embodiment, the database component 6119 includes several tables 6119a-o. A Users table 6119a may include fields such as, but not limited to: user_id, ssn, dob, first_name, last_name, age, state, address_firstline, address_secondline, zipcode, devices_list, contact_info, contact_type, alt_contact_info, alt_contact_type, and/or the like. The Users table may support and/or track multiple entity accounts on a UEP. A Devices table 6119b may include fields such as, but not limited to: device_ID, device_name, device_IP, device_MAC, device_type, device_model, device_version, device_OS, device_apps_list, device_securekey, wallet_app_installed_flag, and/or the like. An Apps table 6119c may include fields such as, but not limited to: app_ID, app_name, app_type, app_dependencies, and/or the like. An Accounts table 6119d may include fields such as, but not limited to: account_number, account_security_code, account_name, issuer_acquirer_flag, issuer_name, acquirer_name, account_address, a routing_number, access_API_call, linked_wallets_list, and/or the like. A Merchants 9a table 6119e may include fields such as, but not limited to: merchant_id, merchant_name, merchant_address, ip_address, mac_address, auth_key, port_num, security_settings_list, and/or the like. An Issuers table 6119f may include fields such as, but not limited to: issuer_id, issuer_name, issuer_address, ip_address, mac_address, auth_key, port_num, security_settings_list, and/or the like. An Acquirers table 6119g may include fields such as, but not limited to: account_firstname, account_lastname, account_type, account_num, account_balance_list, billingaddress_line1, billingaddress_line2, billing_zipcode, billing_state, shipping_preferences, shippingaddress_line1, shippingaddress_line2, shipping_zipcode, shipping_state, and/or the like. A Pay Gateways table 6119h may include fields such as, but not limited to: gateway_ID, gateway_IP, gateway_MAC, gateway_secure_key, gateway_access_list, gateway_API_call_list, gateway_services_list, and/or the like. A Transactions table 6119i may include fields such as, but not limited to: order_id, user_id, timestamp, transaction_cost, purchase_details_list, num_products, products_list, product_type, product_params_list, product_title, product_summary, quantity, user_id, client_id, client_ip, client_type, client_model, operating_system, os_version, app_installed_flag, user_id, account_firstname, account_lastname, account_type, account_num, account_priority_account_ratio, billingaddress_line1, billingaddress_line2, billing_zipcode, billing_state, shipping_preferences, shippingaddress_line1, shippingaddress_line2, shipping_zipcode, shipping_state, merchant_id, merchant_name, merchant_auth_key, and/or the like. A Batches table 6119j may include fields such as, but not limited to: batch_id, transaction_id_list, timestamp_list, cleared_flag_list, clearance_trigger_settings, and/or the like. A Ledgers table 6119k a may include fields such as, but not limited to: request_id, timestamp, deposit_amount, batch_id, transaction_id, clear_flag, deposit_account, transaction_summary, payor_name, payor_account, and/or the like. A Products table 61191 may include fields such as, but not limited to: product_ID, product_fitle, product_attributes_list, product_price, tax_info_list, related_products_list, offers_list, discounts_list, rewards_list, merchants_list, merchant_availability_list, and/or the like. An Offers table 6119m may include fields such as, but not limited to: offer_ID, offer_title, offer_attributes_list, offer_price, offer_expiry, related_products_list, discounts_list, rewards_list, merchants_list, merchant_availability_list, and/or the like. A Behavior Data table 6119n may include fields such as, but not limited to: user_id, timestamp, activity_type, activity_location, activity_attribute_list, activity_attribute_values_list, and/or the like. An Analytics table 61190 may include fields such as, but not limited to: report_id, user_id, report_type, report_algorithm_id, report_destination_address, and/or the like. A Market Data table 6119p may include fields such as, but not limited to: market_data_feed_ID, asset_ID, asset_symbol, asset_name, spot_price, bid_price, ask_price, and/or the like; in one embodiment, the market data table is populated through a market data feed (e.g., Bloomberg's PhatPipe, Dun & Bradstreet, Reuter's Tib, Triarch, etc.), for example, through Microsoft's Active Template Library and Dealing Object Technology's real-time toolkit Rtt.Multi.
In one embodiment, the UEP database may interact with other database systems. For example, employing a distributed database system, queries and data access by search UEP component may treat the combination of the UEP database, an integrated data security layer database as a single database entity.
In one embodiment, user programs may contain various user interface a primitives, which may serve to update the UEP. Also, various accounts may require custom database tables depending upon the environments and the types of clients the UEP may need to serve. It should be noted that any unique fields may be designated as a key field throughout. In an alternative embodiment, these tables have been decentralized into their own databases and their respective database controllers (i.e., individual database controllers for each of the above tables). Employing standard data processing techniques, one may further distribute the databases over several computer systemizations and/or storage devices. Similarly, configurations of the decentralized database controllers may be varied by consolidating and/or distributing the various database components 6119a-o. The UEP may be configured to keep track of various settings, inputs, and parameters via database controllers.
The UEP database may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the UEP database communicates with the UEP component, other program components, and/or the like. The database may contain, retain, and provide information regarding other nodes and data.
The UEP component 6135 is a stored program component that is executed by a CPU. In one embodiment, the UEP component incorporates any and/or all combinations of the aspects of the UEP discussed in the previous figures. As such, the UEP affects accessing, obtaining and the provision of information, services, transactions, and/or the like across various communications networks.
The UEP component may transform touchscreen inputs into a virtual a wallet mobile application interface via UEP components into purchase transaction triggers and receipt notices, and/or the like and use of the UEP. In one embodiment, the UEP component 6135 takes inputs (e.g., checkout request 5511; product data 5515; wallet access input 5711; transaction authorization input 5714; payment gateway address 5718; payment network address 5722; issuer server address(es) 5725; funds authorization request(s) 5726; user(s) account(s) data 5728; batch data 5912; payment network address 5916; issuer server address(es) 5924; individual payment request 5925; payment ledger, merchant account data 5931; and/or the like) etc., and transforms the inputs via various components (e.g., UPC 6141; PTA 6142; PTC 6143; STG 6144; EPGU 6145; EAA 6146; CEC 6147; ETC 6148; DFR 6149; ADRN 6150; VASE 6151; SDA 6152; TDA 6153; CTDA 6154; SRA 6155; UBA 6156; UBOR 6157; SPE 6158; SPT 6159; WSS 6160; SMCB 6161; VWSC 6162; ORE 6163; QRCP 6164; SMPE 6165; PCS 6166; UST 6167; STRS 6168; USTG 6169; and/or the like), into outputs (e.g., checkout request message 5513; checkout data 5517; card authorization request 5716, 5723; funds authorization response(s) 5730; transaction authorization response 5732; batch append data 5734; purchase receipt 5735; batch clearance request 5914; batch payment request 5918; transaction data 5920; individual payment confirmation 5928, 5929; updated payment ledger, merchant account data 5933; and/or the like).
The UEP component enabling access of information between nodes may be developed by employing standard development tools and languages such as, but not limited to: Apache components, Assembly, ActiveX, binary executables, (ANSI) (Objective-) C (++), C# and/or .NET, database adapters, CGI scripts, Java, JavaScript, mapping tools, procedural and object oriented development tools, PERL, PHP, Python, a shell scripts, SQL commands, web application server extensions, web development environments and libraries (e.g., Microsoft's ActiveX; Adobe AIR, FLEX & FLASH; AJAX; (D)HTML; Dojo, Java; JavaScript; jQuery(UI); MooTools; Prototype; script.aculo.us; Simple Object Access Protocol (SOAP); SWFObject; Yahoo! User Interface; and/or the like), WebObjects, and/or the like. In one embodiment, the UEP server employs a cryptographic server to encrypt and decrypt communications. The UEP component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the UEP component communicates with the UEP database, operating systems, other program components, and/or the like. The UEP may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
The structure and/or operation of any of the UEP node controller components may be combined, consolidated, and/or distributed in any number of ways to facilitate development and/or deployment. Similarly, the component collection may be combined in any number of ways to facilitate deployment and/or development. To accomplish this, one may integrate the components into a common code base or in a facility that can dynamically load the components on demand in an integrated fashion.
The component collection may be consolidated and/or distributed in countless variations through standard data processing and/or development techniques. Multiple instances of any one of the program components in the program component collection may be instantiated on a single node, and/or across numerous nodes to a improve performance through load-balancing and/or data-processing techniques. Furthermore, single instances may also be distributed across multiple controllers and/or storage devices; e.g., databases. All program component instances and controllers working in concert may do so through standard data processing communication techniques.
The configuration of the UEP controller will depend on the context of system deployment. Factors such as, but not limited to, the budget, capacity, location, and/or use of the underlying hardware resources may affect deployment requirements and configuration. Regardless of if the configuration results in more consolidated and/or integrated program components, results in a more distributed series of program components, and/or results in some combination between a consolidated and distributed configuration, data may be communicated, obtained, and/or provided. Instances of components consolidated into a common code base from the program component collection may communicate, obtain, and/or provide data. This may be accomplished through intra-application data processing communication techniques such as, but not limited to: data referencing (e.g., pointers), internal messaging, object instance variable communication, shared memory space, variable passing, and/or the like.
If component collection components are discrete, separate, and/or external to one another, then communicating, obtaining, and/or providing data with and/or to other components may be accomplished through inter-application data processing communication techniques such as, but not limited to: Application Program Interfaces (API) information passage; (distributed) Component Object Model ((D)COM), (Distributed) Object Linking and Embedding ((D)OLE), and/or the like), Common Object Request Broker Architecture (CORBA), Jini local and remote application program interfaces, JavaScript Object Notation (JSON), Remote Method Invocation (RMI), SOAP, process pipes, shared files, and/or the like. Messages sent between discrete component components for inter-application communication or within memory spaces of a singular component for intra-application communication may be facilitated through the creation and parsing of a grammar. A grammar may be developed by using development tools such as lex, yacc, XML, and/or the like, which allow for grammar generation and parsing capabilities, which in turn may form the basis of communication messages within and between components.
For example, a grammar may be arranged to recognize the tokens of an HTTP post command, e.g.:
where Value1 is discerned as being a parameter because “http://” is part of the grammar syntax, and what follows is considered part of the post value. Similarly, with such a grammar, a variable “Value1” may be inserted into an “http://” post command and then sent. The grammar syntax itself may be presented as structured data that is interpreted and/or otherwise used to generate the parsing mechanism (e.g., a syntax description text file as processed by lex, yacc, etc.). Also, once the parsing mechanism is generated and/or instantiated, it itself may process and/or parse structured data such as, but not limited to: character (e.g., tab) delineated text, HTML, structured text streams, XML, and/or the like structured data. In another embodiment, inter-application data processing protocols themselves may have integrated and/or a readily available parsers (e.g., JSON, SOAP, and/or like parsers) that may be employed to parse (e.g., communications) data. Further, the parsing grammar may be used beyond message parsing, but may also be used to parse: databases, data collections, data stores, structured data, and/or the like. Again, the desired configuration will depend upon the context, environment, and requirements of system deployment.
For example, in some implementations, the UEP controller may be executing a PHP script implementing a Secure Sockets Layer (“SSL”) socket server via the information server, which listens to incoming communications on a server port to which a client may send data, e.g., data encoded in JSON format. Upon identifying an incoming communication, the PHP script may read the incoming message from the client device, parse the received JSON-encoded text data to extract information from the JSON-encoded text data into PHP script variables, and store the data (e.g., client identifying information, etc.) and/or extracted information in a relational database accessible using the Structured Query Language (“SQL”). An exemplary listing, written substantially in the form of PHP/SQL commands, to accept JSON-encoded input data from a client device via a SSL connection, parse the data to extract variables, and store the data to a database, is provided below:
Also, the following resources may be used to provide example embodiments regarding SOAP parser implementation:
and other parser implementations:
all of which are hereby expressly incorporated by reference herein.
In order to address various issues and advance the art, the entirety of this application for UNIVERSAL ELECTRONIC PAYMENT APPARATUSES, METHODS AND SYSTEMS (including the Cover Page, Title, Headings, Field, Background, a Summary, Brief Description of the Drawings, Detailed Description, Claims, Abstract, Figures, Appendices and/or otherwise) shows by way of illustration various embodiments in which the claimed innovations may be practiced. The advantages and features of the application are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed principles. It should be understood that they are not representative of all claimed innovations. As such, certain aspects of the disclosure have not been discussed herein. That alternate embodiments may not have been presented for a specific portion of the innovations or that further undescribed alternate embodiments may be available for a portion is not to be considered a disclaimer of those alternate embodiments. It will be appreciated that many of those undescribed embodiments incorporate the same principles of the innovations and others are equivalent. Thus, it is to be understood that other embodiments may be utilized and functional, logical, operational, organizational, structural and/or topological modifications may be made without departing from the scope and/or spirit of the disclosure. As such, all examples and/or embodiments are deemed to be non-limiting throughout this disclosure. Also, no inference should be drawn regarding those embodiments discussed herein relative to those not discussed herein other than it is as such for purposes of reducing space and repetition. For instance, it is to be understood that the logical and/or topological structure of any combination of any program components (a component collection), other components and/or any present feature sets as described in the figures and/or throughout are not limited to a fixed operating order and/or arrangement, but rather, any disclosed order is exemplary and all equivalents, regardless of order, are contemplated by the disclosure. Furthermore, it is to be understood that such features are not limited to serial execution, but rather, any number of threads, processes, a services, servers, and/or the like that may execute asynchronously, concurrently, in a parallel, simultaneously, synchronously, and/or the like are contemplated by the disclosure. As such, some of these features may be mutually contradictory, in that they cannot be simultaneously present in a single embodiment. Similarly, some features are applicable to one aspect of the innovations, and inapplicable to others. In addition, the disclosure includes other innovations not presently claimed. Applicant reserves all rights in those presently unclaimed innovations, including the right to claim such innovations, file additional applications, continuations, continuations in part, divisions, and/or the like thereof. As such, it should be understood that advantages, embodiments, examples, functional, features, logical, operational, organizational, structural, topological, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims. It is to be understood that, depending on the particular needs and/or characteristics of a UEP individual and/or enterprise user, database configuration and/or relational model, data type, data transmission and/or network framework, syntax structure, and/or the like, various embodiments of the UEP may be implemented that enable a great deal of flexibility and customization. For example, aspects of the UEP may be adapted for financial trading; operations security; resource management; and/or the like. While various embodiments and discussions of the UEP have been directed to electronic commerce, however, it is to be understood that the embodiments described herein may be readily configured and/or customized for a wide variety of other applications and/or implementations.
