The current invention relates to the use of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide as a biomarker for the detection, in an individual, of PBR (peripheral benzodiazepine receptor) levels associated with normal and pathological conditions. The current invention also concerns a method of detection of PBR levels for the above purposes.
Under normal physiological conditions, the PBR, also known as translocator protein 18 kDa (TSPO) (Papadopoulos, B. et al. (2006) Trends Pharmacol. Sci. 27: 402-409), is expressed at low levels in the brain, mainly in microglial cells, and is highly expressed in a number of peripheral tissues, such as adrenal glands, pineal gland, salivary glands, gonads, kidney, lung, heart and skeletal muscle (Chen, M-K. and Guilarte, T. (2008) Pharmacology and Therapeutics 118: 1-17; Venneti, S. et al. (2006) Progress in Neurobiol. 80: 308-322). Subcellular localization studies with the reference PBR ligand, [3H]PK11195, have demonstrated that the PBR is located in the outer mitochondria membrane (Anholt, R. R. et al. (1986) J. Biol. Chem. 261: 576-583; Antkiewicz-Michaluk, L. et al. (1988) Mol. Pharmacol. 34: 272-278). However, immunohistochemical studies have also shown that the PBR is expressed in blood cells (devoid of mitochondria) (Olson, J. M. et al. (1988) Eur. J. Pharmacol. 152: 47-53) and can be localized to the plasma membrane (O'Beirne, G. et al. (1990) Eur. J. Biochem. 188: 131-138; Woods, M. J. et al. (1996) Biochem. Pharmacol. 51: 1283-1292). A nuclear or peri-nuclear localization of the PBR has also been observed in breast cancer (Hardwick, M. et al. (1999) Cancer Res. 59: 831-842), human glioma cells (Brown, R. C. et al. (2000) Cancer Lett. 156: 125-132), hepatic tumor cells (Corsi, L. et al. (2005) Life Sci. 76: 2523-2533) and glial cells (Kuhlmann, A. C. and Guilarte, T. R. (2000) J. Neurochem. 74: 1694-1704).
A marked increase in PBR levels is observed after cell injury, inflammation or proliferation and is associated with a number of acute and chronic pathological conditions (Chen, M-K. and Guilarte, T. (2008) Pharmacology and Therapeutics 118: 1-17; Venneti, S. et al. (2006) Progress in Neurobiology 80: 308-322). These include: brain injuries, such as stroke and ischemia-reperfusion injury (Gerhard, A. et al. (2000) Neuroreport 11: 2957-2960; Gerhard, A. et al. (2005) Neuroimage 24: 404-412), traumatic brain injury (Raghavendra, R. et al. (2000) Exp. Neurol. 161: 102-114); brain infections, such as encephalitis (Banati, R. B. et al. (1999) Neurology 53: 2199-2203; Cagin, A. et al. (2001) Brain 124: 2014-2027); neurological diseases, such as multiple sclerosis (Banati, R. B. et al., (2000) Brain 123: 2321-2337), Alzheimer's disease and dementia (Cagnin, A. et al. (2001) Lancet 358: 461-467; Versijpt, J. J. et al. (2003) Eur. Neurol. 50: 39-47), Parkinson's disease (Ouchi, Y. et al. (2005) Ann. Neurol. 57: 168-175; Gerhard, A. et al. (2006) Neurobiol. Dis. 21: 404-412), amyotrophic lateral sclerosis (Turner, M. R. et al. (2004) Neurobiol. Dis. 15: 601-609), cortico-basal degeneration (Gerhard A. et al. (2004) Mov. Disord. 19: 1221-1226; Henkel, K. et al. (2004) Mov. Disord. 19: 817-821), Huntington's disease (Messmer, K. and Reynolds, G. P. (1998) Neurosci. Lett. 241: 53-56; Pavese, N. et al. (2006) Neurology 66: 1638-1643) and epilepsy (Sauvageau, A. et al. (2002) Metab. Brain Dis. 17: 3-11). The increased PBR levels in CNS pathologies are mainly observed in microglial cells (Chen, M-K. and Guilarte, T. (2008) Pharmacology and Therapeutics 118: 1-17; Venneti, S. et al. (2006) Progress in Neurobiology 80: 308-322). Large increases in PBR are also observed in cancer (Cornu, P. et al. (1992) Acta. Neurichir. 119: 146-152; Hardwick, M. et al. (1999) Cancer Res. 59: 831-842; Maaser, K. et al. (2002) Cancer Res. 8: 3205-3209), pulmonary inflammation (Audi, S. H. et al. (2002) Lung. 180: 241-250; Hardwick, M. J. et al. (2005) Mol. Imaging. 4: 432-438), cardiac ischemia (Mazzone, A. et al. (2000) J. Am. Coll. Cardiol. 36: 746-750), renal ischemia (Zhang, K. et al. (2006) J. Am. Coll. Surg. 203: 353-364), rheumatism (fibromyalgia) (Faggioli, P. et al. (2004) Rheumatology (Oxford) 43: 1224-1225), sciatic nerve regeneration (Mills, C. D. et al. (2005) Mol. Cell. Neurosci. 30: 228-237), psoriasic arthritis (Guisti, L. et al. (2004) Clin. Biochem. 37: 61-66) and atherosclerosis (Fujimura, Y. et al. (2008) Atherosclerosis, 201: 108-111; Laitinen, I. et al. (2008) Eur. J. Nuc. Med. Mol. Imaging. 36: 73-80).
By contrast, a decrease in PBR levels is observed in the brain of schizophrenia patients (Kurumaji, A. et al., (1997) J. Neural. Transm. 104: 1361-1370; Wodarz, N. et al. (1998) Psychiatry Res. 14: 363-369) and in rheumatoid arthritis (Bribes, E. et al. (2002) Eur. J. Pharmacol. 452: 111-122) and osteoarthritis (Bazzichi, L. et al. (2003) Clin. Biochem. 36: 57-60).
The ability to image PBR levels in vivo in brain and other tissues could therefore serve as an important biomarker of disease progression, to determine and evaluate the efficacy of a therapeutic treatment and to evaluate PBR receptor occupancy in vivo.
