This application claims the benefit of German Application No. 10332011.3 filed Jul. 14, 2003, which is incorporated by reference herein.
The invention relates to the use of glass compositions in the form of glass powders, fibers, granules, and spheres for achieving an antioxidative effect.
The glass compositions according to the present invention may also be transformed into glass ceramics having a different degree of crystallinity by an annealing step and can be used as antioxidants. Also a complete transformation into a ceramic may be carried out.
With it, the glass composition may be used in a versatile manner, such as in cosmetic products (i.a. “anti-aging” products), medical products, edibles and animal food, paints and lacquers, and in polymers.
In this case on the one hand, the employment of the materials described herein may occur for protecting the product itself, but on the other hand also for achieving an antioxidative effect towards outside (e.g. in food additives).
While the use of antimicrobially and/or biocidally acting glasses is known from a plurality of documents, the employment of glass compositions to stop or retard an oxidation reaction has completely been unknown so far.
By the use of antioxidants; oxidation reactions which have a negative effect on various products may be stopped retarded; or respectively.
Thus, for example, the presence of free radicals in the above mentioned products may result in undesired decomposition, discoloration or even in the complete uselessness of the product.
Thus the antioxidants may also have product preservative or even product maintaining properties.
Oxidation effects i.a. are also responsible for the aging of the skin. These oxidations, respectively the formation of radicals are caused i.a. by UV radiation of the sun light also by pollutants in the air, and respectively. These effects are i.a. also responsible for the formation of wrinkles. Items antioxidants are also utilized in cosmetic products which should take precautions against a premature aging of the skin (so-called anti wrinkle agents).
The antioxidants described and known so far are almost exclusively organic compounds. Vitamin C (ascorbic acid) and also vitamin E inter alia are well known to a person skilled in the art. Partly these compounds have the disadvantage not to be photo resistant by itself, i.e. that they may act as a free-radical generator. The known oxidant vitamin C i.a. suffers from this disadvantage, in particular when applied in small concentrations.
Thus there is a need for providing an antioxidant which may be used for the above mentioned applications and which doesn't suffer from the disadvantages of the known antioxidants.
It was surprisingly now found that glass compositions as defined in the claims may be used for the purpose of avoiding oxidation reactions, i.e. as antioxidant. The glass compositions may be oxidic.
The antioxidative compositions of the present invention have a high photo and temperature stability. Preferably the antioxidative glass compositions have a biocidal effect on bacteria, fungi and viruses or they are biostatic. Further preferably in contact with humans they are non-irritant to skin and even edible, in addition toxicologically harmless and environmentally compatible. Thus the compositions are preferably free of heavy metals, in particular when they are in direct contact with living beings.
The glass compositions used in this case comprise glass ceramics, fibers, granules, spheres and glass powders. A glass powder may be a powder that contains a plurality of glass particles in any form (also fibers), for example glass spheres having a particle size (d50) of smaller than 1 mm up to smaller than 500 μm, more preferably <100 μm and <20 ppm, in particular <10 μm and <5 μm, or glass fibers having a diameter of smaller than 1 mm up to smaller than 500 μm, more preferably <100 μm and <20 μm, in particular <10 μm and <5 μm.
Glass ceramics according to the present invention may be prepared by annealing and may have different degrees of crystallinity.
The antioxidative effect may be based on a reaction of the glass with surrounding substances.
Reactions on the glass surface may also contribute to the antioxidative effect. Presumably the compositions produce the antioxidative effect in different manners, for example by the interception of free radicals, but also by the discontinuation of reaction chains which are responsible for the formation of free radicals and/or oxidation reactions and/or the exertion of an effect of chelation.
According to the following embodiment examples which serve for illustration the invention will be described in more detail:
Glasses were smelted from the raw materials shown in table 1 which afterwards were formed into ribbons.
By means of dry milling these ribbons were further processed into powder having a particle size of d50=4 μm.
The antioxidative efficiency has been detected by means of the so-called “Deoxyribose-Test”
(“The Deoxyribose Method”, Analytical Biochemistry, 165, 215-219, 1987).
The diagram of
It is possible to show that the antioxidative effect may be based on a discontinuation of the redox reaction chain. In the test method described herein the effect is based on a chelate formation (complexation) of iron which is required for the formation reaction of the free radicals. Thus the Fe(2+)/Fe(3+) redox reaction will be discontinued.