This application is a National Stage Entry entitled to, and hereby claims priority under 35 U.S.C. §§ 365, 371 corresponding to, PCT application no. PCT/US12/26205, filed Feb. 22, 2012, entitled “UNIVERSAL ELECTRONIC PAYMENT APPARATUSES, METHODS AND SYSTEMS,”, which in turn claims priority under 35 USC § 119 to: U.S. provisional patent application Ser. No. 61/445,482 filed Feb. 22, 2011, entitled “UNIVERSAL ELECTRONIC PAYMENT APPARATUSES, METHODS AND SYSTEMS,” U.S. provisional patent application Ser. No. 61/545,971 filed Oct. 11, 2011, entitled “UNIVERSAL ELECTRONIC PAYMENT APPARATUSES, METHODS AND SYSTEMS,” U.S. provisional patent application Ser. No. 61/473,728 filed Apr. 8, 2011, entitled “APPARATUSES, METHODS AND SYSTEMS FOR AN APPLICATION INTEGRATION PAYMENT PLATFORM,” U.S. provisional patent application Ser. No. 61/466,409 filed Mar. 22, 2011, entitled “ELECTRONIC WALLET,” U.S. provisional patent application Ser. No. 61/469,965 filed Mar. 31, 2011, entitled “APPARATUSES, METHODS AND SYSTEMS FOR A TARGETED ACCEPTANCE PLATFORM,” U.S. provisional patent application Ser. No. 61/538,761 filed Sep. 23, 2011, entitled “ELECTRONIC WALLET TRANSACTION CONSUMER LEASH APPARATUSES, METHODS AND SYSTEMS,” and U.S. provisional patent application Ser. No. 61/539,969 filed Sep. 27, 2011, entitled “APPARATUSES, METHODS, AND SYSTEMS FOR FINDING, STORING, AND APPLYING DISCOUNTS FOR USE IN AN ELECTRONIC TRANSACTION.” PCT application no. PCT/US12/26205 is also a continuation-in-part of, and claims priority under 35 U.S.C. §§ 120, 365 to: U.S. nonprovisional patent application Ser. No. 13/398,817 filed Feb. 16, 2012, entitled “SNAP MOBILE PAYMENT APPARATUSES, METHODS AND SYSTEMS,” and U.S. nonprovisional patent application Ser. No. 13/348,634 filed Jan. 11, 2012, entitled “UNIVERSAL VALUE EXCHANGE APPARATUSES, METHODS AND SYSTEMS.” The entire contents of the aforementioned applications are expressly incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/026205 | 2/22/2012 | WO | 00 | 3/31/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/116125 | 8/30/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
789106 | Seymour | May 1905 | A |
4896363 | Taylor | Jan 1990 | A |
5177342 | Adams | Jan 1993 | A |
5221838 | Gutman et al. | Jun 1993 | A |
5237164 | Takada | Aug 1993 | A |
5311594 | Penzias | May 1994 | A |
5384449 | Peirce | Jan 1995 | A |
5446890 | Renslo et al. | Aug 1995 | A |
5459656 | Fields et al. | Oct 1995 | A |
5500513 | Langhans et al. | Mar 1996 | A |
5510777 | Pilc et al. | Apr 1996 | A |
5521362 | Powers | May 1996 | A |
5526409 | Conrow et al. | Jun 1996 | A |
5530438 | Bickham et al. | Jun 1996 | A |
5536045 | Adams | Jul 1996 | A |
5590038 | Pitroda | Dec 1996 | A |
5613012 | Hoffman et al. | Mar 1997 | A |
5615110 | Wong | Mar 1997 | A |
5615264 | Kazmierczak et al. | Mar 1997 | A |
5621201 | Langhans et al. | Apr 1997 | A |
5649118 | Carlisle et al. | Jul 1997 | A |
5655007 | McAllister | Aug 1997 | A |
5748737 | Daggar | May 1998 | A |
5781438 | Lee et al. | Jul 1998 | A |
5796832 | Kamran | Aug 1998 | A |
5815657 | Williams et al. | Sep 1998 | A |
5850446 | Berger et al. | Dec 1998 | A |
5878337 | Joao et al. | Mar 1999 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5884271 | Pitroda | Mar 1999 | A |
5892838 | Brady | Apr 1999 | A |
5903830 | Joao et al. | May 1999 | A |
5914472 | Foladare et al. | Jun 1999 | A |
5943624 | Fox et al. | Aug 1999 | A |
5953710 | Fleming | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
5963924 | Williams et al. | Oct 1999 | A |
6000832 | Franklin et al. | Dec 1999 | A |
6006200 | Boies et al. | Dec 1999 | A |
6014635 | Harris et al. | Jan 2000 | A |
6044360 | Picciallo | Mar 2000 | A |
6052675 | Checchio | Apr 2000 | A |
6064990 | Goldsmith | May 2000 | A |
6092053 | Boesch et al. | Jul 2000 | A |
6160903 | Hamid | Dec 2000 | A |
6163771 | Walker et al. | Dec 2000 | A |
6182894 | Hackett et al. | Feb 2001 | B1 |
6195447 | Ross | Feb 2001 | B1 |
6202052 | Miller | Mar 2001 | B1 |
6202933 | Poore et al. | Mar 2001 | B1 |
6226624 | Watson et al. | May 2001 | B1 |
6227447 | Campisano | May 2001 | B1 |
6236981 | Hill | May 2001 | B1 |
6263447 | French et al. | Jul 2001 | B1 |
6267292 | Walker et al. | Jul 2001 | B1 |
6327578 | Linehan | Dec 2001 | B1 |
6336099 | Barnett et al. | Jan 2002 | B1 |
6339766 | Gephart | Jan 2002 | B1 |
6341724 | Campisano | Jan 2002 | B2 |
6381584 | Ogram | Apr 2002 | B1 |
6385596 | Wiser et al. | May 2002 | B1 |
6385655 | Smith | May 2002 | B1 |
6422462 | Cohen | Jul 2002 | B1 |
6425523 | Shem-Ur et al. | Jul 2002 | B1 |
6456984 | Demoff et al. | Sep 2002 | B1 |
6473500 | Risafi et al. | Oct 2002 | B1 |
6529725 | Joao et al. | Mar 2003 | B1 |
6535855 | Cahill et al. | Mar 2003 | B1 |
6560581 | Fox et al. | May 2003 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6601761 | Katis | Aug 2003 | B1 |
6636833 | Flitcroft et al. | Oct 2003 | B1 |
6735572 | Landesmann | May 2004 | B2 |
6748367 | Lee | Jun 2004 | B1 |
6805287 | Bishop et al. | Oct 2004 | B2 |
6853982 | Smith et al. | Feb 2005 | B2 |
6857073 | French et al. | Feb 2005 | B2 |
6865522 | Gastiger | Mar 2005 | B1 |
6873974 | Schutzer | Mar 2005 | B1 |
6879965 | Fung et al. | Apr 2005 | B2 |
6891953 | DeMello et al. | May 2005 | B1 |
6898598 | Himmel et al. | May 2005 | B2 |
6901387 | Wells et al. | May 2005 | B2 |
6925439 | Pitroda | Aug 2005 | B1 |
6931382 | Laage et al. | Aug 2005 | B2 |
6934528 | Loureiro et al. | Aug 2005 | B2 |
6938019 | Uzo | Aug 2005 | B1 |
6941285 | Sarcanin | Sep 2005 | B2 |
6944595 | Graser | Sep 2005 | B1 |
6980670 | Hoffman et al. | Dec 2005 | B1 |
6990470 | Hogan et al. | Jan 2006 | B2 |
6991157 | Bishop et al. | Jan 2006 | B2 |
6999943 | Johnson et al. | Feb 2006 | B1 |
7024383 | Mancini et al. | Apr 2006 | B1 |
7028052 | Chapman et al. | Apr 2006 | B2 |
7047041 | Vanska et al. | May 2006 | B2 |
7051002 | Keresman, III et al. | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7069249 | Stolfo et al. | Jun 2006 | B2 |
7089208 | Levchin et al. | Aug 2006 | B1 |
7096003 | Joao et al. | Aug 2006 | B2 |
7103576 | Mann, III et al. | Sep 2006 | B2 |
7111789 | Rajasekaran et al. | Sep 2006 | B2 |
7113930 | Eccles et al. | Sep 2006 | B2 |
7117172 | Black | Oct 2006 | B1 |
7136835 | Flitcroft et al. | Nov 2006 | B1 |
7155411 | Blinn et al. | Dec 2006 | B1 |
7167903 | Percival | Jan 2007 | B2 |
7177835 | Walker et al. | Feb 2007 | B1 |
7177848 | Hogan et al. | Feb 2007 | B2 |
7180457 | Trott | Feb 2007 | B2 |
7194437 | Britto et al. | Mar 2007 | B1 |
7206847 | Alberth et al. | Apr 2007 | B1 |
7209561 | Shankar et al. | Apr 2007 | B1 |
7212979 | Matz et al. | May 2007 | B1 |
RE39736 | Morrill, Jr. | Jul 2007 | E |
7264154 | Harris | Sep 2007 | B2 |
7266557 | Aschen | Sep 2007 | B2 |
7268667 | Beenau et al. | Sep 2007 | B2 |
7268668 | Beenau et al. | Sep 2007 | B2 |
7287692 | Patel et al. | Oct 2007 | B1 |
7290704 | Ball et al. | Nov 2007 | B1 |
7292999 | Hobson et al. | Nov 2007 | B2 |
7313546 | Alarcon-Luther | Dec 2007 | B2 |
7318049 | Iannacci | Jan 2008 | B2 |
7337119 | Geschwender et al. | Feb 2008 | B1 |
7337144 | Blinn et al. | Feb 2008 | B1 |
7343149 | Benco et al. | Mar 2008 | B2 |
7343351 | Bishop et al. | Mar 2008 | B1 |
7349885 | Gangi | Mar 2008 | B2 |
7350230 | Forrest | Mar 2008 | B2 |
7353382 | Labrou et al. | Apr 2008 | B2 |
7356505 | March | Apr 2008 | B2 |
7357310 | Calabrese et al. | Apr 2008 | B2 |
7359880 | Abel et al. | Apr 2008 | B2 |
7373669 | Eisen et al. | May 2008 | B2 |
7379899 | Junger | May 2008 | B1 |
7379919 | Hogan et al. | May 2008 | B2 |
7392222 | Hamilton et al. | Jun 2008 | B1 |
RE40444 | Linehan | Jul 2008 | E |
7395242 | Blinn et al. | Jul 2008 | B2 |
7398250 | Blinn et al. | Jul 2008 | B2 |
7413113 | Zhu | Aug 2008 | B1 |
7415443 | Hobson et al. | Aug 2008 | B2 |
7427021 | Kemper et al. | Sep 2008 | B2 |
7444676 | Asghari-Kamrani et al. | Oct 2008 | B1 |
7450966 | Vanska et al. | Nov 2008 | B2 |
7469151 | Khan et al. | Dec 2008 | B2 |
7477780 | Boncyk et al. | Jan 2009 | B2 |
7499889 | Golan et al. | Mar 2009 | B2 |
7500607 | Williams | Mar 2009 | B2 |
7505935 | Mendiola | Mar 2009 | B2 |
7533064 | Boesch | May 2009 | B1 |
7536318 | Wolfe | May 2009 | B1 |
7536335 | Weston | May 2009 | B1 |
7536360 | Salvotore et al. | May 2009 | B2 |
7548889 | Bharnbri et al. | Jun 2009 | B2 |
7567934 | Flitcroft et al. | Jul 2009 | B2 |
7567936 | Peckover et al. | Jul 2009 | B1 |
7571139 | Giordano et al. | Aug 2009 | B1 |
7571140 | Weichert et al. | Aug 2009 | B2 |
7571142 | Flitcroft et al. | Aug 2009 | B1 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7593858 | Matz et al. | Sep 2009 | B2 |
7593896 | Flitcroft et al. | Sep 2009 | B1 |
7603311 | Yadav-Ranjan | Oct 2009 | B1 |
7606560 | Labrou et al. | Oct 2009 | B2 |
7627531 | Breck et al. | Dec 2009 | B2 |
7627895 | Gifford et al. | Dec 2009 | B2 |
7630937 | Mo et al. | Dec 2009 | B1 |
7634295 | Hayaashi et al. | Dec 2009 | B2 |
7644037 | Ostrovsky | Jan 2010 | B1 |
7644859 | Zhu | Jan 2010 | B1 |
7650314 | Saunders | Jan 2010 | B1 |
7660749 | Koski | Feb 2010 | B2 |
7668754 | Bridgelall | Feb 2010 | B1 |
7669760 | Zettner | Mar 2010 | B1 |
7676434 | Evans | Mar 2010 | B2 |
7685037 | Reiners et al. | Mar 2010 | B2 |
7685067 | Britto et al. | Mar 2010 | B1 |
7698221 | Blinn et al. | Apr 2010 | B2 |
7702578 | Fong et al. | Apr 2010 | B2 |
7707113 | Dimartino et al. | Apr 2010 | B1 |
7707120 | Dominguez et al. | Apr 2010 | B2 |
7708194 | Vawter | May 2010 | B2 |
7708198 | Gangi | May 2010 | B2 |
7712655 | Wong | May 2010 | B2 |
7712658 | Gangi | May 2010 | B2 |
7734527 | Uzo | Jun 2010 | B2 |
7739194 | Blinn et al. | Jun 2010 | B2 |
7742984 | Mohsenzadeh | Jun 2010 | B2 |
7753265 | Harris | Jul 2010 | B2 |
7770789 | Oder, II et al. | Aug 2010 | B2 |
7774076 | Skowronek | Aug 2010 | B2 |
7783569 | Abel et al. | Aug 2010 | B2 |
7784684 | Labrou et al. | Aug 2010 | B2 |
7784685 | Hopkins, III | Aug 2010 | B1 |
7793851 | Mullen | Sep 2010 | B2 |
7797215 | Zerenner | Sep 2010 | B1 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7801829 | Gray et al. | Sep 2010 | B2 |