The reference PET PBR ligand, [11C]PK11195, has been used extensively for in vivo imaging of PBR levels in a number of neuropathological conditions (Chen, M-K and Guilarte, T. (2008) Pharmacology and Therapeutics 118: 1-17; Venneti, S. et al. (2006) Progress in Neurobiology 80: 308-322). However, [11C]PK11195 shows relatively low brain uptake, high non-specific binding and a poor signal to noise ratio. These properties limit the sensitivity of [11C]PK11195 for PET imaging of PBR levels and occupancy studies in the CNS. The development of improved PBR PET ligands with higher specific binding and greater sensitivity than [11C]PK11195 would therefore provide a major advance for the imaging of PBR levels in brain and other tissues.
Among the compounds described and claimed in the documents WO99/06406 and WO00/44384, a pyridazino[4,5-b]indole derivative, 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, was identified as particularly interesting for use as a PET (or SPECT) ligand for the PBR. This compound has high affinity for the PBR in vitro and in vivo (Ferzaz, B. et al. (2002) J. Pharm. Exp. Therap. 301: 1067-1078).
The present invention concerns the use of a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide as a biomarker for the detection of PBR levels associated with normal conditions and PBR levels associated with pathological conditions.
The present invention also concerns a method for the detection of PBR levels associated with normal conditions and PBR levels associated with pathological conditions using a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide.
The present invention also concerns a diagnostic kit for the detection of PBR levels.
For convenient reasons and to facilitate reading, the compound 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide has been renamed as “A” in some chapters of the current application.
For the present invention the following words are to be understood accordingly.
The synthesis of radiolabelled ligands and the substitution of an atom by an isotope can be performed by several techniques known to persons skilled in the art. For example, for the substitution of a carbon atom by a carbon-11, we can use several derivatives such as [11C]methyl iodide or [11C]methyl triflate (Welch M. J. et al. (2003) In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 1-848). In the case of A, several methyl groups can be labelled with carbon-11, such as the N,N-dimethylacetamide or the N-methylindole functions.
In the case of a labelling with fluorine-18, the radioisotope may be directly attached to the core structure (A) by nucleophilic aliphatic or aromatic (including heteroaromatic (Dollé F. et al. (2005) Curr. Pharm. Design 11: 3221-3235)) substitutions or electrophilic substitutions or linked through the addition of a spacer group, both techniques known to persons skilled in the art (Kilbourn M R. (1990) In Fluorine-18 Labeling of Radiopharmaceuticals, Nuclear Science Series (Kilbourn M R Ed.), National Academy Press, Washington, D.C., 1-149; Lasne M.-C. et al. (2002) Topics in Current Chemistry 222: 201-258; Cai L. et al. (2008) Eur. J. Org. Chem. 17: 2853-2873; Dollé F. et al. (2008) In Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals, Tressaud A, Haufe G (Eds). Elsevier: Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, 3-65). Of particular interest is the use of an alkyl, alkenyl or alkynyl linker for the addition of the fluorine-18 atom (Damont A. et al. (2008) J. Label. Compds Radiopharm. 51: 286-292; Dollé F. et al., (2006) Bioorg. Med. Chem. 14: 1115-1125; Dollé F. et al. (2007) J. Label. Compds Radiopharm. 50: 716-723).
In the case of a labelling with another halogen (such as bromine-76, iodine-123 or iodine-124), the radioisotope may also be directly attached by nucleophilic or electrophilic substitutions to the core structure (A) or linked through the addition of a spacer group, both techniques known to persons skilled in the art (Mazière B. et al. (2001) Curr. Pharm. Des. 7: 1931-1943; Coenen H. H. et al. (2006) In Radioiodination reactions for pharmaceuticals—Compendium for effective synthesis strategies, Coenen H. H., Mertens J., Mazière B. (Eds), Springer Verlag, Berlin-Heidelberg, 1-101).
In the case of the labelling with metal radioisotopes (such as gallium-68, copper-64 or technetium-99m), the preferred approach used, which will be considered by a person skilled in the art, is the use of a bifunctional chelating agent based on, for example, the open-chain polyaminocarboxylates ethylenediamine tetraacetic acid (EDTA) and diethylenetriamine pentaacetic acid (DTPA), the polyaminocarboxylic macrocycle 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), mercaptoacetyldi- and triglycine (MAG2, MAG3), bis-(S-benzoyl-thioglycoloyl)diaminopropanoate ((SBT)2DAP) and hydrazinonicotinic acid (HYNIC), facilitating the complexation of the radiometal cation at one function and the covalent attachment to the core molecule at another (Brunner U. K. et al. (1995) Radiotracer production—Radiometals and their chelates In Principle of Nuclear Medecine, Wagner H. N. (Ed). Saunders: Philadelphia, 220-228; Weiner R. E. et al. (2003) Chemistry of gallium and indium radiopharmaceuticals In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 363-400; Anderson C. J. et al. (2003) Chemistry of copper radionucleides and radiopharmaceutical products In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 401-422; Mahmood A. et al. (2003) Technetium radiopharmaceuticals In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 323-362).
Direct addition of the fluorine-18 atom (or bromine-76, iodine-123 or iodine-124) may be performed, for example, on the 3-phenyl and/or the pyridazino[4,5-b]indole aromatic rings, as well as on any other chemically accessible position (such as the acetamide function). Indirect addition of these radiohalogens (for example through the use a spacer group), or addition of the metal radioactive isotopes mentioned above (gallium-68, copper-64 or technetium-99m, through the use of a chelating agent), may also be performed at any chemically accessible position of the N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (A) core (see references above).
A first embodiment is the use of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide as a biomarker for the detection, in an individual, of the PBR (peripheral benzodiazepine receptor) levels and inflammation associated with pathological conditions, wherein said compound is radiolabelled, wherein the radiolabel is chosen among carbon-11, radiohalogens and radiometals. Preferentially said compound is radiolabelled with carbon-11 and more preferentially radiolabelled with carbon-11 on the carbon of the methyl group situated on position 5 of the indole nucleus.
In another embodiment, 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is radiolabelled with radiometals, preferentially on the 3-phenyl ring at the para position, at the 7-position of the pyridazino[4,5-b]indole in replacement of the chlorine atom (with or without a spacer, vide infra), or at any N-methyl position (N,N-dimethylacetamide function or the methyl group situated on position 5 of the indole nucleus).