An alternative test method for detecting the antioxidative effect may be carried out by means of the so-called “Protein-Carbonyl-Assay-Test” which is described in “R. L. Levine et al., Meth. Enzymol. 186, 464-478, 1990”.
The lower the bar in
The bar diagram of
Embodiment 3 also shows a clear antioxidative effect after UV irradiation.
Deoxyribose-Test for the Determination of the Antioxidative Effect of Shampoos which contain Glass Compositions according to the Present Invention.
From the above table it will be appreciated that the shampoo which contains the glass composition according to embodiment 2 shows a light antioxidative effect when the test concentration of the tested shampoo is 10%.
In the test performed for the shampoo which contains the glass composition according to embodiment 3 a degradation of deoxyribose through hydroxyl radicals in an amount of about 30% can be determined, which corresponds to a distinct antioxidative effect.
The support itself (shampoo 3, without glass composition) shows with an inhibition of 8.5% a light antioxidative effect.
The shampoos 1 to 3 have the following composition (table 3):
Deoxyribose-Test for the Determination of the Antioxidative Effect of OW Formulations, which contain Glass Compositions according to the Present Invention.
From the above table it will be appreciated that the OW formulation which contains the glass composition according to embodiment 2 shows a light antioxidative effect if the test concentration of the tested formulation is 10%.
In the test performed for the OW formulation which contains the glass composition according to embodiment 3 a degradation of deoxyribose through hydroxyl radicals in amounts of about 37% respectively 49% can be determined, which correspond to a distinct antioxidative effect.
The OW formulations 1 and 2 have the following compositions (table 5):
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
In the foregoing and in the examples, all temperatures are set forth uncorrected in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.
The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions
Number | Date | Country | Kind |
---|---|---|---|
103 32 011 | Jul 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4428774 | Drake et al. | Jan 1984 | A |
5019293 | Burlitch | May 1991 | A |
5196381 | Hu et al. | Mar 1993 | A |
5296026 | Monroe et al. | Mar 1994 | A |
5614006 | Algar | Mar 1997 | A |
5880094 | Tam | Mar 1999 | A |
6475631 | Yamamoto et al. | Nov 2002 | B1 |
6482444 | Bellantone et al. | Nov 2002 | B1 |
20020086039 | Lee et al. | Jul 2002 | A1 |
20030008759 | Martin et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
101 41 230 | Mar 2003 | DE |
10213630 | Mar 2003 | DE |
0 003 903 | Dec 1982 | EP |
1364639 | Nov 2003 | EP |
54-160576 | Dec 1979 | JP |
58-133320 | Aug 1983 | JP |
09-291325 | Nov 1997 | JP |
2001-291770 | Oct 2001 | JP |
WO 0103650 | Jan 2001 | WO |
WO 0172262 | Oct 2001 | WO |
WO 03050052 | Jun 2003 | WO |
WO 03050053 | Jun 2003 | WO |
WO 03059834 | Jul 2003 | WO |
Entry |
---|
Burdock (Encyclopedia of food and color additives 1997, vol. 3, pp. 2596 and 2597) Furia (CRC handbook of food additives 1972, vol. 1; pp. 644, 645, 647 and 649) 4 pages. |
Furia (CRC handbook of food additives 1972, vol. 1; pp. 644, 645, 647 and 649) 5 pages. |
Ferraz et al. (J. Biomed Mater Res 1999, 45, 376-383). |
Materials Protection, Feb. 1996, vol. 29 No. 2, pp. 10-12., Japan. |
Abstract of SU Patent #732218. |
Abstract of WO Pub #9310058. |
Abstract of RU Patent # 2027778. |
Abstract of JP 49-119909. |
Abstract of CN Patent #1401612. |
Abstract: Zhang, Ling et al.; School of Materials Science and Engineering, Anshan Inst. of I. & S. Technology, 11402, (2000), 23(4), pp. 254-256. |
English translation of Office Action dated Nov. 4, 2010 for corresponding Japanese Application No. P2004-204195. |
Database WPI, XP 002299261. |
Patent Abstracts of Japan, Bd. 200, Nr. 10. |
Number | Date | Country | |
---|---|---|---|
20050013873 A1 | Jan 2005 | US |