7802719 | Johnson et al. | Sep 2010 | B2 |
7805376 | Smith | Sep 2010 | B2 |
7805378 | Berardi et al. | Sep 2010 | B2 |
7810720 | Lovett | Oct 2010 | B2 |
7818264 | Hammad | Oct 2010 | B2 |
7819307 | Lyons et al. | Oct 2010 | B2 |
7827288 | Da | Nov 2010 | B2 |
7828206 | Hessburg et al. | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7828992 | Kilickiran et al. | Nov 2010 | B2 |
7835960 | Breck et al. | Nov 2010 | B2 |
7837125 | Biskupski | Nov 2010 | B2 |
7841523 | Oder, II et al. | Nov 2010 | B2 |
7841539 | Hewton | Nov 2010 | B2 |
7844530 | Ziade et al. | Nov 2010 | B2 |
7844550 | Walker et al. | Nov 2010 | B2 |
7848980 | Carlson | Dec 2010 | B2 |
7849014 | Erikson | Dec 2010 | B2 |
7849020 | Johnson | Dec 2010 | B2 |
7853529 | Walker et al. | Dec 2010 | B1 |
7853995 | Chow et al. | Dec 2010 | B2 |
7865414 | Fung et al. | Jan 2011 | B2 |
7870027 | Tannenbaum | Jan 2011 | B1 |
7873579 | Hobson et al. | Jan 2011 | B2 |
7873580 | Hobson et al. | Jan 2011 | B2 |
7877299 | Bui | Jan 2011 | B2 |
7878400 | Harris | Feb 2011 | B2 |
7890370 | Whitsitt et al. | Feb 2011 | B2 |
7890393 | Talbert et al. | Feb 2011 | B2 |
7891563 | Oder, II et al. | Feb 2011 | B2 |
7895119 | Praisner | Feb 2011 | B2 |
7896238 | Fein et al. | Mar 2011 | B2 |
7899744 | Bishop et al. | Mar 2011 | B2 |
7904360 | Evans | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7908227 | Zizzimopoulos et al. | Mar 2011 | B2 |
7922082 | Muscato | Apr 2011 | B2 |
7926714 | Zhu | Apr 2011 | B1 |
7931195 | Mullen | Apr 2011 | B2 |
7933779 | Rooks et al. | Apr 2011 | B2 |
7937324 | Patterson | May 2011 | B2 |
7938318 | Fein et al. | May 2011 | B2 |
7942337 | Jain | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
7959076 | Hopkins, III | Jun 2011 | B1 |
7962418 | Wei et al. | Jun 2011 | B1 |
7967196 | Bierbaum et al. | Jun 2011 | B1 |
7971782 | Shams | Jul 2011 | B1 |
7996259 | Distefano, III | Aug 2011 | B1 |
7996288 | Stolfo | Aug 2011 | B1 |
8016192 | Messerges et al. | Sep 2011 | B2 |
8020763 | Kowalchyk et al. | Sep 2011 | B1 |
8024260 | Hogl et al. | Sep 2011 | B1 |
8025223 | Saunders et al. | Sep 2011 | B2 |
8028041 | Olliphant et al. | Sep 2011 | B2 |
8032438 | Barton et al. | Oct 2011 | B1 |
8041338 | Chen et al. | Oct 2011 | B2 |
8046256 | Chien et al. | Oct 2011 | B2 |
8050997 | Nosek et al. | Nov 2011 | B1 |
8060413 | Castell et al. | Nov 2011 | B2 |
8060448 | Jones | Nov 2011 | B2 |
8060449 | Zhu | Nov 2011 | B1 |
8074876 | Foss et al. | Dec 2011 | B2 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8074879 | Harris | Dec 2011 | B2 |
8082210 | Hansen et al. | Dec 2011 | B2 |
8090351 | Klein | Jan 2012 | B2 |
8095113 | Kean et al. | Jan 2012 | B2 |
8104679 | Brown | Jan 2012 | B2 |
8108261 | Carlier et al. | Jan 2012 | B2 |
RE43157 | Bishop et al. | Feb 2012 | E |
8109436 | Hopkins, III | Feb 2012 | B1 |
8117127 | Sanders | Feb 2012 | B1 |
8121942 | Carlson et al. | Feb 2012 | B2 |
8121956 | Carlson et al. | Feb 2012 | B2 |
8126449 | Beenau et al. | Feb 2012 | B2 |
8127982 | Casey et al. | Mar 2012 | B1 |
8131666 | OBrien | Mar 2012 | B2 |
8140418 | Casey et al. | Mar 2012 | B1 |
8145188 | Park et al. | Mar 2012 | B2 |
8145561 | Zhu et al. | Mar 2012 | B1 |
8145566 | Ahuja et al. | Mar 2012 | B1 |
8145569 | Gong | Mar 2012 | B2 |
8145898 | Kamalakantha | Mar 2012 | B2 |
8150767 | Wankmueller | Apr 2012 | B2 |
8150772 | Mardikar et al. | Apr 2012 | B2 |
8151328 | Lundy | Apr 2012 | B1 |
8151330 | Vishik et al. | Apr 2012 | B2 |
8151336 | Savoor | Apr 2012 | B2 |
8155999 | De Boer et al. | Apr 2012 | B2 |
8156000 | Thompson | Apr 2012 | B1 |
8156026 | Junger et al. | Apr 2012 | B2 |
8156042 | Winkleman, III et al. | Apr 2012 | B2 |
8156549 | Rice et al. | Apr 2012 | B2 |
8157178 | Dewan et al. | Apr 2012 | B2 |
8157181 | Bates et al. | Apr 2012 | B2 |
8160935 | Bui | Apr 2012 | B2 |
8160959 | Rackley, III et al. | Apr 2012 | B2 |
8165961 | Dimartino et al. | Apr 2012 | B1 |
8166068 | Stevens | Apr 2012 | B2 |
RE43351 | Jordan, Jr. | May 2012 | E |
8170921 | Stocker | May 2012 | B2 |
8171525 | Pelly et al. | May 2012 | B1 |
8175235 | Mumford et al. | May 2012 | B2 |
8175965 | Moore et al. | May 2012 | B2 |
8175967 | O'Leary et al. | May 2012 | B2 |
8175968 | O'Leary et al. | May 2012 | B2 |
8175973 | Davis | May 2012 | B2 |
8175975 | Cai et al. | May 2012 | B2 |
8175979 | Baentsch et al. | May 2012 | B2 |
8176416 | Williams et al. | May 2012 | B1 |
8179563 | King et al. | May 2012 | B2 |
8180289 | Glickman | May 2012 | B1 |
8180705 | Kowalchyk et al. | May 2012 | B2 |
8180804 | Narayanan et al. | May 2012 | B1 |
8190513 | Felger | May 2012 | B2 |
8190523 | Patterson | May 2012 | B2 |
8191775 | Hildred | Jun 2012 | B2 |
8195233 | Morikuni et al. | Jun 2012 | B2 |
8195544 | Horsfall | Jun 2012 | B2 |
8195547 | Aaltonen et al. | Jun 2012 | B2 |
8195565 | Bishop et al. | Jun 2012 | B2 |
8195576 | Grigg et al. | Jun 2012 | B1 |
8196131 | Von Behren et al. | Jun 2012 | B1 |
8196813 | Vadhri | Jun 2012 | B2 |
8200582 | Zhu | Jun 2012 | B1 |
8204774 | Chwast et al. | Jun 2012 | B2 |
8204829 | Alvarez et al. | Jun 2012 | B2 |
8205791 | Randazza et al. | Jun 2012 | B2 |
8209245 | Dennes | Jun 2012 | B2 |
8209744 | Zhu et al. | Jun 2012 | B2 |
8214288 | Olliphant et al. | Jul 2012 | B2 |
8214289 | Scipioni | Jul 2012 | B2 |
8214291 | Pelegero et al. | Jul 2012 | B2 |
8214292 | Duggal et al. | Jul 2012 | B2 |
8214293 | Powell | Jul 2012 | B2 |
8214886 | Foley et al. | Jul 2012 | B2 |
8215546 | Lin et al. | Jul 2012 | B2 |
8219411 | Matz et al. | Jul 2012 | B2 |
8219474 | Sutton et al. | Jul 2012 | B2 |
8219489 | Patterson | Jul 2012 | B2 |
8219490 | Hammad et al. | Jul 2012 | B2 |
8220047 | Soghoian et al. | Jul 2012 | B1 |
8224702 | Mangerink et al. | Jul 2012 | B2 |
8224754 | Pastusiak et al. | Jul 2012 | B2 |
8224773 | Spiegel | Jul 2012 | B2 |
8225385 | Chow et al. | Jul 2012 | B2 |
8225997 | Bierbaum et al. | Jul 2012 | B1 |
8227936 | Folk et al. | Jul 2012 | B1 |
8229354 | Sklovsky et al. | Jul 2012 | B2 |
8229808 | Heit | Jul 2012 | B1 |
8229844 | Felger | Jul 2012 | B2 |
8229851 | Doran et al. | Jul 2012 | B2 |
8229852 | Carlson | Jul 2012 | B2 |
8229854 | Stephen et al. | Jul 2012 | B2 |
8233841 | Griffin et al. | Jul 2012 | B2 |
8234183 | Smith | Jul 2012 | B2 |
8239276 | Lin et al. | Aug 2012 | B2 |
8244580 | Mankoff et al. | Aug 2012 | B2 |
8245139 | Michelman | Aug 2012 | B2 |
8249925 | Broms | Aug 2012 | B2 |
8249965 | Tumminaro | Aug 2012 | B2 |
8255278 | Young et al. | Aug 2012 | B1 |
8255323 | Casey et al. | Aug 2012 | B1 |
8255324 | Bercy et al. | Aug 2012 | B2 |
8265993 | Chien et al. | Sep 2012 | B2 |
8275704 | Bishop et al. | Sep 2012 | B2 |
8280777 | Mengerink et al. | Oct 2012 | B2 |
8281991 | Wentker et al. | Oct 2012 | B2 |
8281998 | Tang et al. | Oct 2012 | B2 |
8282002 | Shams | Oct 2012 | B2 |
8285640 | Scipioni | Oct 2012 | B2 |
8285820 | Olliphant et al. | Oct 2012 | B2 |
8285832 | Schwab et al. | Oct 2012 | B2 |
8286875 | Tang et al. | Oct 2012 | B2 |
8290433 | Fisher et al. | Oct 2012 | B2 |
8290819 | Bawcutt | Oct 2012 | B2 |
8290829 | Katz et al. | Oct 2012 | B1 |
8295898 | Ashfield et al. | Oct 2012 | B2 |
8296187 | Light et al. | Oct 2012 | B2 |
8296204 | Templeton et al. | Oct 2012 | B2 |
8296228 | Kloor | Oct 2012 | B1 |
8296231 | Britto et al. | Oct 2012 | B2 |
8301500 | Pharris | Oct 2012 | B2 |
8301510 | Boesch | Oct 2012 | B2 |
8301556 | Hogl et al. | Oct 2012 | B2 |
8311520 | Choi et al. | Nov 2012 | B2 |
8312096 | Cohen et al. | Nov 2012 | B2 |
8321267 | Hoerenz et al. | Nov 2012 | B2 |
8321294 | Carlier et al. | Nov 2012 | B2 |
8321315 | Abel et al. | Nov 2012 | B2 |
8321338 | Baumgart et al. | Nov 2012 | B2 |
8321343 | Ramavarjula et al. | Nov 2012 | B2 |
8321364 | Gharpure et al. | Nov 2012 | B1 |
8326756 | Egendorf | Dec 2012 | B2 |
8326769 | Weisman | Dec 2012 | B1 |
8326770 | Weisman | Dec 2012 | B1 |
8327450 | Clement et al. | Dec 2012 | B2 |
8328095 | Oder, II et al. | Dec 2012 | B2 |
8332272 | Fisher | Dec 2012 | B2 |
8332275 | Poon et al. | Dec 2012 | B2 |
8332323 | Stals et al. | Dec 2012 | B2 |
8335720 | Juang et al. | Dec 2012 | B2 |
8335726 | Ling et al. | Dec 2012 | B1 |
8335822 | Ahmed et al. | Dec 2012 | B2 |
8335921 | Von Behren et al. | Dec 2012 | B2 |
8335932 | Von Behren et al. | Dec 2012 | B2 |
8336088 | Raj et al. | Dec 2012 | B2 |
8340666 | Ramer et al. | Dec 2012 | B2 |
8341029 | Ramalingam et al. | Dec 2012 | B1 |
8346643 | Boyer et al. | Jan 2013 | B2 |
8346659 | Mohsenzadeh | Jan 2013 | B1 |
8346663 | Kawan | Jan 2013 | B2 |
8346666 | Lindelsee et al. | Jan 2013 | B2 |
8352323 | Fisher | Jan 2013 | B2 |
8352362 | Mohsenzadeh | Jan 2013 | B2 |
8352499 | Bharat et al. | Jan 2013 | B2 |
8352749 | Von Behren et al. | Jan 2013 | B2 |
8355987 | Hirson et al. | Jan 2013 | B2 |
8359070 | Zhu | Jan 2013 | B1 |
8364587 | Nuzum et al. | Jan 2013 | B2 |
8364590 | Casey et al. | Jan 2013 | B1 |
8370264 | Wei et al. | Feb 2013 | B1 |
8376225 | Hopkins, III | Feb 2013 | B1 |
8380177 | Laracey | Feb 2013 | B2 |
8380349 | Hickman et al. | Feb 2013 | B1 |
8386078 | Hickman et al. | Feb 2013 | B1 |
8387873 | Saunders et al. | Mar 2013 | B2 |
8396750 | Hariharan et al. | Mar 2013 | B1 |
8396810 | Cook | Mar 2013 | B1 |
8401398 | Chien et al. | Mar 2013 | B2 |
8401539 | Beenau et al. | Mar 2013 | B2 |
8401904 | Simakov et al. | Mar 2013 | B1 |
8402555 | Grecia | Mar 2013 | B2 |
8403211 | Brooks et al. | Mar 2013 | B2 |
8412586 | Foulser et al. | Apr 2013 | B1 |
8412623 | Moon et al. | Apr 2013 | B2 |
8412630 | Ross et al. | Apr 2013 | B2 |
8412837 | Emigh et al. | Apr 2013 | B1 |
8417633 | Chmara et al. | Apr 2013 | B1 |
8417642 | Oren | Apr 2013 | B2 |
8423462 | Amacker et al. | Apr 2013 | B1 |
8429521 | Lloyd | Apr 2013 | B2 |
8437633 | Chmara | Apr 2013 | B2 |
8447699 | Batada et al. | May 2013 | B2 |
8453223 | Svigals et al. | May 2013 | B2 |
8453925 | Fisher et al. | Jun 2013 | B2 |
8458487 | Palgon et al. | Jun 2013 | B1 |
8484134 | Hobson et al. | Jul 2013 | B2 |
8485437 | Mullen et al. | Jul 2013 | B2 |
8494959 | Hathaway et al. | Jul 2013 | B2 |
8498908 | Mengerink et al. | Jul 2013 | B2 |
8504475 | Brand et al. | Aug 2013 | B2 |