In another embodiment, 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is radiolabelled with radiohalogens, preferentially radiolabelled with the radiohalogen fluorine-18, preferentially on the 3-phenyl ring at the para position, at the 7-position of the pyridazino[4,5-b]indole in replacement of the chlorine atom (with or without a spacer, vide infra), or at any N-methyl position (N,N-dimethylacetamide function or the methyl group situated on position 5 of the indole nucleus).
In some embodiments, the detection of PBR levels and inflammation is performed by PET imaging (positron emission tomography) or by SPECT imaging (single photon emission computed tomography).
In some embodiments of the invention, a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is used as a biomarker for the detection of PBR level changes and inflammation associated with pathological conditions, wherein said pathological conditions are selected from brain injuries, such as stroke, ischemia-reperfusion injury and traumatic brain injury; brain infections, such as encephalitis; neurological diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, dementia, cortico-basal degeneration, Huntington's disease and epilepsy; psychiatric diseases, such as schizophrenia; peripheral inflammatory processes, such as pulmonary inflammation, atherosclerosis, cardiac ischemia, renal ischemia, rheumatism (fibromyalgia), psoriasic arthritis, rheumatoid arthritis and osteoarthritis; proliferative diseases, such as cancer.
In some embodiments of the invention a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is used as a biomarker of PBR levels and inflammation, wherein inflammation is neuroinflammation.
In some embodiments of the invention a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is used for evaluating the efficacy of a therapeutic treatment.
The present invention also concerns a method for the detection of the PBR and inflammation associated with pathological conditions using a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide.
In some embodiments, the radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide contains a radiolabel chosen among carbon-11, radiohalogens and radiometals. In some embodiments, the radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is labelled with carbon-11.
In some embodiments, the radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is radiolabelled on the carbon of the methyl group situated on position 5 of the indole nucleus.
In some embodiments, 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is radiolabelled with radiometals, preferentially on the 3-phenyl ring at the para position, at the 7-position of the pyridazino[4,5-b]indole in replacement of the chlorine atom (with or without a spacer, vide infra), or at any N-methyl position (N,N-dimethylacetamide function or the methyl group situated on position 5 of the indole nucleus).
In some embodiments, 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide is radiolabelled with radiohalogens, preferentially radiolabelled with the radiohalogen fluorine-18, preferentially on the 3-phenyl ring at the para position, at the 7-position of the pyridazino[4,5-b]indole in replacement of the chlorine atom (with or without a spacer, vide infra), or at any N-methyl position (N,N-dimethylacetamide function or the methyl group situated on position 5 of the indole nucleus).
In some embodiments of the invention, the pathological conditions are selected from brain injuries, such as stroke, ischemia-reperfusion injury, traumatic brain injury; brain infections, such as encephalitis; neurological diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, dementia, cortico-basal degeneration, Huntington's disease and epilepsy; psychiatric diseases, such as schizophrenia; peripheral inflammatory processes such as pulmonary inflammation, atherosclerosis, cardiac ischemia, renal ischemia, rheumatism (fibromyalgia), psoriasic arthritis, rheumatoid arthritis and osteoarthritis; proliferative diseases, such as cancer.
Another embodiment according to the invention is a method of detection of the PBR and inflammation associated with pathological conditions, wherein inflammation is neuroinflammation.
Another embodiment according to the invention is a method of detection of the PBR and inflammation associated with pathological conditions, which is performed for occupancy studies.
Another embodiment is a method of detection of the PBR and inflammation associated with pathological conditions, said method comprising the following steps:
The present invention also relates to a diagnostic kit for the detection of PBR levels associated with normal conditions and changes in PBR levels associated with pathological conditions comprising a radiolabelled form of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide.
The following examples further illustrate the present invention and are not intended to limit the invention. For convenient reasons and to facilitate reading, the compound 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide has been renamed as “A” into the figures and the results.
Labelling with Carbon-11
[11C]PK11195 ((R)—N—[11C]Methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-carboxamide, R-enantiomer). Preparation of [11C]PK11195 is based on minor modifications of published processes (Camsonne C. et al. (1984) J. Label. Comp. Radiopharm 21: 985-991; Cremer J. E. et al. (1992) Int. J. Rad. Appl. Instrum. B. 19: 159-66; Boutin, H. et al. (2007) Glia 55: 1459-68; Boutin, H. et al. (2007) J. Nucl. Med. 48: 573-581) and includes the following steps: (1) trapping at −10° C. of [11C]methyl iodide in DMF/DMSO (2/1 (v:v), 300 μL) containing 1.5 to 2.0 mg of the precursor for labelling and 15-20 mg of powdered hydroxide (excess); (2) heating at 110° C. for 3 min; (3) taking-up the mixture with 0.5 mL of the HPLC mobile phase and (4) purification using semi-preparative HPLC. Quality controls, in particular radiochemical and chemical purity determinations, were performed on an aliquot of the final production batch. [11C]-A labelling at the N-methylindole function: 7-Chloro-N,N-dimethyl-5-[11C]methyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide). Preparation of [11C]-A includes the following steps: (1) trapping at −10° C. of [11C]methyl triflate in DMF (300 μL) containing 0.2 to 0.3 mg of the precursor for labelling and 4 mg of powdered potassium carbonate (excess); (2) heating at 120° C. for 3 min; (3) taking-up the mixture with 0.5 mL of the HPLC mobile phase and (4) purification using semi-preparative HPLC. Quality controls, in particular radiochemical and chemical purity determinations, were performed on an aliquot of the final production batch.
Preparation of [11C]-A also includes the following steps: (1) trapping at −10° C. of [11C]methyl iodide in a 1/2 (v:v) mixture of DMF and DMSO (100/200 μL) containing 0.5 to 1.0 mg of the precursor for labelling and 5 μL of an 1M tetrabutylammoniumhydroxide solution in methanol; (2) heating at 120° C. for 3 min; (3) taking-up the mixture with 0.5 mL of the HPLC mobile phase and (4) purification using semi-preparative HPLC. Quality controls, in particular radiochemical and chemical purity determinations, were performed on an aliquot of the final production batch.
Labelling with Fluorine-18
Preparation of all fluorine-18-labelled derivatives of A includes at least the following steps: (1) fluorination using a [18F]fluoride source at moderate to high temperature in a selected solvent (300 to 900 μL) containing 1 to 10 mg of the appropriate precursor for labelling and (2) purification using for example semi-preparative HPLC. As described above, quality controls, in particular radiochemical and chemical purity determinations, were performed on an aliquot of the final production batch.
