This application claims the benefit of U.S. Provisional Application for Patent Ser. No. 61/162,193, filed on Mar. 20, 2009, and entitled “USE OF OPTICAL REFLECTANCE PROXIMITY DETECTOR FOR NUISANCE MITIGATION IN SMOKE ALARMS,” the specification of which is incorporated herein by reference.
The present invention relates to smoke alarms, and more particularly to smoke alarms including proximity detectors for controlling operation of the smoke alarm.
Smoke alarms are utilized for detecting and warning the inhabitants of a home or other occupied location of the existence of smoke which may indicate a fire. Upon detection of the smoke by the smoke alarm, the device emits a shrill, loud alarm that notifies all individuals within the area that smoke has been detected and departure from the premises may be necessary.
While the smoke alarms are very effective at notifying individuals of the possible existence of fire that is generating the smoke, certain types of false alarm indications may often be very annoying to a user. These false alarms may be triggered, for example, by smoke generation within the kitchen during preparation of a meal. This may cause the creation of enough smoke that will set off the smoke alarm causing the loud, shrill alarm. In this case, a fire that is dangerous and out of control is not of concern to the residents so the loud, shrill smoke alarm will provide more of an annoyance than a benefit. Presently, there exists no method for easily discontinuing the loud, shrill alarm other than fanning the atmosphere in the area of the smoke alarm in an attempt to remove the smoke from the area that is causing the smoke alarm to activate or removing the battery or house power from the smoke alarm in order to turn it off. Removal of the power source may be difficult as smoke alarms are usually mounted upon the ceiling or other high area of the house or building to provide maximum smoke detection capabilities.
An additional problem with existing smoke alarms is the battery check or low battery condition. In smoke alarms that are powered by batteries, it is often necessary to periodically check the battery within the smoke alarm in order to confirm that the battery has sufficient charge. This often requires obtaining a ladder or chair for the user to reach the smoke alarm which has been placed in a substantially high location within the home or building to maximize smoke detection capabilities. The user is required to push a button that is located on the smoke alarm to perform a battery check. An audible signal is provided for an indication of whether or not the battery is in need of replacement.
An additional related problem relates to the low battery condition within a smoke alarm. When the battery reaches a low power condition, the smoke alarm will commonly beep at a low duty cycle of around once per minute. Unfortunately, this beep often occurs in early morning hours when the house temperature is at a minimum and these conditions maximize the low battery condition and increase the likelihood of an alarm. This is of course a most irritating time for this to occur. Additionally, the beep is very difficult to locate since the beep is short and a single high frequency tone. The beep is short to enable up to a week or more of low power battery alert on a mostly depleted battery. The alert transducer uses a single high frequency, typically around 3 kilohertz due to the need to produce a very high output from a small transducer which necessitates the use of a high frequency resonate transducer. Due to the reflections and use of half wavelengths shorter than the distance between the human ears, it is very difficult to localize the source which may present a problem since most homes normally include a number of smoke alarms.
Thus, there is a need to provide an improved method for temporarily mitigating an undesired activation of a smoke alarm and to provide battery check capabilities within the smoke alarm.
The present invention, as disclosed and described herein, in one aspect thereof, comprises smoke detection circuitry for detecting smoke and generating a detection signal responsive thereto. Proximity detection circuitry generates a proximity detection signal responsive to the detection of an object within in a selected distance of the smoke alarm. Alarm generation circuitry generates an audible alarm responsive to the detection signal. The audible alarm may be deactivated for a predetermined period of time responsive to at least one proximity detection signal.
For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout, the various views and embodiments of a smoke alarm having proximity detection operation mode are illustrated and described, and other possible embodiments are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations based on the following examples of possible embodiments.
Referring now to the drawings, and more particularly to
Referring now also to
As described previously, some issues arising with existing smoke alarms, be they ionization or optical type smoke alarms, arise from the creation of false alarm situations such as, for example, when a small amount of smoke is created within the kitchen due to burning toast, food falling on the heating element of the oven, etc., or the ability to quickly and easily check the battery charge using the test circuitry. Presently, mitigation of an alarm requires disconnection of the power source to the smoke alarm in order to discontinue an undesired alarm. Additionally, any type of test of the battery charge requires pushing of a button on the external surface of the smoke alarm that requires the user to be able to physically touch the smoke alarm. This often presents a great challenge since either removing power sources to discontinue an undesired alarm or pressing a button to perform battery test operations require the user to get out a ladder or stand on a chair to access the smoke alarm placed in a high location to ensure its optimal performance.
Referring now to
The optical sensor 408 in addition to detecting smoke is used for detecting the proximity of a user's hand or other item in conjunction with the proximity sensor circuitry 402. The proximity sensor circuitry 402 detects when a hand or for example, a broom or other item are being waved in close proximity to the smoke alarm. The optical sensor 408 comprises a short-range (approximately 6 inches) optical proximity sensor that in conjunction with the proximity sensor circuitry 402 may be used to control operations of the smoke alarm with either the wave of a hand or some other readily available object such as a broom. The test circuitry 410 enables testing of the charge within a battery 412. The battery 412 provides power to each of the components within the smoke alarm circuit.