8504478 | Saunders et al. | Aug 2013 | B2 |
8510816 | Quach et al. | Aug 2013 | B2 |
8433116 | Davis | Sep 2013 | B2 |
8533860 | Grecia | Sep 2013 | B1 |
8538845 | Liberty | Sep 2013 | B2 |
8555079 | Shablygin et al. | Oct 2013 | B2 |
8566168 | Bierbaum et al. | Oct 2013 | B1 |
8567670 | Stanfield et al. | Oct 2013 | B2 |
8571939 | Lindsey et al. | Oct 2013 | B2 |
8577336 | Mechaley, Jr. | Nov 2013 | B2 |
8577803 | Chatterjee et al. | Nov 2013 | B2 |
8577813 | Weiss | Nov 2013 | B2 |
8578176 | Mattsson | Nov 2013 | B2 |
8583494 | Fisher | Nov 2013 | B2 |
8584251 | McGuire et al. | Nov 2013 | B2 |
8589237 | Fisher | Nov 2013 | B2 |
8589271 | Evans | Nov 2013 | B2 |
8589291 | Carlson et al. | Nov 2013 | B2 |
8595098 | Starai et al. | Nov 2013 | B2 |
8595312 | Bomar et al. | Nov 2013 | B2 |
8595850 | Spies et al. | Nov 2013 | B2 |
8606638 | Dragt | Dec 2013 | B2 |
8606700 | Carlson et al. | Dec 2013 | B2 |
8606720 | Baker et al. | Dec 2013 | B1 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620754 | Fisher | Dec 2013 | B2 |
8635157 | Smith et al. | Jan 2014 | B2 |
8639621 | Ellis | Jan 2014 | B1 |
8646059 | von Behren et al. | Feb 2014 | B1 |
8651374 | Brabson et al. | Feb 2014 | B2 |
8656180 | Shablygin et al. | Feb 2014 | B2 |
8739016 | Goldman et al. | May 2014 | B1 |
8751391 | Freund | Jun 2014 | B2 |
8762263 | Gauthier et al. | Jun 2014 | B2 |
8793186 | Patterson | Jul 2014 | B2 |
8838982 | Carlson et al. | Sep 2014 | B2 |
8856539 | Weiss | Oct 2014 | B2 |
8887308 | Grecia | Nov 2014 | B2 |
9065643 | Hurry et al. | Jun 2015 | B2 |
9070129 | Sheets et al. | Jun 2015 | B2 |
9100826 | Weiss | Aug 2015 | B2 |
9105050 | Tietzen | Aug 2015 | B2 |
9160741 | Wentker et al. | Oct 2015 | B2 |
9195750 | Hayden | Nov 2015 | B2 |
9229964 | Stevelinck | Jan 2016 | B2 |
9245267 | Singh | Jan 2016 | B2 |
9249241 | Dai et al. | Feb 2016 | B2 |
9256871 | Anderson et al. | Feb 2016 | B2 |
9280765 | Hammad | Mar 2016 | B2 |
9355393 | Purves | May 2016 | B2 |
9448972 | Greenberg | Sep 2016 | B2 |
9530137 | Weiss | Dec 2016 | B2 |
9582598 | Kalgi | Feb 2017 | B2 |
9710807 | Theurer | Jul 2017 | B2 |
20010037297 | McNair | Mar 2001 | A1 |
20010029485 | Brody et al. | Oct 2001 | A1 |
20010034720 | Armes | Oct 2001 | A1 |
20010054003 | Chien et al. | Dec 2001 | A1 |
20010056359 | Abreu | Dec 2001 | A1 |
20010056409 | Bellovin et al. | Dec 2001 | A1 |
20020002522 | Clift | Jan 2002 | A1 |
20020004783 | Paltenghe | Jan 2002 | A1 |
20020007320 | Hogan et al. | Jan 2002 | A1 |
20020016749 | Borecki et al. | Feb 2002 | A1 |
20020026575 | Wheeler | Feb 2002 | A1 |
20020029193 | Ranjan et al. | Mar 2002 | A1 |
20020035548 | Hogan et al. | Mar 2002 | A1 |
20020040325 | Takae et al. | Apr 2002 | A1 |
20020052778 | Murphy | May 2002 | A1 |
20020073045 | Rubin et al. | Jun 2002 | A1 |
20020077976 | Meyer et al. | Jun 2002 | A1 |
20020077978 | OLeary | Jun 2002 | A1 |
20020087894 | Foley | Jul 2002 | A1 |
20020099642 | Schwanki et al. | Jul 2002 | A1 |
20020099647 | Howorka | Jul 2002 | A1 |
20020099656 | Poh Wong | Jul 2002 | A1 |
20020107755 | Steed et al. | Aug 2002 | A1 |
20020111919 | Weller | Aug 2002 | A1 |
20020112014 | Bennett et al. | Aug 2002 | A1 |
20020116271 | Mankoff | Aug 2002 | A1 |
20020116341 | Hogan et al. | Aug 2002 | A1 |
20020120864 | Wu | Aug 2002 | A1 |
20020133467 | Hobson et al. | Sep 2002 | A1 |
20020138290 | Metcalfe | Sep 2002 | A1 |
20020138445 | Laage et al. | Sep 2002 | A1 |
20020141575 | Hird | Oct 2002 | A1 |
20020143614 | MacLean et al. | Oct 2002 | A1 |
20020147913 | Lun Yip | Oct 2002 | A1 |
20020174030 | Praisner et al. | Nov 2002 | A1 |
20020178370 | Gurevich | Nov 2002 | A1 |
20020194081 | Perkowski | Dec 2002 | A1 |
20030014307 | Heng | Jan 2003 | A1 |
20030018524 | Fishman | Jan 2003 | A1 |
20030026404 | Joyce et al. | Feb 2003 | A1 |
20030028451 | Ananian | Feb 2003 | A1 |
20030028481 | Flitcroft et al. | Feb 2003 | A1 |
20030055785 | Lahiri | Mar 2003 | A1 |
20030080185 | Werther | May 2003 | A1 |
20030097318 | Yu et al. | May 2003 | A1 |
20030101134 | Liu et al. | May 2003 | A1 |
20030126076 | Kwok | Jul 2003 | A1 |
20030130955 | Hawthorne | Jul 2003 | A1 |
20030144935 | Sobek | Jul 2003 | A1 |
20030174823 | Justice et al. | Sep 2003 | A1 |
20030177361 | Wheeler et al. | Sep 2003 | A1 |
20030179230 | Seidman | Sep 2003 | A1 |
20030191709 | Elston et al. | Oct 2003 | A1 |
20030191711 | Jamison et al. | Oct 2003 | A1 |
20030191945 | Keech | Oct 2003 | A1 |
20030195659 | Kasuga et al. | Oct 2003 | A1 |
20030200142 | Hicks et al. | Oct 2003 | A1 |
20030200184 | Dominguez et al. | Oct 2003 | A1 |
20030212589 | Kish | Nov 2003 | A1 |
20030212642 | Weller et al. | Nov 2003 | A1 |
20030216996 | Cummings et al. | Nov 2003 | A1 |
20030220835 | Barnes | Nov 2003 | A1 |
20040010462 | Moon et al. | Jan 2004 | A1 |
20040050928 | Bishop et al. | Mar 2004 | A1 |
20040059682 | Hasumi et al. | Mar 2004 | A1 |
20040068443 | Hopson | Apr 2004 | A1 |
20040078332 | Ferguson et al. | Apr 2004 | A1 |
20040093281 | Silverstein et al. | May 2004 | A1 |
20040103037 | Wetmore et al. | May 2004 | A1 |
20040111698 | Soong | Jun 2004 | A1 |
20040128197 | Bam et al. | Jul 2004 | A1 |
20040138999 | Friedman et al. | Jul 2004 | A1 |
20040139008 | Mascavage | Jul 2004 | A1 |
20040143532 | Lee | Jul 2004 | A1 |
20040148255 | Beck et al. | Jul 2004 | A1 |
20040158532 | Breck et al. | Aug 2004 | A1 |
20040204128 | Zakharia | Oct 2004 | A1 |
20040210449 | Breck et al. | Oct 2004 | A1 |
20040210498 | Freund | Oct 2004 | A1 |
20040215560 | Amalraj | Oct 2004 | A1 |
20040215963 | Kaplan | Oct 2004 | A1 |
20040230536 | Fung et al. | Nov 2004 | A1 |
20040232225 | Bishop et al. | Nov 2004 | A1 |
20040236646 | Wu et al. | Nov 2004 | A1 |
20040254891 | Blinn et al. | Dec 2004 | A1 |
20040260646 | Berardi et al. | Dec 2004 | A1 |
20040267608 | Mansfield, Jr. | Dec 2004 | A1 |
20040267655 | Davidowitz | Dec 2004 | A1 |
20040267878 | Osias | Dec 2004 | A1 |
20050010483 | Ling | Jan 2005 | A1 |
20050037735 | Coutts | Feb 2005 | A1 |
20050038724 | Roever | Feb 2005 | A1 |
20050065819 | Schultz | Mar 2005 | A1 |
20050080730 | Sorrentino | Apr 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050080821 | Breil et al. | Apr 2005 | A1 |
20050097320 | Golan et al. | May 2005 | A1 |
20050101309 | Croome | May 2005 | A1 |
20050102188 | Hutchison | May 2005 | A1 |
20050108178 | York | May 2005 | A1 |
20050137969 | Shah | Jun 2005 | A1 |
20050144082 | Coolman | Jun 2005 | A1 |
20050171894 | Traynor | Aug 2005 | A1 |
20050171898 | Bishop | Aug 2005 | A1 |
20050184145 | Law et al. | Aug 2005 | A1 |
20050187873 | Labrou | Aug 2005 | A1 |
20050192893 | Keeling et al. | Sep 2005 | A1 |
20050192895 | Rogers et al. | Sep 2005 | A1 |
20050199709 | Linlor | Sep 2005 | A1 |
20050220326 | Sim | Oct 2005 | A1 |
20050234817 | VanFleet et al. | Oct 2005 | A1 |
20050246278 | Gerber et al. | Nov 2005 | A1 |
20050246293 | Ong et al. | Nov 2005 | A1 |
20050251446 | Jiang | Nov 2005 | A1 |
20050254714 | Anne | Nov 2005 | A1 |
20050256802 | Ammermann | Nov 2005 | A1 |
20050261967 | Barry et al. | Nov 2005 | A1 |
20050269401 | Spitzer et al. | Dec 2005 | A1 |
20050269402 | Spitzer et al. | Dec 2005 | A1 |
20050273462 | Reed | Dec 2005 | A1 |
20060002607 | Boncyk | Jan 2006 | A1 |
20060020542 | Litle | Jan 2006 | A1 |
20060053056 | Alspach-goss et al. | Mar 2006 | A1 |
20060059277 | Zito et al. | Mar 2006 | A1 |
20060069619 | Walker | Mar 2006 | A1 |
20060075235 | Renkis | Apr 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060085477 | Phillips et al. | Apr 2006 | A1 |
20060124729 | Martin | Jun 2006 | A1 |
20060129427 | Wennberg | Jun 2006 | A1 |
20060163349 | Neugebauer | Jul 2006 | A1 |
20060178918 | Mikurak | Aug 2006 | A1 |
20060178986 | Giordano et al. | Aug 2006 | A1 |
20060178994 | Stolfo | Aug 2006 | A1 |
20060190347 | Cuervo | Aug 2006 | A1 |
20060195598 | Fujita et al. | Aug 2006 | A1 |
20060208060 | Mendelovich et al. | Sep 2006 | A1 |
20060212434 | Crawford | Sep 2006 | A1 |
20060226216 | Keithley | Oct 2006 | A1 |
20060235795 | Johnson et al. | Oct 2006 | A1 |
20060237528 | Bishop et al. | Oct 2006 | A1 |
20060247982 | Stolfo et al. | Nov 2006 | A1 |
20060277143 | Almonte et al. | Dec 2006 | A1 |
20060278704 | Saunders et al. | Dec 2006 | A1 |
20060282332 | Pfleging | Dec 2006 | A1 |
20060293947 | Nicholson | Dec 2006 | A1 |
20070011025 | Cracchiolo et al. | Jan 2007 | A1 |
20070016523 | Blair | Jan 2007 | A1 |
20070022007 | Lawe | Jan 2007 | A1 |
20070038515 | Postrel | Feb 2007 | A1 |
20070038516 | Apple et al. | Feb 2007 | A1 |
20070055571 | Fox et al. | Mar 2007 | A1 |
20070067215 | Agarwal | Mar 2007 | A1 |
20070087820 | Van Luchene et al. | Apr 2007 | A1 |
20070094066 | Kumar et al. | Apr 2007 | A1 |
20070100691 | Patterson | May 2007 | A1 |
20070100728 | Rotman et al. | May 2007 | A1 |
20070106504 | Deng | May 2007 | A1 |
20070106607 | Seib et al. | May 2007 | A1 |
20070106627 | Srivastava | May 2007 | A1 |
20070107044 | Yuen et al. | May 2007 | A1 |
20070113289 | Blumenau | May 2007 | A1 |
20070125840 | Law | Jun 2007 | A1 |
20070129955 | Dalmia et al. | Jun 2007 | A1 |
20070136193 | Starr | Jun 2007 | A1 |
20070136211 | Brown et al. | Jun 2007 | A1 |
20070143204 | Claus et al. | Jun 2007 | A1 |
20070150413 | Morgenstern | Jun 2007 | A1 |
20070156726 | Levy | Jul 2007 | A1 |
20070170247 | Friedman | Jul 2007 | A1 |
20070179885 | Bird et al. | Aug 2007 | A1 |
20070180119 | Khivesara et al. | Aug 2007 | A1 |
20070198435 | Siegal | Aug 2007 | A1 |
20070198587 | Kobayashi et al. | Aug 2007 | A1 |
20070208662 | Jeronimus et al. | Sep 2007 | A1 |
20070208671 | Brown et al. | Sep 2007 | A1 |
20070214078 | Coppinger | Sep 2007 | A1 |
20070214250 | Ahmed et al. | Sep 2007 | A1 |
20070226152 | Jones | Sep 2007 | A1 |
20070233590 | Hardison, III | Oct 2007 | A1 |
20070233615 | Tumminaro | Oct 2007 | A1 |
20070239502 | Babu | Oct 2007 | A1 |
20070245414 | Chan et al. | Oct 2007 | A1 |
20070276765 | Hazel et al. | Nov 2007 | A1 |
20070288377 | Shaked | Dec 2007 | A1 |
20070291995 | Rivera | Dec 2007 | A1 |
20080004116 | Van Luchene et al. | Jan 2008 | A1 |