There is no particular restriction on the nature of the sources of [18F]fluoride anions to be used in this reaction, and any sources of [18F]fluoride anions conventionally used in reactions of this type may equally be used here, provided that it has no adverse effect on other parts of the molecule. Examples of suitable sources of [18F]fluoride anions include: alkali metal [18F]fluorides, such as sodium [18F]fluoride, potassium [18F]fluoride, cesium [18F]fluoride; ammonium [18F]fluoride, tetraalkylammonium [18F]fluorides, such as tetrabutylammonium [18F]fluoride. Of these, the alkali metal [18F]fluorides, and notably a potassium fluoride, are preferred. The source of [18F]fluoride anions may be activated by the presence of a ligand able to complex the counter cationic species of the source of [18F]fluoride anions. The ligand may be notably a cyclic or polycyclic multidentate ligand. Examples of suitable ligands include notably crown ethers such as 1,4,7,10,13-pentaoxacyclooctadecane (18-C-6) or cryptands such as 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8,8,8]hexacosane sold under the name K222®. Preferably, the source of [18F]fluoride anions is an alkaline metal [18F]fluoride-cryptate complex, notably a potassium [18F]fluoride-cryptate complex, preferably the potassium [18F]fluoride-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8,8,8]hexacosane (K[18F]/K222). The complex K[18F]/K222® may be prepared by any conventional methods (Dollé F. et al., (1999) J. Med. Chem. 42: 2251-2259 or Dolci L. et al. (1999) Bioorg. Med. Chem. 7: 467-479).
The fluorination reaction can be performed in various solvents and can take place over a wide range of temperatures. In general, it is convenient to carry out the reaction at a temperature from about 50° C. to about 200° C. and the more often used solvents are dimethylsulfoxide (DMSO), dimethylformamide (DMF) and acetonitrile. The time required for the reaction may also vary widely (from about 5 min to 15 min for example), depending on many factors, notably the reaction temperature, the nature of the reagents and solvents and the amount of the labelling precursor used (Kilbourn M R. (1990) In Fluorine-18 Labeling of Radiopharmaceuticals, Nuclear Science Series (Kilbourn M R Ed.), National Academy Press, Washington, D.C., 1-149; Lasne M.-C. et al. (2002) Topics in Current Chemistry, 222: 201-258; Dollé F. et al. (2005) Curr. Pharm. Design 11: 3221-3235; Cai L. et al., (2008) Eur. J. Org. Chem. 17: 2853-2873; Dollé F. et al. (2008) In Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals, Tressaud A, Haufe G (Eds). Elsevier: Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, 3-65). The radiofluorinated compounds thus prepared are usually purified by HPLC as described for the carbon-11-labelled derivatives, but may also be recovered or pre-purified from the reaction mixture by the use of other known chromatography techniques or simply by filtration on a pre-packed separation column.
Preparation of [18F]fluoroethoxy-A includes the following steps: (1) taking up the K[18F]F-Kryptofix® 222 complex with a DMSO solution (600 μL) containing the tosyloxy precursor for labelling (2.0-8.0 mg); (2) heating at 165° C. for 3-10 min; (3) pre-purification using a C-8 or C-18 PrepSep cartridge and (4) purification using semi-preparative HPLC. Quality controls, in particular radiochemical and chemical purity determinations, were performed on an aliquot of the final production batch.
Labelling with Other Halogens (Bromine-76, Iodine-123, Iodine-124)
Preparation of all other radiohalogenated derivatives (bromine-76, iodine-123, iodine-124) followed standard techniques and procedures known from skilled man in the art (Mazière B. et al. (2001) Curr. Pharm. Des. 7: 1931-1943; Coenen H. H. et al. (2006) In Radioiodination reactions for pharmaceuticals—Compendium for effective synthesis strategies, Coenen H. H., Mertens J., Mazière B. (Eds), Springer Verlag, Berlin-Heidelberg, 1-101).
Labelling with Radiometals (Gallium-68, Copper-64 and Technetium-99m)
Preparation of derivatives labelled with radiometals (gallium-68, copper-64 and technetium-99m) also followed standard techniques and procedures known from skilled man in the art (Brunner U. K. et al. (1995) Radiotracer production—Radiometals and their chelates In Principle of Nuclear Medecine, Wagner H. N. (Ed). Saunders: Philadelphia, 220-228; Weiner R. E. et al. (2003) Chemistry of gallium and indium radiopharmaceuticals In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 363-400; Anderson C. J. et al. (2003) Chemistry of copper radionucleides and radiopharmaceuticals products In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 401-422; Mahmood A. et al. (2003) Technetium radiopharmaceuticals In Handbook of Radiopharmaceuticals—Radiochemistry and Applications (Welch M J, Redvanly C S Eds.), New York-Chichester-Brisbane-Toronto, Wiley-Interscience Pub., 323-362).
Formulation of [11C]PK11195, [11C]-A or any other radiolabelled A derivatives as an i.v. solution for injection often includes a Waters SepPak® cartridge-based removal of the HPLC solvents and/or a simple dilution with aq. 0.9% NaCl (physiological saline) to an ethanol concentration below 10%.
All studies were conducted in accordance with the French legislation and European directives.
Wistar rats (average body weight 300 g, centre d'Élevage René Janvier, France) were kept in thermoregulated, humidity controlled facilities under a 12 h/12 h light/dark cycle (light on between 7 h AM and 7 h PM) and were allowed free access to food and water. Neuroinflammation was induced by stereotaxic injection of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) (15 mM in PBS buffer, Sigma®) using a 1 μL microsyringe and micropump (injection rate: 0.5 μL/min, UltraMicroPump II® and Micro4® Controller, WPI Inc., USA), as previously described (Boutin, H. et al. (2007) Glia 55: 1459-68.; Boutin, H. et al. (2007) J. Nucl. Med. 48: 573-581). AMPA (0.5 μL) was injected into the right striatum (Bregma+0.7 mm, from sagittal suture: 2.7 mm, depth from brain surface: 5.5 mm). Animals were maintained normothermic (body temperature: 36.7±0.5° C., mean±SD) during the surgery through the use of a heating blanket (Homeothermic Blanket Control Unit, Harvard Apparatus Limited®, Edenbridge, Kent, UK).
