1. Battery Technology
The energy density and cycle life of the Li-ion battery chemistries have improved significantly in the past 10 years. It is projected that by 2015, the cell energy density could pass 200 wh/kg, with room temperature cycle life >5000 cycles at 70% Depth of Discharge or >12000 cycles at 60% Depth of Discharge. We believe that it is reasonable to expect the battery cells used by stationary application to have a full capacity life (100-80% of the original capacity) of 7 years under maximum usage (5 re-charges a day), or 33 years under minimum usage (1 re-charge a day). The reduced capacity life (80-40% of the original capacity) could add another 4-7 years of usage under maximum usage condition.
Although the battery cell chemistry is capable of meeting the grid application requirements in theory, the real application of the technology is still lacking due to reliability concerns of large number of battery cell connections, as well as the limitation of battery state estimation accuracy and cell balancing techniques.
2. Battery to Grid Applications
Due to accelerated construction of digitized transformer substations in recent years, many new technologies such as digitized control, data communication using IEC61850 protocol are enabling the integration of large sized battery into the grid. In US and Europe, there were several projects that have demonstrated the feasibility of using battery power to provide load leveling and frequency regulation services, or use the battery to store renewable energy. However, the technology is still in its infancy stage due to cost and battery management system technical limitations.
3. DC Fast Charging
The basic hardware and software technology to convert grid AC power to DC for EV fast charge station is currently available. However, given the current grid capacity, it is expected that the vast amount of energy needed from EV Fast charge stations would put significant stress on the existing grid structure and may reduce the grid operating efficiency. Another challenge is the lack of standards governing DC charge coupler geometry and data exchange protocol between EV battery management system and charging station control system. It is expect that the standards will be finalized globally by 2012.
There has not been any application of using a large size battery as energy source to power the DC fast charge station, mainly due to cost and battery management system limitations.
4. Integration of DC Fast Charging and Grid Optimization Functions using Battery Stored Energy
Now it is found by the inventors herein that, even though there are existing technologies that can be used to provide grid optimization services using battery stored energy; or to convert grid AC power to DC for EV fast charge services, there has not been any system available that can provide both DC fast charge and grid optimization services at the same time using battery as energy source.
This invention relates to the concept of a Grid Optimizing Charge System that uses energy stored in battery to provide DC fast charge to electric vehicles while also functions as a grid load leveling energy source and frequency regulating device.
This Grid Optimizing DC Charge System (GOCS) will use a stationary battery matrix to store energy and will be connected to a high voltage power grid at all time. The charge or discharge of the battery will be controlled by specific algorithms that will enable the power grid to draw electricity from the battery matrix when needed or to charge the battery when the grid load is below certain level. The services that could be provided by this Grid Optimizing Charge System include, but are not limited to:
Grid Optimizing Charge System, can be used as an effective power factor correction device to improve the grid efficiency. The battery matrix itself can also be controlled by the grid through battery management system to provide grid frequency regulation service.
The use of a battery matrix as a multi-purpose energy source will not only promote the large scale adoption of electric vehicles by providing DC fast charge services at a very high charge rate (>200 kW), it will also enable power plants to operate more efficiently and emit less pollution by running at a constant optimized power output, hence reducing the associated emissions of CO2, SO2, and NOx substantially compared to traditional power plant ancillary services. The response time of the battery matrix is superior to how the grid operates today. It can respond in milliseconds instead of minutes, which is the traditional power plant response time to vary their power output.
This Grid Optimizing DC Charge System (See
The matrix of battery cells are connected to the grid power at all times through the bi-directional power electronic devices (inverters), which will work with the battery management system to control the charge or discharge of the battery based on grid command or internal battery management system control algorithms. The electrical energy stored in battery cells can also flow through DC charging interface devices and charge ports to charge up multiple electric vehicles at the same time.
The battery management system will ensure that the battery matrix functions under optimal conditions through temperature control, cell balancing, and state of charge management. It will also manage the data communication between the charge station and power grid, and command the safety system of the battery matrix.
I. Battery Matrix (A):
II. Bi-directional Power Electronics (B)
III. Battery Management System (C)
IV. DC Fast Charge Station (D)
For the purposes of describing and defining the present invention it is noted that the term “device” is utilized herein to represent a combination of components and individual components, regardless of whether the components are combined with other components.
For the purposes of describing and defining the present invention it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as preferred or particularly advantageous, it is contemplated that the present invention is not necessarily limited to these preferred aspects of the invention.