20080004952 | Koli | Jan 2008 | A1 |
20080010096 | Patterson et al. | Jan 2008 | A1 |
20080013335 | Tsutsumi | Jan 2008 | A1 |
20080015988 | Brown et al. | Jan 2008 | A1 |
20080021829 | Kranzley | Jan 2008 | A1 |
20080027218 | Daugs | Jan 2008 | A1 |
20080027850 | Brittan | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080048022 | Vawter | Feb 2008 | A1 |
20080052226 | Agarwal et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080059370 | Sada | Mar 2008 | A1 |
20080065554 | Hogan et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080077489 | Gilley et al. | Mar 2008 | A1 |
20080086365 | Zollino et al. | Apr 2008 | A1 |
20080090513 | Collins | Apr 2008 | A1 |
20080091553 | Koski | Apr 2008 | A1 |
20080091616 | Helwin et al. | Apr 2008 | A1 |
20080097856 | Blagg et al. | Apr 2008 | A1 |
20080103795 | Jakubowski | May 2008 | A1 |
20080114639 | Meek et al. | May 2008 | A1 |
20080114737 | Neely et al. | May 2008 | A1 |
20080126145 | Racklet, III et al. | May 2008 | A1 |
20080133351 | White et al. | Jun 2008 | A1 |
20080140568 | Henry | Jun 2008 | A1 |
20080140684 | OReilly | Jun 2008 | A1 |
20080147883 | Philyaw | Jun 2008 | A1 |
20080154623 | Derker | Jun 2008 | A1 |
20080162361 | Sklovsky et al. | Jul 2008 | A1 |
20080167965 | Von Nothaus et al. | Jul 2008 | A1 |
20080172274 | Hurowitz et al. | Jul 2008 | A1 |
20080172331 | Graves et al. | Jul 2008 | A1 |
20080177574 | Marcos et al. | Jul 2008 | A1 |
20080177672 | Brunner et al. | Jul 2008 | A1 |
20080201232 | Walker | Aug 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080201265 | Hewton | Aug 2008 | A1 |
20080221945 | Pace | Sep 2008 | A1 |
20080223918 | Williams et al. | Sep 2008 | A1 |
20080228646 | Myers et al. | Sep 2008 | A1 |
20080235261 | Malek | Sep 2008 | A1 |
20080024561 | Fein | Oct 2008 | A1 |
20080243305 | Lee et al. | Oct 2008 | A1 |
20080243702 | Hart et al. | Oct 2008 | A1 |
20080245855 | Fein et al. | Oct 2008 | A1 |
20080245861 | Fein et al. | Oct 2008 | A1 |
20080270300 | Jones et al. | Oct 2008 | A1 |
20080272188 | Keithley et al. | Nov 2008 | A1 |
20080283591 | Oder, II et al. | Nov 2008 | A1 |
20080288376 | Panthaki | Nov 2008 | A1 |
20080288889 | Hunt | Nov 2008 | A1 |
20080300980 | Benjamin et al. | Dec 2008 | A1 |
20080301055 | Borgs | Dec 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080313264 | Pestoni | Dec 2008 | A1 |
20080319905 | Carlson | Dec 2008 | A1 |
20090006181 | Ghosh et al. | Jan 2009 | A1 |
20090006262 | Brown et al. | Jan 2009 | A1 |
20090010488 | Matsuoka et al. | Jan 2009 | A1 |
20090013266 | Gandhi | Jan 2009 | A1 |
20090018895 | Weinblatt et al. | Jan 2009 | A1 |
20090024527 | Sellen et al. | Jan 2009 | A1 |
20090024636 | Shiloh | Jan 2009 | A1 |
20090037255 | Chiu et al. | Feb 2009 | A1 |
20090037326 | Chitti et al. | Feb 2009 | A1 |
20090037333 | Flitcroft et al. | Feb 2009 | A1 |
20090037388 | Cooper et al. | Feb 2009 | A1 |
20090043702 | Bennett | Feb 2009 | A1 |
20090048934 | Haddad et al. | Feb 2009 | A1 |
20090048971 | Hathaway et al. | Feb 2009 | A1 |
20090061884 | Rajan et al. | Mar 2009 | A1 |
20090063261 | Scribner et al. | Mar 2009 | A1 |
20090064056 | Anderson et al. | Mar 2009 | A1 |
20090076953 | Saville et al. | Mar 2009 | A1 |
20090076966 | Bishop et al. | Mar 2009 | A1 |
20090083065 | Unland | Mar 2009 | A1 |
20090089176 | Mccabe | Apr 2009 | A1 |
20090089193 | Paintin | Apr 2009 | A1 |
20090104888 | Cox | Apr 2009 | A1 |
20090106112 | Dalmia et al. | Apr 2009 | A1 |
20090106151 | Nelsen et al. | Apr 2009 | A1 |
20090106160 | Skowronek | Apr 2009 | A1 |
20090108080 | Meyer | Apr 2009 | A1 |
20090112775 | Chiulli | Apr 2009 | A1 |
20090119176 | Johnson | May 2009 | A1 |
20090119190 | Realini | May 2009 | A1 |
20090119211 | Johnson | May 2009 | A1 |
20090125429 | Takayama | May 2009 | A1 |
20090132347 | Anderson et al. | May 2009 | A1 |
20090132366 | Lam et al. | May 2009 | A1 |
20090132395 | Lam et al. | May 2009 | A1 |
20090134217 | Flitcroft et al. | May 2009 | A1 |
20090144104 | Johnson | Jun 2009 | A1 |
20090144201 | Gierkink et al. | Jun 2009 | A1 |
20090157555 | Biffle et al. | Jun 2009 | A1 |
20090159673 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090164344 | Shiftan et al. | Jun 2009 | A1 |
20090170608 | Herrmann et al. | Jul 2009 | A1 |
20090171778 | Powell | Jul 2009 | A1 |
20090173782 | Muscato | Jul 2009 | A1 |
20090182664 | Trombley | Jul 2009 | A1 |
20090187492 | Hammad | Jul 2009 | A1 |
20090200371 | Kean et al. | Aug 2009 | A1 |
20090210300 | Cansler et al. | Aug 2009 | A1 |
20090216910 | Duchesneau | Aug 2009 | A1 |
20090222347 | Whitten | Sep 2009 | A1 |
20090228211 | Rasanen et al. | Sep 2009 | A1 |
20090233579 | Castell et al. | Sep 2009 | A1 |
20090234751 | Chan et al. | Sep 2009 | A1 |
20090241159 | Campagna et al. | Sep 2009 | A1 |
20090248583 | Chhabra | Oct 2009 | A1 |
20090248738 | Martinez | Oct 2009 | A1 |
20090254471 | Seidel et al. | Oct 2009 | A1 |
20090254479 | Pharris | Oct 2009 | A1 |
20090254535 | Eickelmann et al. | Oct 2009 | A1 |
20090265274 | Hahn-Carlson et al. | Oct 2009 | A1 |
20090271246 | Alvarez et al. | Oct 2009 | A1 |
20090271265 | Lay et al. | Oct 2009 | A1 |
20090276347 | Kargman | Nov 2009 | A1 |
20090281948 | Carlson | Nov 2009 | A1 |
20090288012 | Hertel et al. | Nov 2009 | A1 |
20090294527 | Brabson et al. | Dec 2009 | A1 |
20090307060 | Merz et al. | Dec 2009 | A1 |
20090307135 | Gupta et al. | Dec 2009 | A1 |
20090307139 | Mardikar et al. | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20090313132 | McKenna et al. | Dec 2009 | A1 |
20090319638 | Faith | Dec 2009 | A1 |
20090327045 | Olives et al. | Dec 2009 | A1 |
20090327088 | Puthupparambil et al. | Dec 2009 | A1 |
20090327131 | Beenau et al. | Dec 2009 | A1 |
20100004989 | Bonalle et al. | Jan 2010 | A1 |
20100005025 | Kumar | Jan 2010 | A1 |
20100008535 | Abulafia et al. | Jan 2010 | A1 |
20100009663 | Chang | Jan 2010 | A1 |
20100010964 | Skowronek et al. | Jan 2010 | A1 |
20100021149 | Mulder | Jan 2010 | A1 |
20100023386 | Avisar et al. | Jan 2010 | A1 |
20100023455 | Dispensa et al. | Jan 2010 | A1 |
20100023457 | Riviere | Jan 2010 | A1 |
20100036741 | Cleven | Feb 2010 | A1 |
20100036775 | Edens | Feb 2010 | A1 |
20100036884 | Brown | Feb 2010 | A1 |
20100042456 | Stinchcombe et al. | Feb 2010 | A1 |
20100042537 | Smith et al. | Feb 2010 | A1 |
20100042540 | Graves et al. | Feb 2010 | A1 |
20100049879 | Leavitt et al. | Feb 2010 | A1 |
20100057548 | Edwards | Mar 2010 | A1 |
20100063903 | Whipple et al. | Mar 2010 | A1 |
20100070359 | Heasley | Mar 2010 | A1 |
20100076873 | Taylor et al. | Mar 2010 | A1 |
20100078471 | Lin et al. | Apr 2010 | A1 |
20100078472 | Lin et al. | Apr 2010 | A1 |
20100082444 | Lin et al. | Apr 2010 | A1 |
20100082445 | Hodge et al. | Apr 2010 | A1 |
20100082447 | Lin et al. | Apr 2010 | A1 |
20100082455 | Rosenblatt et al. | Apr 2010 | A1 |
20100082480 | Korosec | Apr 2010 | A1 |
20100082481 | Lin et al. | Apr 2010 | A1 |
20100082485 | Lin et al. | Apr 2010 | A1 |
20100082490 | Rosenblatt et al. | Apr 2010 | A1 |
20100082491 | Rosenblatt et al. | Apr 2010 | A1 |
20100088188 | Kumar et al. | Apr 2010 | A1 |
20100088237 | Wankmueller | Apr 2010 | A1 |
20100094730 | Koski | Apr 2010 | A1 |
20100094755 | Kloster | Apr 2010 | A1 |
20100094878 | Soroca et al. | Apr 2010 | A1 |
20100100480 | Altman et al. | Apr 2010 | A1 |
20100106644 | Annan et al. | Apr 2010 | A1 |
20100114664 | Jobin | May 2010 | A1 |
20100120408 | Beenau et al. | May 2010 | A1 |
20100121707 | Goeldi | May 2010 | A1 |
20100125492 | Lin et al. | May 2010 | A1 |
20100125495 | Smith et al. | May 2010 | A1 |
20100125803 | Johnson | May 2010 | A1 |
20100131347 | Sarptipi | May 2010 | A1 |
20100131415 | Sartipi | May 2010 | A1 |
20100133334 | Vadhri | Jun 2010 | A1 |
20100133339 | Gibson | Jun 2010 | A1 |
20100138026 | Kaushal et al. | Jun 2010 | A1 |
20100138347 | Chen | Jun 2010 | A1 |
20100145860 | Pelegero | Jun 2010 | A1 |
20100153865 | Barnes | Jun 2010 | A1 |
20100155470 | Woronec | Jun 2010 | A1 |
20100161433 | White | Jun 2010 | A1 |
20100135545 | Royyuru et al. | Jul 2010 | A1 |
20100174599 | Rosenblatt et al. | Jul 2010 | A1 |
20100179855 | Chen | Jul 2010 | A1 |
20100185505 | Sprogoe et al. | Jul 2010 | A1 |
20100185531 | Van Luchene | Jul 2010 | A1 |
20100191578 | Tran et al. | Jul 2010 | A1 |
20100191622 | Reiss et al. | Jul 2010 | A1 |
20100191770 | Cho et al. | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100211445 | Bodington | Aug 2010 | A1 |
20100211452 | D'Angelo et al. | Aug 2010 | A1 |
20100211469 | Salmon | Aug 2010 | A1 |
20100211499 | Zanzot et al. | Aug 2010 | A1 |
20100211505 | Saunders et al. | Aug 2010 | A1 |
20100217613 | Kelly | Aug 2010 | A1 |
20100217682 | Chan | Aug 2010 | A1 |
20100223186 | Hogan et al. | Sep 2010 | A1 |
20100228668 | Hogan et al. | Sep 2010 | A1 |
20100235284 | Moore | Sep 2010 | A1 |
20100243728 | Wiesman | Sep 2010 | A1 |
20100250351 | Gillenson et al. | Sep 2010 | A1 |
20100256976 | Atsmon | Oct 2010 | A1 |
20100258620 | Torreyson et al. | Oct 2010 | A1 |
20100268645 | Martino | Oct 2010 | A1 |
20100276484 | Banerjee et al. | Nov 2010 | A1 |
20100287048 | Ramer et al. | Nov 2010 | A1 |
20100287229 | Hauser | Nov 2010 | A1 |
20100291904 | Musfeldt et al. | Nov 2010 | A1 |
20100293032 | Engelsma | Nov 2010 | A1 |
20100299267 | Faith et al. | Nov 2010 | A1 |
20100299292 | Collazo | Nov 2010 | A1 |
20100305848 | Stallman | Dec 2010 | A1 |
20100306075 | Drance et al. | Dec 2010 | A1 |
20100306076 | Taveau et al. | Dec 2010 | A1 |
20100306113 | Grey et al. | Dec 2010 | A1 |
20100312645 | Niekadlik et al. | Dec 2010 | A1 |
20100312676 | Muthukumaran | Dec 2010 | A1 |
20100312724 | Pinckney | Dec 2010 | A1 |
20100325041 | Berardi et al. | Dec 2010 | A1 |
20100332262 | Horvitz et al. | Dec 2010 | A1 |
20100332283 | Ng et al. | Dec 2010 | A1 |
20110004498 | Readshaw | Jan 2011 | A1 |
20110010292 | Giordano et al. | Jan 2011 | A1 |
20110016047 | Wu et al. | Jan 2011 | A1 |
20110016320 | Bergsten et al. | Jan 2011 | A1 |
20110035273 | Parikh et al. | Feb 2011 | A1 |
20110040640 | Erikson | Feb 2011 | A1 |
20110040655 | Hendrickson | Feb 2011 | A1 |