Cynomolgus macaques (Macaca fascicularis) weighing 4-5 kg were housed in thermoregulated, humidity controlled facilities under a 12 h/12 h light/dark cycle (light on between 7 h a.m. and 7 h p.m.) and were allowed free access to food and water. Neuroinflammation was induced by local sterotaxic injections of quinolinic acid (quinolinic acid, Sigma, St. Louis, Mo.; dissolved in 0.1 M PBS, pH 7.2) into the primate striatum (1 injection site into caudate and 2 injection sites into the putamen) during two different surgical interventions where quinolinic acid was injected into one hemisphere on day 1 and the second hemisphere 2 weeks or 7 months later (
Generation and characterization of single PS1M146L (PS1) and double APP751SL×PS1M146L (APP×PS1) transgenic mice were achieved, as described previously (Blanchard, V. et al. (2003) Exp. Neurol. 184: 247-263). In these animals APP is expressed at a high level in all cortical neurons under the control of the Thy-1 promoter. Human PS1 with the M146L mutation is expressed under the control of the HMG-CoA reductase promoter. The level of amyloid load was found to be quite reproducible at a given age. Both single PS1 and double APP×PS1 mice, provided by Sanofi-Aventis, were used for PET imaging at the age of 11-12 months and autoradiography at 20-23 months.
MicroPET imaging was performed 7 days post-AMPA injection in rats and in 11-12 month old transgenic mice. In both mice and rats, anaesthesia was induced by isoflurane 5%, and thereafter maintained by 2-2.5% of isoflurane in a mixture of 70%/30% NO2/O2. For PET scans, the head of the rat was placed in a home-made stereotaxic frame compatible with PET acquisition and the rats were maintained normothermic (rectal temperature: 36.7±0.5° C., mean±SD). Mice were placed on a bed equipped with an anaesthetic mask allowing heating of the air flow and the rectal temperature was monitored using the Homeothermic Blanket Control Unit. All imaging protocols were conducted with a Concorde Focus 220 PET scanner using either [11C]PK11195 or [11C]-A.
In rats, radiolabelled compounds and unlabelled ligands were injected in the caudal vein with the use of 24 gauge catheter. Radiolabelled compounds were injected concomitantly at the start of the PET acquisition and unlabelled compounds were injected 20 min after injection of radiotracers. PET data were acquired for 80 min. In mice, radiolabelled compounds were injected in the caudal vein using 28 gauge needles immediately before the PET scan initiation. PET data were acquired for 60 min.
Imaging sessions were performed before and at various times after quinolinic acid injection (24 hrs, 48 hrs, 9 days, 16 days and 7 months post lesion). [11C]-A was injected and brain kinetics followed by PET for 90 min.
One hour before PET imaging, animals were anaesthetized by intramuscular injection of a ketamine/xylazine mixture (15 mg/kg/1.5 mg/kg) and intubated. Catheters were then placed in a saphenous vein for radiotracer injection and in a femoral artery for blood sampling. Animals were maintained anaesthetized by an intravenous injection of propofol (Diprivan® 1%; 0.05 mg·kg−1·min−1).
To ensure correct positioning of the animal in the apparatus, the animal's head was secured in a home-made stereotactic frame. PET scans were performed using the high-resolution Focus micro-PET (CTI-Siemens, Knoxville, Tenn.), which acquires 95 contiguous planes simultaneously. For attenuation correction, a transmission scan was first performed using a 68Ge rotating rod source. Macaques were intravenously injected with 192.29±33.67 MBq of [11C]-A and the acquisition performed for 90 min. All PET acquisitions were performed in list mode (3D mode) and images were reconstructed using the following time frame: (4 images of 25 s)+(4 images of 30 s)+(2 images of 1 min)+(5 images of 2 min)+(3 images of 5 min)+(3 images of 10 min) and (1 image of 15 min), for a total time of 90 min for [11C]-A.
PET image analysis was performed using ASIPro VM™ (CTI Concorde Microsystems' Analysis Tools and System Setup/Diagnostics Tool) and Brainvisa/Anatomist (http://brainvisa.info/).
Naive or operated adult male Wistar rats (body weight 300-400 g) were injected i.v in the tail vein with [11C]-A. Animals were sacrificed 10, 20 or 30 min later. A blood sample was collected and plasma isolated by centrifugation (5 min, 3000 rpm). Plasma proteins were precipitated from 400 μL of serum by addition of 400 μL of acetonitrile. After centrifugation (5 min, 3000 rpm), the supernatant was injected onto the HPLC column. Rat brains were removed and hemispheres were separated. Homogenisation by sonication was performed in 1 mL of acetonitrile per hemisphere. After a rapid centrifugation, the supernatant was separated from the pellet and concentrated under reduced pressure before injection onto the HPLC (see radiochemistry section for HPLC conditions).
[11C]-A autoradiography was performed using 20 μm brain sections from rats (7-8 days post-lesion) or mice (20-23 months). Non-specific binding was assessed using an excess of either unlabelled PK11195 or A. Specificity for PBR vs central benzodiazepine binding sites was evaluated by using an excess of unlabelled Flumazenil. Sections were incubated for 20 min in Tris Buffer (TRIZMA pre-set Crystals, Sigma®, adjusted at pH 7.4 at 4° C., 50 mM with NaCl-120 mM), then rinsed 2 times for 2 min with cold buffer, followed by a quick wash in cold distilled water. Sections were then placed in direct contact with a Phosphor-Imager screen and exposed overnight. Autoradiograms were analysed using ImageQuant™ software.
[11C]PK11195 radiosynthesis: Final HPLC purification of [11C]PK11195 was performed on a semi-preparative Waters Symmetry® C-18 HPLC column (eluent: water/acetonitrile/TFA: 40/60/0.1 [v:v:v]; flow-rate: 7 mL/min) and the peak corresponding to radiochemically pure [11C]PK11195 (Rt: 6.5-7.0 min) was collected. Typically, starting from a 55.5 GBq [11C]CO2 cyclotron production batch, about 4.5-5.0 GBq of [11C]PK11195 were obtained within 30 min of radiosynthesis (including HPLC purification and formulation). Radiochemical purity (determined by analytical HPLC on Waters Symmetry-M® C-18 column) was greater than 95% and specific radioactivities ranged from 50 to 90 GBq/μmol (at the end of the radiosynthesis).