Utilizing a combination of the proximity sensor circuitry 402, optical sensor 408 and alarm generation circuitry 404, the smoke alarm may provide a number of proximity controller functionalities. These are generally illustrated in
In order to assist a user in temporarily mitigating the alarm, a momentary change in the audible alarm would be desirable for each proximity event that has been detected by the optical sensor 408 and proximity sensor circuit 402. This would assist the user in knowing whether they had accurately or inaccurately waved their hand or broom in the area of the smoke alarm and provide for an audible indication of aiming feedback with respect to the proximity detection. After the appropriate combination of proximity detection events have been detected by the optical sensor 408 and proximity sensor circuit 402, the audible alarm would be temporarily discontinued.
The smoke alarm commonly beeps at a low duty cycle of around once per minute when the battery 412 has its charge fall below a predetermined level. These beeps can often be very difficult to locate since the beep is short and comprises a single high frequency tone. The beep is short to enable up to a week or more of low battery alerts to be created on an almost depleted battery. The alert transducer uses a single high frequency chirp typically around 3 kilohertz due to the need to produce a very high output from a small transducer. This necessitates the use of a high frequency resonate transducer. Due to the reflections and the use of a half wavelength shorter than the distance between the human ear, it is often very difficult to locate the source requiring the user to check each smoke alarm within the house requiring a great deal of time.
The battery test functionality 506 enables a battery test operation to be performed on the battery 412 within the smoke alarm without having to manually press a button on the smoke alarm. The battery test functionality 506 can be utilized in two situations. When a low battery charge chirp is being emitted by the smoke alarm, the low battery test functionality 506 may be used to determine whether a particular smoke alarm has a low battery charge or whether the battery presently has sufficient charge. The battery test functionality 506 would similarly be useful for performing the periodic battery charge tests that are required to ensure the smoke alarm is in working operation.
By utilizing the proximity sensor circuitry 402, if the smoke alarm has not been activated to indicate detection of smoke, the detection of a single proximity event from a hand or broom by the optical sensor 408 and proximity sensor circuitry 402 initiates a battery check test. If the battery 412 is weak, the test circuitry 410 will cause the production of a distinctive series of beeps or a distinctive tone to indicate a dying battery. If the battery 412 is sufficiently charged, a single short beep of a different tone may be created. Thus, if a user hears a low battery beep, they can use their broom or hand to quickly and easily check all of the smoke alarms within their home without having to climb up on a chair or ladder or remove the devices in order to press a detection button upon the smoke alarm.
As described previously, smoke alarms generally use either an ionization chamber or optical smoke detection circuitry or a combination of both to detect smoke. These differing techniques have distinct advantages and disadvantages. However, a high performance optical reflective detector implemented within the circuit of
Referring now to
If inquiry step 606 determines that the smoke alarm is not presently activated, control passes to inquiry step 618 to make a determination if the battery low alarm is presently active for the smoke alarm. If so, a battery low indication is audibly provided from the smoke alarm at step 620. If the battery low alarm has not been activated, a battery charge check is performed at step 622. Inquiry step 624 determines whether the battery is in a low charge condition. If not, a battery OK audible indication is provided at step 626 to indicate a sufficient charge and control passes back to step 602. If inquiry step 624 determines that the battery is in a low charge condition, the battery low indication is provided at step 620 before control passes back to step 602 to monitor for additional proximity actuations.
The above-described solution provides a low cost intuitive battery alarm control system to limit nuisance alarms within the smoke alarm and enables ease of battery charge checking using a proximity detection control process. The system also improves safety since users often remove batteries or take down smoke alarms that are producing spurious alarms or low battery beeping alarms. Users will also take down unaffected smoke alarms since the user cannot localize the beep associated with the alarm and then do not replace the alarm. Consumers do not check battery levels if the smoke alarm is out of reach. Additionally, use of an optical reflection proximity control system is better than a capacitive proximity system since convenient hand extension devices such as brooms would not work to activate a capacitive sensor which senses a conductive object such as the human hand or body.
It will be appreciated by those skilled in the art having the benefit of this disclosure that this smoke alarm having proximity detection operation mode provides an improved method for controlling operation of a smoke alarm. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to be limiting to the particular forms and examples disclosed. On the contrary, included are any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope hereof, as defined by the following claims. Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.