20110047017 | Lieblang | Feb 2011 | A1 |
20110047075 | Fourez | Feb 2011 | A1 |
20110047076 | Carlson et al. | Feb 2011 | A1 |
20110078082 | Gupta | Mar 2011 | A1 |
20110082789 | Boyd | Apr 2011 | A1 |
20110083018 | Kesanupalli et al. | Apr 2011 | A1 |
20110087596 | Dorsey | Apr 2011 | A1 |
20110087726 | Shim et al. | Apr 2011 | A1 |
20110093335 | Fordyce, III et al. | Apr 2011 | A1 |
20110093397 | Carlson et al. | Apr 2011 | A1 |
20110099057 | Tenyer | Apr 2011 | A1 |
20110105183 | Hsiao et al. | May 2011 | A1 |
20110106698 | Issacson et al. | May 2011 | A1 |
20110109737 | Aben et al. | May 2011 | A1 |
20110119300 | Marcade | May 2011 | A1 |
20110125597 | Oder, II et al. | May 2011 | A1 |
20110137740 | Bhattacharya | Jun 2011 | A1 |
20110137742 | Parikh | Jun 2011 | A1 |
20110153437 | Archer et al. | Jun 2011 | A1 |
20110153498 | Makhotin et al. | Jun 2011 | A1 |
20110154466 | Harper et al. | Jun 2011 | A1 |
20110161233 | Tieken | Jun 2011 | A1 |
20110178896 | Nakajima et al. | Jul 2011 | A1 |
20110178926 | Lindelsee et al. | Jul 2011 | A1 |
20110180598 | Morgan | Jul 2011 | A1 |
20110184827 | Hubert | Jul 2011 | A1 |
20110191244 | Dai | Aug 2011 | A1 |
20110208418 | Looney | Aug 2011 | A1 |
20110215146 | Shams | Sep 2011 | A1 |
20110218870 | Shams et al. | Sep 2011 | A1 |
20110221692 | Seydoux et al. | Sep 2011 | A1 |
20110238474 | Carr | Sep 2011 | A1 |
20110238511 | Park et al. | Sep 2011 | A1 |
20110238573 | Varadarejan | Sep 2011 | A1 |
20110246290 | Howard et al. | Oct 2011 | A1 |
20110246317 | Coppinger | Oct 2011 | A1 |
20110251892 | Laracey | Oct 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110258111 | Raj et al. | Oct 2011 | A1 |
20110258123 | Dawkins et al. | Oct 2011 | A1 |
20110270665 | Kim | Nov 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110282780 | French | Nov 2011 | A1 |
20110288684 | Farlow et al. | Nov 2011 | A1 |
20110295745 | White et al. | Dec 2011 | A1 |
20110296508 | Os et al. | Dec 2011 | A1 |
20110302081 | Saunders et al. | Dec 2011 | A1 |
20110312423 | Mosites | Dec 2011 | A1 |
20110320344 | Faith et al. | Dec 2011 | A1 |
20110320345 | Taveau et al. | Dec 2011 | A1 |
20120011009 | Lindsey | Jan 2012 | A1 |
20120011063 | Killian et al. | Jan 2012 | A1 |
20120022943 | Howard et al. | Jan 2012 | A1 |
20120023026 | Chen et al. | Jan 2012 | A1 |
20120023417 | Nesladek | Jan 2012 | A1 |
20120023567 | Hammad | Jan 2012 | A1 |
20120028609 | Hruska | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120030101 | Boyd | Feb 2012 | A1 |
20120035998 | Chien et al. | Feb 2012 | A1 |
20120036071 | Fulton et al. | Feb 2012 | A1 |
20120041881 | Basu et al. | Feb 2012 | A1 |
20120047237 | Arvidsson et al. | Feb 2012 | A1 |
20120066065 | Switzer | Mar 2012 | A1 |
20120066078 | Kingston et al. | Mar 2012 | A1 |
20120072350 | Goldthwalte et al. | Mar 2012 | A1 |
20120078735 | Bauer et al. | Mar 2012 | A1 |
20120078798 | Downing et al. | Mar 2012 | A1 |
20120078799 | Jackson et al. | Mar 2012 | A1 |
20120084204 | Castell et al. | Apr 2012 | A1 |
20120095852 | Bauer et al. | Apr 2012 | A1 |
20120095865 | Doherty et al. | Apr 2012 | A1 |
20120095895 | Aston | Apr 2012 | A1 |
20120101881 | Taylor et al. | Apr 2012 | A1 |
20120110044 | Nagpal et al. | May 2012 | A1 |
20120116902 | Cardina et al. | May 2012 | A1 |
20120116966 | Tan | May 2012 | A1 |
20120118950 | Belk | May 2012 | A1 |
20120123838 | Sparks | May 2012 | A1 |
20120123882 | Carlson et al. | May 2012 | A1 |
20120123940 | Killian et al. | May 2012 | A1 |
20120124496 | Rose et al. | May 2012 | A1 |
20120129514 | Beenau et al. | May 2012 | A1 |
20120130794 | Strieder | May 2012 | A1 |
20120136780 | El-Awady et al. | May 2012 | A1 |
20120143767 | Abadir | Jun 2012 | A1 |
20120143772 | Abadir | Jun 2012 | A1 |
20120158580 | Eram et al. | Jun 2012 | A1 |
20120158593 | Garfinkle et al. | Jun 2012 | A1 |
20120158792 | MacLaurin et al. | Jun 2012 | A1 |
20120158893 | Boyns | Jun 2012 | A1 |
20120159163 | von Behren | Jun 2012 | A1 |
20120165978 | Li et al. | Jun 2012 | A1 |
20120166333 | von Behren et al. | Jun 2012 | A1 |
20120166655 | Maddali | Jun 2012 | A1 |
20120173431 | Ritchie et al. | Jul 2012 | A1 |
20120173962 | Oh | Jul 2012 | A1 |
20120185386 | Salama et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120197691 | Grigg et al. | Aug 2012 | A1 |
20120197794 | Grigg et al. | Aug 2012 | A1 |
20120197807 | Schlesser et al. | Aug 2012 | A1 |
20120203664 | Torossian et al. | Aug 2012 | A1 |
20120203666 | Torossian et al. | Aug 2012 | A1 |
20120209749 | Hammad | Aug 2012 | A1 |
20120215640 | Ramer et al. | Aug 2012 | A1 |
20120215648 | Rose | Aug 2012 | A1 |
20120215650 | Oba et al. | Aug 2012 | A1 |
20120215684 | Kidron | Aug 2012 | A1 |
20120215688 | Musser et al. | Aug 2012 | A1 |
20120215696 | Salonen | Aug 2012 | A1 |
20120221421 | Hammad | Aug 2012 | A1 |
20120221502 | Jerram et al. | Aug 2012 | A1 |
20120226582 | Hammad | Sep 2012 | A1 |
20120231844 | Coppinger | Sep 2012 | A1 |
20120233004 | Bercaw | Sep 2012 | A1 |
20120233170 | Musgrove | Sep 2012 | A1 |
20120239417 | Pourfallah | Sep 2012 | A1 |
20120239556 | Magruder | Sep 2012 | A1 |
20120239560 | Pourfallah | Sep 2012 | A1 |
20120246070 | Vadhri | Sep 2012 | A1 |
20120246071 | Jain et al. | Sep 2012 | A1 |
20120246079 | Wilson et al. | Sep 2012 | A1 |
20120254108 | Wedewer et al. | Oct 2012 | A1 |
20120259763 | Pessin | Oct 2012 | A1 |
20120265631 | Cronic et al. | Oct 2012 | A1 |
20120265685 | Brudnicki | Oct 2012 | A1 |
20120271770 | Harris et al. | Oct 2012 | A1 |
20120284035 | Gillin | Nov 2012 | A1 |
20120297446 | Webb et al. | Nov 2012 | A1 |
20120300932 | Cambridge et al. | Nov 2012 | A1 |
20120303425 | Katzin | Nov 2012 | A1 |
20120303503 | Cambridge et al. | Nov 2012 | A1 |
20120303736 | Novotny | Nov 2012 | A1 |
20120303961 | Kean et al. | Nov 2012 | A1 |
20120304273 | Bailey et al. | Nov 2012 | A1 |
20120310725 | Chien et al. | Dec 2012 | A1 |
20120310826 | Chatterjee | Dec 2012 | A1 |
20120310831 | Harris et al. | Dec 2012 | A1 |
20120316992 | Oborne | Dec 2012 | A1 |
20120317035 | Royyuru et al. | Dec 2012 | A1 |
20120317036 | Bower et al. | Dec 2012 | A1 |
20120317149 | Jagota et al. | Dec 2012 | A1 |
20120323664 | Klems | Dec 2012 | A1 |
20120330874 | Jerram | Dec 2012 | A1 |
20130013499 | Kalgi | Jan 2013 | A1 |
20130017784 | Fisher | Jan 2013 | A1 |
20130018757 | Anderson et al. | Jan 2013 | A1 |
20130019098 | Gupta et al. | Jan 2013 | A1 |
20130024364 | Shrivastava | Jan 2013 | A1 |
20130024371 | Hariramani | Jan 2013 | A1 |
20130024916 | Evans | Jan 2013 | A1 |
20130030828 | Pourfallah | Jan 2013 | A1 |
20130031006 | McCullagh et al. | Jan 2013 | A1 |
20130054337 | Brendell et al. | Feb 2013 | A1 |
20130054466 | Muscato | Feb 2013 | A1 |
20130054470 | Campos et al. | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130080238 | Kelly | Mar 2013 | A1 |
20130081122 | Svigals et al. | Mar 2013 | A1 |
20130090750 | Herrman et al. | Apr 2013 | A1 |
20130091028 | Oder (“J.D.”), II et al. | Apr 2013 | A1 |
20130103574 | Conrad | Apr 2013 | A1 |
20130110658 | Lyman et al. | May 2013 | A1 |
20130111599 | Gargiulo | May 2013 | A1 |
20130117170 | Coppinger | May 2013 | A1 |
20130117185 | Collison et al. | May 2013 | A1 |
20130124290 | Fisher | May 2013 | A1 |
20130124291 | Fisher | May 2013 | A1 |
20130124364 | Mittal | May 2013 | A1 |
20130138525 | Bercaw | May 2013 | A1 |
20130144785 | Karpenko | Jun 2013 | A1 |
20130144888 | Faith et al. | Jun 2013 | A1 |
20130145148 | Shablygin et al. | Jun 2013 | A1 |
20130145172 | Shablygin et al. | Jun 2013 | A1 |
20130151417 | Gupta | Jun 2013 | A1 |
20130159081 | Shastry | Jun 2013 | A1 |
20130159112 | Schultz et al. | Jun 2013 | A1 |
20130159178 | Colon et al. | Jun 2013 | A1 |
20130159184 | Thaw | Jun 2013 | A1 |
20130166332 | Hammad | Jun 2013 | A1 |
20130166402 | Parento et al. | Jun 2013 | A1 |
20130166456 | Zhang et al. | Jun 2013 | A1 |
20130166621 | Zhu | Jun 2013 | A1 |
20130173736 | Krzeminski et al. | Jul 2013 | A1 |
20130179340 | Alba | Jul 2013 | A1 |
20130185202 | Goldthwaite et al. | Jul 2013 | A1 |
20130191286 | Cronic et al. | Jul 2013 | A1 |
20130191289 | Cronic et al. | Jul 2013 | A1 |
20130198071 | Jurss | Aug 2013 | A1 |
20130198080 | Anderson et al. | Aug 2013 | A1 |
20130200146 | Moghadam | Aug 2013 | A1 |
20130204787 | Dubois | Aug 2013 | A1 |
20130204793 | Kerridge et al. | Aug 2013 | A1 |
20130212007 | Mattsson et al. | Aug 2013 | A1 |
20130212017 | Bangia | Aug 2013 | A1 |
20130212019 | Mattsson et al. | Aug 2013 | A1 |
20130212024 | Mattsson et al. | Aug 2013 | A1 |
20130212026 | Powell et al. | Aug 2013 | A1 |
20130212666 | Mattsson et al. | Aug 2013 | A1 |
20130218640 | Kidder et al. | Aug 2013 | A1 |
20130218657 | Salmon | Aug 2013 | A1 |
20130218698 | Moon et al. | Aug 2013 | A1 |
20130218721 | Borhan | Aug 2013 | A1 |
20130218765 | Hammad | Aug 2013 | A1 |
20130218769 | Pourfallah et al. | Aug 2013 | A1 |
20130226799 | Raj | Aug 2013 | A1 |
20130226813 | Voltz | Aug 2013 | A1 |
20130246199 | Carlson | Sep 2013 | A1 |
20130246202 | Tobin | Sep 2013 | A1 |
20130246203 | Laracey | Sep 2013 | A1 |
20130246258 | Dessert | Sep 2013 | A1 |
20130246259 | Dessert | Sep 2013 | A1 |
20130246261 | Purves et al. | Sep 2013 | A1 |
20130246267 | Tobin | Sep 2013 | A1 |
20130254028 | Salci | Sep 2013 | A1 |
20130254052 | Royyuru et al. | Sep 2013 | A1 |
20130254102 | Royyuru | Sep 2013 | A1 |
20130254117 | von Mueller et al. | Sep 2013 | A1 |
20130262296 | Thomas et al. | Oct 2013 | A1 |
20130262302 | Lettow et al. | Oct 2013 | A1 |
20130262315 | Hruska | Oct 2013 | A1 |
20130262316 | Hruska | Oct 2013 | A1 |
20130262317 | Collinge et al. | Oct 2013 | A1 |
20130275300 | Killian et al. | Oct 2013 | A1 |
20130275307 | Khan | Oct 2013 | A1 |
20130275308 | Paraskeva et al. | Oct 2013 | A1 |
20130282502 | Jooste | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20130282588 | Hruska | Oct 2013 | A1 |
20130297501 | Monk et al. | Nov 2013 | A1 |
20130297504 | Nwokolo et al. | Nov 2013 | A1 |
20130297508 | Belamant | Nov 2013 | A1 |
20130304649 | Cronic et al. | Nov 2013 | A1 |
20130308778 | Fosmark et al. | Nov 2013 | A1 |