[11C]-A radiosynthesis (Labelling at the N-methylindole function): Final HPLC purification of [11C]-A was performed on a semi-preparative Zorbax® SB-C-18 HPLC column (eluent: 0.9% aq. NaCl/EtOH/1M aq. phosphate buffer (pH 2.3): 50/50/0.1 [v:v:v]; flow-rate: 6 mL/min) and the peak corresponding to radiochemically pure [11C]-A (Rt: 8.0-8.5 min) was collected. Typically, starting from a 55.5 GBq [11C]CO2 cyclotron production batch, about 4.5-6.0 GBq of [11C]-A were obtained within 25 min of radiosynthesis (including HPLC purification and formulation). Radiochemical purity (determined by analytical HPLC on Waters Symmetry-M® C-18 column) was greater than 95% and specific radioactivities ranged from 50 to 90 GBq/μmol (at the end of the radiosynthesis).
[11C]-A radiosynthesis (Labelling at the N,N-dimethylacetamide function): Final HPLC purification of [11C]-A was performed on a semi-preparative SymmetryPrep® C-18 HPLC column (eluent: water/acetonitrile/TFA: 50/50/0.1 [v:v:v]; flow-rate: 5 mL/min) and the peak corresponding to radiochemically pure [11C]-A (Rt: 8.0-8.5 min) was collected. Typically, starting from a 55.5 GBq [11C]CO2 cyclotron production batch, about 3.5-5.0 GBq of [11C]-A were obtained within 25 min of radiosynthesis (including HPLC purification and formulation). Radiochemical purity (determined by analytical HPLC on Waters Symmetry-M® C-18 column) was greater than 95% and specific radioactivities ranged from 50 to 90 GBq/μmol (at the end of the radiosynthesis).
i) 4-hydroxy-A synthesis. 4-Hydroxy-A may be resynthesized according to WO00/44384. Rf: 0.15 (SiO2-TLC (CH2Cl2/MeOH: 95/5 v:v)). 1H NMR (DMSO-d6) δ 9.71 (s, 1H), 7.94 (s, 1H), 7.86 (d, 1H, J: 8.4 Hz), 7.39 (d, 1H, J: 8.4 Hz), 7.32 (d, 2H, J: 8.8 Hz), 6.84 (d, 2H, J: 8.8 Hz), 4.27 (s, 3H), 4.20 (s, 2H), 3.16 (s, 3H), 2.84 (s, 3H). 13C NMR (DMSO-d6) δ 168.6 [C], 157.1 [C], 154.8 [C], 141.2 [C], 140.9 [C], 133.6 [C], 132.1 [C], 130.9 [C], 127.8 [2.CH], 124.0 [CH], 122.6 [CH], 118.9 [C], 117.3 [C], 115.3 [2.CH], 111.6 [CH], 40.0 [CH2], 37.4 [CH3], 35.4 [CH3], 32.0 [CH3].
ii) [11C]Methoxy-A radiosynthesis. Labelling with carbon-11 and final HPLC purification may be performed as described for the preparation of [11C]-A (example 2/example 3) using the 4-hydroxyderivative of A synthesized just above (example 41).
General procedure for the synthesis of (fluoro)alkoxy-A and tosyloxyalkoxy-A. To a suspension of K2CO3 (101 mg, 0.73 mmol) in dry DMF (8-12 mL) is added the 4-hydroxyderivative of A (150 mg, 0.36 mmol, see WO00/44384), in solution in dry DMF (2 mL). The reaction mixture is stirred for 30 min at room temperature, followed by the gradual addition of the appropriate alkylating reagent (2 eq.) in solution in DMF (2 mL). The whole mixture was stirred for 2 hrs at 70° C. and stirred an additional hour at room temperature. The mixture was then quenched by addition of a saturated aq NH4Cl solution and extracted with CH2Cl2. The organic layers were combined, washed with brine, dried over sodium sulfate, filtered and concentrated to dryness. The residue was purified by silica gel column chromatography (CH2Cl2/MeOH 98:2 to 95:5 v/v as eluent) to afford the expected (fluoro)alkoxy-A as white powders or white fluffy solids.
Methoxy-A synthesis. The general procedure above (example 5) was used with methyliodide to afford the target compound in 40% yield. Rf: 0.35 (SiO2-TLC (CH2Cl2/MeOH: 95/5 v:v)). 1H NMR (CDCl3) δ 7.94 (d, 1H, J: 8.4 Hz), 7.53 (m, 3H), 7.33 (dd, 1H, J: 8.4, 1.6 Hz), 7.00 (d, 2H, J: 8.8 Hz), 4.32 (s, 3H), 4.18 (s, 2H), 3.86 (s, 3H), 3.22 (s, 3H), 3.00 (s, 3H). 13C NMR (CDCl3) δ 168.4 [C], 158.9 [C], 155.3 [C], 141.6 [C], 140.1 [C], 134.6 [C], 133.2 [C], 131.3 [C], 127.3 [2.CH], 123.3 [CH], 123.0 [CH], 119.0 [C], 117.4 [C], 113.9 [2.CH], 110.6 [CH], 55.5 [CH3], 39.6 [CH2], 37.6 [CH3], 35.7 [CH3], 31.6 [CH3].
Fluoroethoxy-A synthesis. The general procedure above (example 5) was used with 2-fluoroethyl-4-methylbenzenesulfonate (synthesized according to Damont A. et al. (2008) J. label. Compds Radiopharm. 51: 286-292) to afford the target compound in 63% yield. Rf: 0.38 (SiO2-TLC (CH2Cl2/MeOH: 95/5 v:v)). 1H NMR (CD2Cl2) δ 7.89 (d, 1H, J: 8.8 Hz), 7.58 (d, 1H, J: 1.6 Hz), 7.54 (d, 2H, J: 9.2 Hz), 7.34 (dd, 1H, J: 8.8, 1.6 Hz), 7.03 (d, 2H, J: 9.2 Hz), 4.78 (dt, 2H, J2H—F: 47.6, J3H—H: 4.0 Hz), 4.32 (s, 3H), 4.27 (dt, 2H, J3H—F: 28.4 Hz, J3H—H: 4.0 Hz), 4.16 (s, 2H), 3.19 (s, 3H), 2.96 (s, 3H). 13C NMR (CD2Cl2) δ 168.2 [C], 157.6 [C], 155.1 [C], 141.3 [C], 140.7 [C], 140.3 [C], 135.4 [C], 132.8 [C], 127.4 [2.CH], 123.2 [CH], 122.6 [CH], 118.9 [C], 117.2 [C], 114.3 [2.CH], 110.7 [CH], 82.0 [d, J1C—F: 169 Hz, CH2], 67.5 [d, J2C—F: 20 Hz, CH2], 39.5 [CH2], 37.4 [CH3], 35.2 [CH3], 31.6 [CH3]. Anal. Calcd for C23H22ClFN4O3.0.15H2O: C, 60.11; H, 4.89; N, 12.19. found: C, 60.00; H, 4.96; N, 12.18.
Fluoropropoxy-A synthesis. The general procedure above (example 5) was used with 3-fluoropropyl-4-methylbenzenesulfonate to afford the target compound in 58% yield. Rf: 0.39 (SiO2-TLC (CH2Cl2/MeOH: 95/5 v:v)). 1H NMR (CD2Cl2) δ 7.89 (d, 1H, J: 8.4 Hz), 7.58 (d, 1H, J: 1.6 Hz), 7.52 (d, 2H, J: 9.2 Hz), 7.34 (dd, 1H, J: 8.4, 1.6 Hz), 7.01 (d, 2H, J: 9.2 Hz), 4.67 (dt, 2H, J2H—F: 46.8 Hz, J3H—H: 6.0 Hz), 4.31 (s, 3H), 4.16 (m, 4H), 3.19 (s, 3H), 2.96 (s, 3H), 2.20 (dq5, 2H, J3H—F: 26.0 Hz, J3H—H: 6.0). 13C NMR (CD2Cl2) δ 168.2 [C], 158.0 [C], 155.1 [C], 141.3 [C], 140.3 [C], 135.0 [C], 132.8 [C], 131.3 [C], 127.3 [2.CH], 123.2 [CH], 122.5 [CH], 119.0 [C], 117.2 [C], 114.2 [2.CH], 110.7 [CH], 80.8 [d, J1C—F: 163 Hz, CH2], 63.9 [d, J3C—F: 6.0 Hz, CH2], 39.5 [CH2], 37.4 [CH3], 35.2 [CH3], 31.5 [CH3], 30.3 [CH2, J2C—F: 20.0 Hz].
Fluorobutoxy-A synthesis. The general procedure above (example 5) was used with 4-fluorobutylbromide to afford the target compound in 70% yield. Rf: 0.40 (SiO2-TLC (CH2Cl2/MeOH: 95/5 v:v)). 1H NMR (CD2Cl2) δ 7.90 (d, 1H, J: 8.8 Hz), 7.58 (d, 1H, J: 1.6 Hz), 7.51 (d, 2H, J: 9.2 Hz), 7.34 (dd, 1H, J: 8.8, 1.6 Hz), 6.99 (d, 2H, J: 9.2 Hz), 4.54 (dt, 2H, J2H—F: 47.2 Hz, J3H—H: 5.6 Hz), 4.33 (s, 3H), 4.16 (s, 2H), 4.08 (t, 2H, J: 5.6 Hz), 3.19 (s, 3H), 2.96 (s, 3H), 1.97-1.85 (m, 4H). 13C NMR (CD2Cl2) δ 168.2 [C], 158.2 [C], 155.1 [C], 141.3 [C], 140.2 [C], 134.9 [C], 132.8 [C], 131.4 [C], 127.3 [2.CH], 123.2 [CH], 122.5 [CH], 119.0 [C], 117.2 [C], 114.2 [2.CH], 110.7 [CH], 83.8 [d, J1C—F: 163 Hz, CH2], 67.6 [CH2], 39.5 [CH2], 37.4 [CH3], 35.2 [CH3], 31.5 [CH3], 27.1 [CH2, J2C—F: 20.0 Hz], 25.1 [CH2, J3C—F: 5.0 Hz].
2-(Fluoroethoxy)ethoxy-A synthesis. The general procedure above (example 5) was used with 2-(2-fluoroethoxy)ethyl-4-methylbenzenesulfonate to afford the target compound in 69% yield. Rf: 0.45 (SiO2-TLC (CH2Cl2/acetone: 80/20 v:v)). 1H NMR (CD2Cl2) δ 7.91 (d, 1H, J: 8.4 Hz), 7.60 (d, 1H, J: 1.6 Hz), 7.54 (d, 2H, J: 8.8 Hz), 7.36 (dd, 1H, J: 8.4, 1.6 Hz), 7.04 (d, 2H, J: 8.8 Hz), 4.61 (dt, 2H, J2H—F: 48.0 Hz, J3H—H: 4.0 Hz), 4.34 (s, 3H), 4.22 (t, 2H, J: 4.8 Hz), 4.17 (s, 2H), 3.91 (t, 2H, J: 4.8 Hz), 3.83 (dt, 2H, J3H—F: 30.0, J3H—H: 4.0 Hz), 3.21 (s, 3H), 2.98 (s, 3H). 13C NMR (CD2Cl2) δ 168.2 [C], 157.9 [C], 155.1 [C], 141.3 [C], 140.3 [C], 135.1 [C], 132.8 [C], 131.4 [C], 127.3 [2.CH], 123.2 [CH], 122.5 [CH], 119.0 [C], 117.2 [C], 114.3 [2.CH], 110.7 [CH], 83.2 [d, J1C—F: 167 Hz, CH2], 70.4 [d, J2C—F: 19 Hz, CH2], 69.7 [CH2], 67.8 [CH2], 39.5 [CH2], 37.4 [CH3], 35.2 [CH3], 31.6 [CH3].