20130311382 | Fosmark et al. | Nov 2013 | A1 |
20130317982 | Mengerink et al. | Nov 2013 | A1 |
20130325579 | Salmon | Dec 2013 | A1 |
20130332344 | Weber | Dec 2013 | A1 |
20130339240 | Anderson | Dec 2013 | A1 |
20130339253 | Sincai | Dec 2013 | A1 |
20130346302 | Purves | Dec 2013 | A1 |
20130346305 | Mendes | Dec 2013 | A1 |
20130346314 | Mogollon et al. | Dec 2013 | A1 |
20140006198 | Daly | Jan 2014 | A1 |
20140006283 | Hogg | Jan 2014 | A1 |
20140007213 | Sanin et al. | Jan 2014 | A1 |
20140013106 | Redpath | Jan 2014 | A1 |
20140013114 | Redpath | Jan 2014 | A1 |
20140013452 | Aissi et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140025581 | Calman | Jan 2014 | A1 |
20140025585 | Calman | Jan 2014 | A1 |
20140025958 | Calman | Jan 2014 | A1 |
20140032417 | Mattsson | Jan 2014 | A1 |
20140032418 | Weber | Jan 2014 | A1 |
20140040127 | Chatterjee | Feb 2014 | A1 |
20140040137 | Carlson et al. | Feb 2014 | A1 |
20140040139 | Brudnicki et al. | Feb 2014 | A1 |
20140040144 | Plomske et al. | Feb 2014 | A1 |
20140040145 | Ozvat et al. | Feb 2014 | A1 |
20140040148 | Ozvat et al. | Feb 2014 | A1 |
20140040628 | Fort et al. | Feb 2014 | A1 |
20140041018 | Bomar et al. | Feb 2014 | A1 |
20140046853 | Spies et al. | Feb 2014 | A1 |
20140047517 | Ding | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052532 | Tsai et al. | Feb 2014 | A1 |
20140052620 | Rogers et al. | Feb 2014 | A1 |
20140052637 | Jooste et al. | Feb 2014 | A1 |
20140068706 | Aissi | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140095589 | Johnson | Apr 2014 | A1 |
20140108172 | Weber et al. | Apr 2014 | A1 |
20140114857 | Griggs et al. | Apr 2014 | A1 |
20140136945 | Ligman | May 2014 | A1 |
20140143137 | Carlson | May 2014 | A1 |
20140164243 | Aabye et al. | Jun 2014 | A1 |
20140188586 | Carpenter et al. | Jul 2014 | A1 |
20140294701 | Dai et al. | Oct 2014 | A1 |
20140297534 | Patterson | Oct 2014 | A1 |
20140310080 | Salmon | Oct 2014 | A1 |
20140310183 | Weber | Oct 2014 | A1 |
20140330721 | Wang | Nov 2014 | A1 |
20140330722 | Laxminarayanan et al. | Nov 2014 | A1 |
20140331265 | Mozell et al. | Nov 2014 | A1 |
20140337175 | Katzin | Nov 2014 | A1 |
20140337236 | Wong et al. | Nov 2014 | A1 |
20140344153 | Raj et al. | Nov 2014 | A1 |
20140365295 | Postrel | Dec 2014 | A1 |
20140372308 | Sheets | Dec 2014 | A1 |
20150019443 | Sheets et al. | Jan 2015 | A1 |
20150019944 | Kalgi | Jan 2015 | A1 |
20150026049 | Theurer | Jan 2015 | A1 |
20150032626 | Dill et al. | Jan 2015 | A1 |
20150032627 | Dill et al. | Jan 2015 | A1 |
20150046338 | Laxminarayanan et al. | Feb 2015 | A1 |
20150046339 | Wong et al. | Feb 2015 | A1 |
20150052064 | Karpenko et al. | Feb 2015 | A1 |
20150088756 | Makhotin et al. | Mar 2015 | A1 |
20150089350 | Davis | Mar 2015 | A1 |
20150106239 | Gaddam et al. | Apr 2015 | A1 |
20150112870 | Nagasundaram et al. | Apr 2015 | A1 |
20150112871 | Kumnick | Apr 2015 | A1 |
20150120472 | Aabye et al. | Apr 2015 | A1 |
20150127529 | Makhotin et al. | May 2015 | A1 |
20150127547 | Powell et al. | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150142673 | Nelsen et al. | May 2015 | A1 |
20150161597 | Subramanian et al. | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150180836 | Wong et al. | Jun 2015 | A1 |
20150186864 | Jones et al. | Jul 2015 | A1 |
20150193222 | Pirzadeh et al. | Jul 2015 | A1 |
20150195133 | Sheets et al. | Jul 2015 | A1 |
20150199679 | Palanisamy et al. | Jul 2015 | A1 |
20150199689 | Kumnick et al. | Jul 2015 | A1 |
20150220917 | Aabye et al. | Aug 2015 | A1 |
20150269566 | Gaddam et al. | Sep 2015 | A1 |
20150302453 | Tietzen | Oct 2015 | A1 |
20150312038 | Palanisamy | Oct 2015 | A1 |
20150319158 | Kumnick | Nov 2015 | A1 |
20150332262 | Lingappa | Nov 2015 | A1 |
20150339767 | Chen | Nov 2015 | A1 |
20150356560 | Shastry et al. | Dec 2015 | A1 |
20160028550 | Gaddam et al. | Jan 2016 | A1 |
20160042263 | Gaddam et al. | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160092872 | Prakash et al. | Mar 2016 | A1 |
20160103675 | Aabye et al. | Apr 2016 | A1 |
20160119296 | Laxminarayanan et al. | Apr 2016 | A1 |
20160224976 | Basu | Aug 2016 | A1 |
20160379192 | Purves | Dec 2016 | A1 |
20170046696 | Powell | Feb 2017 | A1 |
20170103387 | Weber | Apr 2017 | A1 |
20170134479 | Kalgi | May 2017 | A1 |
20170220818 | Nagasundaram | Aug 2017 | A1 |
20170228723 | Taylor | Aug 2017 | A1 |
20170300314 | Lopyrev | Oct 2017 | A1 |
20180075081 | Chipman | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
1841425 | Oct 2006 | CN |
101025806 | Aug 2007 | CN |
101075316 | Nov 2007 | CN |
101231727 | Jul 2008 | CN |
101388125 | Mar 2009 | CN |
101840550 | Sep 2010 | CN |
0745961 | Dec 1996 | EP |
0855659 EP | Nov 2007 | EP |
1921578 | May 2008 | EP |
2156397 | Feb 2010 | EP |
2005004621 | Jan 2005 | JP |
2008527495 | Jul 2008 | JP |
08-545210 | Dec 2008 | JP |
2009151730 | Jul 2009 | JP |
2011186660 | Sep 2011 | JP |
2012027824 | Feb 2012 | JP |
20000058839 | Oct 2000 | KR |
10-0432430 | May 2004 | KR |
06-0117177 | Nov 2006 | KR |
07-0104087 | Oct 2007 | KR |
2013069539 | Oct 2013 | SG |
0046769 | Aug 2000 | WO |
0135304 | May 2001 | WO |
WO01165502 | Sep 2001 | WO |
03001866 | Jan 2003 | WO |
2003046697 | Jun 2003 | WO |
2003071386 | Aug 2003 | WO |
03083737 | Oct 2003 | WO |
WO03023674 | Apr 2004 | WO |
2004042536 | May 2004 | WO |
2006113834 | Oct 2006 | WO |
2009032523 | Mar 2009 | WO |
2010078522 | Jul 2010 | WO |
2010148704 | Dec 2010 | WO |
WO10148737 | Dec 2010 | WO |
2012068078 | May 2012 | WO |
2012098556 | Jul 2012 | WO |
2012142370 | Oct 2012 | WO |
2012167941 | Dec 2012 | WO |
2013048538 | Apr 2013 | WO |
2013056104 | Apr 2013 | WO |
2013119914 | Aug 2013 | WO |
2013179271 | Dec 2013 | WO |
Entry |
---|
David Breitkopf, “ACS to Take Over Mich. WC Distribution Program”, American Banker, New York, NY: Jul. 20, 2006, vol. 171. Issue 138, p. 6. |
Business Wire, “New York State Department of Labor Selects JPMorgan Chase to Provide New Banking Services for Unemployment Insurance Benefits; JPMorgan Chase Electronic Services to Help Speed Benefit Payments”, Business Wire, New York, Aug. 4, 2006, p. 1. |
Gopalan, NP & Selvan, B Siva. TCP/IP Illustrated. Prentice-Hall. 2008. pp. 101-102, 175-176 and 235. |
Shadrach, D.C. “A Weighted Metric Based Adaptive Algorithm for Web Server Load Balancing.” 2009 Third International Symposium on Intelligenr Information Technology Application, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?amumber=5369384, pp. 449-452. |
International Search Report and Written Opinion for PCT/US09/54921 dated Oct. 21, 2009. |
International Search Report and Written Opinion for PCT/US2010/048344 dated Nov. 15, 2010. |
International Search Report and Written Opinion for PCT/US2010/033861 dated Dec. 9, 2010. |
International Search Report and Written Opinion for PCT/US2010/033547 dated Dec. 14, 2010. |
International Preliminary Report on Patentability for PCT/US2010/033229 dated Dec. 29, 2010. |
International Search Report and Written Opinion for PCT/US2010/041860 dated Feb. 1, 2011. |
International Search Report and Written Opinion for PCT/US2010/045445 dated Feb. 24, 2011. |
International Search Report and Written Opinion for PCT/US2010/045500 dated Mar. 29, 2011. |
International Search Report and Written Opinion for PCT/US2011/024941 dated Apr. 19, 2011. |
International Search Report and Written Opinion for PCT/US2010/046833 dated Apr. 26, 2011. |
International Search Report and Written Opinion for PCT/US2011/26734 dated Apr. 29, 2011. |
International Search Report and Written Opinion for PCT/US2011/29790 dated May 19, 2011. |
International Search Report and Written Opinion for PCT/US2011/035268 dated Aug. 5, 2011. |
International Search Report and Written Opinion for PCT/US2011/032093 dated Aug. 24, 2011. |
International Search Report and Written Opinion for PCT/US11/39178 dated Sep. 16, 2011. |
International Search Report and Written Opinion for PCT/US2011/42062 dated Sep. 29, 2011. |
International Search Report for PCT/US11/49393 dated Dec. 5 2011. |
International Search Report and Written Opinion for PCT/US11/57179 dated Jan. 5, 2012. |
International Search Report and Written Opinion for PCT/US11/57173 dated Mar. 15, 2012. |
International Search Report and Written Opinion for PCT/US11/57180 dated Mar. 15, 2012. |
International Search Report for PCT/US12/21000 dated May 15, 2012. |
International Search Report for PCT/US11/65305 dated Apr. 16, 2012. |
International Search Report for PCT/US12/26205, dated May 29, 2012. |
International Search Report for PCT/US12/23856 dated Jun. 6, 2012. |
International Search Report and Written Opinion for PCT/US2012/027043 dated Jul. 13, 2012. |
International Search Report for PCT/US12/24772 dated Jul. 24, 2012. |
International Search Report for PCT/US12/25530 dated Aug. 7, 2012. |
International Search Report PCT/US12/27620 dated Aug. 10, 2012. |
International Search Report and Written Opinion for PCT/US12/41437 dated Aug. 24, 2012. |
International Search Report and Written Opinion for PCT/US12/37597 dated Sep. 21, 2012. |
International Search Report for PCT/US12/39638 dated Sep. 24, 2012. |
International Search Report for PCT/US12/45875 dated Nov. 16, 2012. |
International Search Report for PCT/US12/47092 dated Nov. 26, 2012. |
International Search Report for PCT/US12/57577 dated Nov. 29, 2012. |
International Search Report and Written Opinion for PCT/US12/55636 dated Nov. 30, 2012. |
International Search Report for PCT/US12/57528 dated Dec. 17, 2012. |
International Search Report and Written Opinion for PCT/US2012/045601 dated Feb. 1, 2013. |
International Search Report for PCT/US12/66898 dated Feb. 11, 2013. |
International Search Report and Written Opinion for PCT/US2012/069557 dated Feb. 22, 2013. |
International Search Report for PCT/US12/56759 dated Feb. 25, 2013. |
International Search Report and Written Opinion for PCT/US12/65738 dated Apr. 19, 2013. |
International Search Report and Written Opinion for PCT/US2013/020411 dated May 21, 2013. |
International Search Report and Written Opinion for PCT/US2013/024538, dated May 31, 2013. |