2-(2-(Fluoroethoxy)ethoxy)ethoxy-A synthesis. The general procedure above (example 5) was used with 2-(2-(2-fluoroethoxy)ethoxy)ethyl-4-methylbenzenesulfonate to afford the target compound in 63% yield. Rf: 0.32 (SiO2-TLC (CH2Cl2/acetone: 80/20 v:v)). 1H NMR (CD2Cl2) δ 7.91 (d, 1H, J: 8.8 Hz), 7.60 (d, 1H, J: 1.6 Hz), 7.54 (d, 2H, J: 8.8 Hz), 7.36 (dd, 1H, J: 8.8, 1.6 Hz), 7.04 (d, 2H, J: 8.8 Hz), 4.57 (dt, 2H, J2H—F: 47.6 Hz, J3H—H: 4.4 Hz), 4.33 (s, 3H), 4.21 (t, 2H, J: 4.4 Hz), 4.17 (s, 2H), 3.88 (t, 2H, J: 4.8 Hz), 3.80-3.65 (m, 6H), 3.21 (s, 3H), 2.98 (s, 3H). 13C NMR (CD2Cl2) δ 168.2 [C], 158.0 [C], 155.1 [C], 141.3 [C], 140.3 [C], 135.1 [C], 132.8 [C], 131.4 [C], 127.3 [2.CH], 123.2 [CH], 122.5 [CH], 119.0 [C], 117.2 [C], 114.3 [2.CH], 110.7 [CH], 83.2 [d, J1C—F: 167 Hz, CH2], 70.7 [CH2], 70.6 [CH2], 70.3 [d, J2C—F: 19 Hz, CH2], 69.6 [CH2], 67.8 [CH2], 39.5 [CH2], 37.4 [CH3], 35.2 [CH3], 31.6 [CH3].
Tosyloxyethoxy-A synthesis. The general procedure above (example 5) was used with ethane-1,2-diyl bis(4-methylbenzenesulfonate) (synthesized according to Damont A. et al. (2008) J. label. Compds Radiopharm. 51: 286-292) to afford the target compound in 45% yield. Rf: 0.72 (SiO2-TLC (CH2Cl2/MeOH: 95/5 v:v)). 1H NMR (CD2Cl2) δ 7.89 (d, 1H, J: 8.8 Hz), 7.84 (d, 2H, J: 8.4 Hz), 7.60 (d, 1H, J: 1.6 Hz), 7.53 (d, 2H, J: 8.8 Hz), 7.41 (d, 2H, J: 8.4 Hz), 7.36 (dd, 1H, J: 8.8, 1.6 Hz), 6.91 (d, 2H, J: 8.8 Hz), 4.40 (t, 2H, J: 4.4 Hz), 4.32 (s, 3H), 4.22 (t, 2H, J: 4.4 Hz), 4.17 (s, 2H), 3.21 (s, 3H), 2.98 (s, 3H), 2.48 (s, 3H). 13C NMR (CD2Cl2) δ 168.1 [C], 157.2 [C], 155.0 [C], 145.2 [C], 141.2 [C], 140.3 [C], 135.5 [C], 132.8 [C], 132.7 [C], 131.3 [C], 129.9 [2.CH], 127.9 [2.CH], 127.4 [2.CH], 123.2 [CH], 122.6 [CH], 118.9 [C], 117.2 [C], 114.4 [2.CH], 110.7 [CH], 68.3 [CH2], 65.8 [CH2], 39.5 [CH2], 37.4 [CH3], 35.2 [CH3], 31.6 [CH3], 21.3 [CH3]. Tosyloxypropoxy-A, tosyloxybutoxy-A, 2-(tosyloxyethoxy)ethoxy-A and 2-(2-(tosyloxyethoxy)ethoxy)ethoxy-A as precursors for the labelling with fluorine-18 of the above described fluoroalkoxy-A derivatives may be prepared as described just above with the appropriate alkylating reagent.
[18F]Fluoroethoxy-A radiosynthesis: Final HPLC purification of [18F]fluoroethoxy-A was performed on a semi-preparative Symmetry® C-18 HPLC column (eluent: water/acetonitrile/TFA: 60/40/0.1 [v:v:v]; flow-rate: 5 mL/min) and the peak corresponding to radiochemically pure [18F]fluoroethoxy-A (Rt: 11.0-13.0 min) was collected. Starting from a 37 GBq [18F]fluoride cyclotron production batch, about 3.7 GBq of [18F]fluoroethoxy-A were obtained within 90 min of radiosynthesis (including HPLC purification and formulation). Radiochemical purity (determined by analytical HPLC on Waters Symmetry-M® C-18 column) was greater than 95% and specific radioactivities greater than 50 GBq/μmol (at the end of the radiosynthesis).
[18F]Fluoropropoxy-A, [18F]fluorobutoxy-A, 2-([18F]fluoroethoxy)ethoxy-A and 2-(2-([18F]fluoroethoxy)ethoxy)ethoxy-A may be prepared as described just above from the corresponding tosyloxyalkoxy-A derivatives (example 12) as precursors for fluorine-18-labelling.
The uptake of [11C]-A is significantly higher in the lesioned striatum of AMPA-injected rats (the region in which PBR expression is induced) compared to the intact controlateral striatum which is expected to express no or non-significant amounts of PBR (
Both unlabelled PK11195 (
Analysis of the metabolites present in the blood and the plasma of rats at 10 and 20 min after [11C]-A injection and of the metabolites present in the brain of rats at 10, 20 and 30 min after [11C]-A injection essentially detected the parent compound only (
In addition, autoradiography of [11C]-A binding on brain sections mirrored the imaging results with a high ipsilateral to contralateral ratio (3.8), which is abolished by an excess of unlabelled PK11195 or A (
In both APP×PS1 and wild type PSI transgenic mice, [11C]-A uptake in the whole brain (cerebellum excluded) is higher than the uptake of [11C]PK11195 (
These data demonstrate that [11C]-A can specifically detect increased PBR binding and inflammation in an acute model of rat neuroinflammation and in a mouse model of Alzheimer's disease. In vivo PET imaging confirms that [11C]-A can be used to image PBR receptor overexpression and neuroinflammation in rodents. Moreover, the PBR receptor binding observed by PET imaging with [11C]-A is greater than that observed with the reference PBR receptor PET ligand, [11C]PK11195.
The uptake of [11C]-A is significantly higher in the lesioned right striatum of a quinolinic acid-injected primate compared to [11C]-A uptake in the contralateral non-injected striatum and two non-injected control brain regions (cerebellum, prefrontal cortex) 24 hrs after excitotoxin injection (
The present invention can be applied as a diagnostic tool and as a tool to follow the evolution and progression of pathologies in which the levels of the PBR are altered and in which inflammation is present. The invention can also be applied to receptor occupancy studies and to evaluate the efficacy of therapeutic treatments in pathological conditions and as a translational biomarker for research from animal models to humans.
Number | Date | Country | Kind |
---|---|---|---|
08291013.4 | Oct 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB09/07562 | 10/27/2009 | WO | 00 | 11/2/2011 |