International Search Report and Written Opinion dated May 29, 2012 corresponding to PCT/US12/26205. |
Aissi et al., U.S. Appl. No. 61/738,832 (unpublished), Management of Sensitive Data, filed Dec. 18, 2012. |
Cash et al., U.S. Appl. No. 15/041,495 (unpublished), Peer Forward Authorization of Digital Requests, filed Feb. 11, 2016. |
Dimmick, U.S. Appl. No. 14/952,444 (unpublished), Tokenization Request Via Access Device, filed Nov. 25, 2015. |
Dimmick, U.S. Appl. No. 14/952,514 (unpublished), Systems Communications With Non-Sensitive Identifiers, filed Nov. 25, 2015. |
European Patent Office, Supplementary European Search Report and European Search Opinion, in EP Application No. 12749451.6, dated Apr. 20, 2015, 7 pages. |
Flurscheim et al., U.S. Appl. No. 15/004,705 (unpublished), Cloud-Based Transactions With Magnetic Secure Transmission, filed Jan. 22, 2016. |
Flurscheim et al., U.S. Appl. No. 62/108,403 (unpublished), Wearables With NFC HCE, filed Jan. 27, 2015. |
Gaddam et al., U.S. Appl. No. 62/053,736 (unpublished), completing Tansactions Without a User Payment Device, filed Sep. 22, 2014. |
Galland et al., U.S. Appl. No. 62/128,709 (unpublished), Tokenizing Transaction Amounts, filed Mar. 5, 2015. |
Hoverson et al., U.S. Appl. No. 62/038,174 (unpublished), Customized Payment Gateway, filed Aug. 15, 2014. |
International Search Report and Written Opinion for PCT/US13/46875, dated Oct. 24, 2013, 14 pages. |
IP Australia, Patent Examination Report No. 1, Australian Application No. 2012220669, dated Sep. 8, 2014, 6 pages. |
IP Australia, Patent Examination Report No. 2, Australian Application No. 2012220669, dated Jun. 8, 2016, 4 pages. |
Kalgi et al., U.S. Appl. No. 62/024,426 (unpublished), Secure Transactions Using Mobile Devices, filed Jul. 14, 2014. |
Kinagi, U.S. Appl. No. 62/117,291 (unpublished), Token and Cryptogram Using Transaction Specific Information, filed Feb. 17, 2015. |
Le Saint et al., U.S. Appl. No. 15/008,338 (unpublished), Methods for Secure Credential Provisioning, filed Jan. 27, 2016. |
Li, U.S. Appl. No. 61/894,749 (unpublished), Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment, filed Oct. 23, 2013. |
McGuire, U.S. Appl. No. 14/600,523 (unpublished); Secure Payment Processing Using Authorization Request, filed Jan. 20, 2015. |
Patterson, U.S. Appl. No. 15/019,157 (unpublished), Token Processing Utilizing Multiple Authorizations, filed Feb. 9, 2016. |
Patterson, U.S. Appl. No. 62/054,346 (unpublished), Mirrored Token Vault, filed Sep. 23, 2014. |
Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, filed Feb. 17, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages. |
Powell, U.S. Appl. No. 61/926,236 (unpublished), Methods and Systems for Provisioning Mobile Devices With Payment Credentials and Payment Token Identifiers, filed Jan. 10, 2014. |
Powell, U.S. Appl. No. 61/892,407 (unpublished), Issuer Over-The-Air Update Method and System, filed Oct. 17, 2013. |
Prakash et al., U.S. Appl. No. 62/037,033 (unpublished), Sharing Payment Token, filed Aug. 13, 2014. |
Prakash, et al., U.S. Appl. No. 14/955,716 (unpublished), Provisioning Platform for Machine-to-Machine Devices, filed Dec. 1, 2015. |
Rangarajan et al., U.S. Appl. No. 61/751,76 (unpublished), Payments Bridge, filed Jan. 11, 2013. |
Sabba et al., U.S. Appl. No. 15/011,366 (unpublished), Token Check Offline, filed Jan. 29, 2016. |
Sharma et al., U.S. Appl. No. 62/003,717 (unpublished), Mobile Merchant Application, filed May 28, 2014. |
State Intellectual Property of the People'S Republic of China, First Office Action in Chinese Application No. 201280019629.X, dated Aug. 1, 2016, 15 pages. |
Stubbs et al., U.S. Appl. No. 62/103,522 (unpublished), Methods and Systems for Wallet Provider Provisioning, filed Jan. 14, 2015. |
Wang, U.S. Appl. No. 62/000,288 (unpublished), Payment System Canonical Address Format, filed May 19, 2014. |
Wang, U.S. Appl. No. 62/042,050 (unpublished), Payment Device Authentication and Authorization System, filed Aug. 26, 2014. |
Wong et al., U.S. Appl. No. 14/966,948 (unpublished), Automated Access Data Provisioning, filed Dec. 11, 2015. |
Wong et al., U.S. Appl. No. 61/879,362 (unpublished), Systems and Methods for Managing Mobile Cardholder Verification Methods, filed Sep. 18, 2013. |
Chinese Office Action dated Oct. 10, 2017 for CN Application No. 201280019629.X, 7 pages. |
Pan Kexian “Development of the Location-Based Service LBS Application of Intelligent Mobile Phone”, Information Technologies, Oct. 25, 2009, pp. 134-137, cited on Oct. 10, 2017 in CN201280019629. |
Yang Jingjing “Help Web: Life Search Forerunner”Scientific and Technological Information, Aug. 5, 2010, pp. 36-37, cited on Oct. 10, 2017 in CN201280019629. |
Wang Lepeng et al. “Discuss of Foursquare Pattern and Its Deelopment Strategies in China” Scientific and Technological Information, Aug. 15, 2010, pp. 90-91, cited on Oct. 10, 2017 in CN201280019629. |
Chinese Office Action dated Nov. 6, 2017 for CN Application No. 201280018719.7, 24 pages. |
Australian Examination Report for AU2017203295 dated Apr. 19, 2018, 4 pages. |
Ratha, N., and Bolle, R., 1. History of Fingerprint Pattern Recognition—1.1 Introduction; 1.2 The Development of Fingerprint Classification Systems “Automatic Fingerprint Recognition Systems,” Springer-Verlag, (2004) (466 pages). |
Office Action dated May 22, 2018 for U.S. Appl. No. 14/216,382 (pp. 1-8). |
Australian Patent Office, Patent Examination Report No. 2 in Australian Patent Application No. 2012217606, dated Jun. 15, 2016, 6 pages. |
Dizaj, Mohammad Vahid Alizadeh, Moghaddam, Rexa Askari, Momenebellah, Samad, New Mobile Payment Protocol: Mobile Pay Center Protocol 2 (MPCP2) by Using New Key Agreement Protocol: VAM, 3d International Conference on Electronics Computer Technology, vol. 2, Apr. 2011, pp. 12-18. |
State Intellectual Property Office of the People's Republic of China, First Office Action in Chinese Application No. 201280018719.7, dated Jul. 4, 2016, 15 pages. |
Gao, Jerry, Kulkarni, Vijay, Ranavat, Himanshu, Chang, Lee, Mei, Hsing, A2D Barcode-Based Mobile Payment System, 3d International Conference on Multimedia and Ubiquitous Engineering, Jun. 2009, pp. 320-329. |
International Search Report and Written Opinion for PCT/US2014/030517, dated Aug. 18, 2014. (9 pages). |
International Search Report and Written Opinion for PCT/US2010/033229 dated Dec. 29, 2010, 8 pages. |
International Search Report and Written Opinion forPCT/US2013/031084, dated Jun. 4, 2013. 9 pages. |
International Preliminary Report on Patentability dated Jan. 16, 2014 in related/corresponding PCT Patent Appl. No. PCT/US2012/045601 filed Jul. 5, 2012. (7 pages). |
Smartphone e-payment and Google AD send blog, ‘Google Wallet on Smartphone’, <http://stockpedia.blogspot.kr/2011/06/google-wallet.html> Jun. 10, 2011, pp. 1-3. |
International Preliminary Report on Patentability dated Jan. 14, 2014 cited in related/corresponding International PCT Appl. No. PCT/US2012/045875 filed Jul. 7, 2012. (11 pages). |
Vitt, Elizabeth et al. Data Integration Solutions for Master Data Management (Feb. 2006). https://technet.microsoft.com/en-us/library/aa964123(v=sql.90).aspx (19 pages). |
Vitt, Elizabeth, et al. “Microsoft SQL Server 2005 Analysis Services Performance Guide.” White Paper, White Paper (2007). (116 pages). |
ShopSawy Blog, Feb. 2012. Retrieved from https://web.archive.org/web/20120212104611 /http://shopsawy.com:80/blog/.pp. 1-13. |
Charland et al., Mobile Application Development: Web vs. Native, Apr. 2011, 9 pages. |
Lee et al., osgGap: scene graph library for mobile based on hybrid web app framework, Nov. 2013, 4 pages. |
Immaneni et al., Hybrid retrieval from the unified web, Mar. 2007, 5 pages. |
McCarney et al., “Tapas: Design, Implementation, and Usability Evaluation of a Password Manager,” Copyright 2012, ACM 978 1-4503-1312-4/12/12 (10 pages). |
Lowry P B XML data mediation and collaboration: a proposed comprehensive architecture and query requirements for using XML to mediate heterogeneous data sources and targets, Proceedings of the 34th Hawaii International Conference on System Sciences—2001, 20010103; 20010103—20010106, IEEE, pp. 1-9. |
Gao et al., “A 2D Barcode-Based Mobile Payment System”, (2009), XP031561633 (10 pages). |
Stack Exchange, Why aren't there automated translators from one programming language to another, 2010 (5 pages). |
International Search Report and Written Opinion for PCT/US2012/057528, dated May 29, 2012. (8 pages). |
Petition for Inter Partes Review of U.S. Pat. No. 8,887,308 Challenging Claim 1 Under 35 U.S.C. 312 and 37 C.F. R. 42.104, dated Mar. 3, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00602, 58 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 8,402,555 Challenging Claims 1-26 Under 35 U.S.C. 312 and 37 C.F.R. 42.104, dated Mar. 22, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00789, 65 pages. |
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. .sctn.312 and 37 C.F.R. sctn.42.104, dated Mar. 14, 2016, before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages. |
ShopSavvy Blog. Feb. 2012. Retrieved from https://web.archive.Org/web/20120212104611/http://shopsavvy.com/blog. pp. 1-13 (Year: 2012). |
Chipman, et al., U.S. Appl. No. 15/265,282 (Unpublished), Self-Cleaning Token Vault, filed Sep. 14, 2016. |
Lopez, et al., U.S. Appl. No. 15/462,658 (Unpublished), Replacing Token on a Multi-Token User Device, filed Mar. 17, 2017. |
International Search Report and Written Opinion for PCT/US2010/045500 dated Mar. 29, 2011 (3 pages). |
Office Action dated Feb. 28, 2018 for U.S. Appl. No. 14/242,403 (pp. 1-11). |
Number | Date | Country | |
---|---|---|---|
20140337175 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61445482 | Feb 2011 | US | |
61466409 | Mar 2011 | US | |
61469965 | Mar 2011 | US | |
61473728 | Apr 2011 | US | |
61538761 | Sep 2011 | US | |
61545971 | Oct 2011 | US | |
61539969 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13348634 | Jan 2012 | US |
Child | 13520481 | US | |
Parent | 13398817 | Feb 2012 | US |
Child | 13348634 | US |