Number | Name | Date | Kind |
---|---|---|---|
2101637 | Davis | Dec 1937 | A |
3934145 | Dobrzanski et al. | Jan 1976 | A |
3991357 | Kaminski | Nov 1976 | A |
4183290 | Kucharczyk | Jan 1980 | A |
4223831 | Szarka | Sep 1980 | A |
4257039 | Webb et al. | Mar 1981 | A |
4313110 | Subulak et al. | Jan 1982 | A |
4335847 | Levine | Jun 1982 | A |
4408711 | Levine | Oct 1983 | A |
4615380 | Beckey | Oct 1986 | A |
4674027 | Beckey | Jun 1987 | A |
4685614 | Levine | Aug 1987 | A |
4751961 | Levine et al. | Jun 1988 | A |
4857895 | Kaprelian | Aug 1989 | A |
4897798 | Cler | Jan 1990 | A |
4975684 | Guttinger et al. | Dec 1990 | A |
5088645 | Bell | Feb 1992 | A |
5211332 | Adams | May 1993 | A |
5240178 | Dewolf et al. | Aug 1993 | A |
5244146 | Jefferson et al. | Sep 1993 | A |
5250904 | Salander et al. | Oct 1993 | A |
5395042 | Riley et al. | Mar 1995 | A |
5476221 | Seymour | Dec 1995 | A |
5499196 | Pacheco | Mar 1996 | A |
5555927 | Shah | Sep 1996 | A |
5611484 | Uhrich | Mar 1997 | A |
5801625 | Wang | Sep 1998 | A |
5808294 | Neumann | Sep 1998 | A |
5902183 | D'Souza | May 1999 | A |
5909378 | De Milleville | Jun 1999 | A |
5918474 | Khanpara et al. | Jul 1999 | A |
5977964 | Williams et al. | Nov 1999 | A |
6062482 | Gauthier et al. | May 2000 | A |
6066843 | Scheremeta | May 2000 | A |
6095427 | Hoium et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6111511 | Sivathanu et al. | Aug 2000 | A |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6356204 | Guindi et al. | Mar 2002 | B1 |
6370894 | Thompson et al. | Apr 2002 | B1 |
6415205 | Myron et al. | Jul 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6619055 | Addy | Sep 2003 | B1 |
6645066 | Gutta et al. | Nov 2003 | B2 |
6769482 | Wagner et al. | Aug 2004 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
7024336 | Salsbury et al. | Apr 2006 | B2 |
7109879 | Stults et al. | Sep 2006 | B2 |
7149729 | Kaasten et al. | Dec 2006 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7379791 | Tamarkin et al. | May 2008 | B2 |
RE40437 | Rosen | Jul 2008 | E |
7469550 | Chapman, Jr. et al. | Dec 2008 | B2 |
7579945 | Richter et al. | Aug 2009 | B1 |
7623028 | Kates | Nov 2009 | B2 |
7644869 | Hoglund et al. | Jan 2010 | B2 |
7702424 | Cannon et al. | Apr 2010 | B2 |
7784704 | Harter | Aug 2010 | B2 |
7802618 | Simon et al. | Sep 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7854389 | Ahmed | Dec 2010 | B2 |
7994928 | Richmond | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8016205 | Drew | Sep 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8037022 | Rahman et al. | Oct 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8091375 | Crawford | Jan 2012 | B2 |
8098166 | Lang | Jan 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8174381 | Imes et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8219249 | Harrod et al. | Jul 2012 | B2 |
20010038337 | Wickstead et al. | Nov 2001 | A1 |
20040164238 | Xu et al. | Aug 2004 | A1 |
20040249479 | Shorrock | Dec 2004 | A1 |
20050090915 | Geiwitz | Apr 2005 | A1 |
20050128067 | Zakrewski | Jun 2005 | A1 |
20050150968 | Shearer | Jul 2005 | A1 |
20050189429 | Breeden | Sep 2005 | A1 |
20050192915 | Ahmed et al. | Sep 2005 | A1 |
20050280421 | Yomoda et al. | Dec 2005 | A1 |
20060186214 | Simon et al. | Aug 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20070080819 | Marks et al. | Apr 2007 | A1 |
20070115902 | Shamoon et al. | May 2007 | A1 |
20070205297 | Finkam et al. | Sep 2007 | A1 |
20070266575 | Nash | Nov 2007 | A1 |
20080015742 | Kulyk et al. | Jan 2008 | A1 |
20080183335 | Poth et al. | Jul 2008 | A1 |
20080191045 | Harter | Aug 2008 | A1 |
20080273754 | Hick et al. | Nov 2008 | A1 |
20080317292 | Baker et al. | Dec 2008 | A1 |
20090171862 | Harrod et al. | Jul 2009 | A1 |
20090254225 | Boucher et al. | Oct 2009 | A1 |
20090259713 | Blumrich et al. | Oct 2009 | A1 |
20090297901 | Kilian et al. | Dec 2009 | A1 |
20090327354 | Resnick et al. | Dec 2009 | A1 |
20100019051 | Rosen | Jan 2010 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070086 | Harrod et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100167783 | Alameh et al. | Jul 2010 | A1 |
20100179704 | Ozog | Jul 2010 | A1 |
20100211224 | Keeling et al. | Aug 2010 | A1 |
20100238036 | Holcombe | Sep 2010 | A1 |
20100262298 | Johnson et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20110046792 | Imes et al. | Feb 2011 | A1 |
20110046805 | Bedros et al. | Feb 2011 | A1 |
20110046806 | Nagel et al. | Feb 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110151837 | Winbush, III | Jun 2011 | A1 |
20110160913 | Parker et al. | Jun 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110307112 | Barrilleaux | Dec 2011 | A1 |
20120017611 | Coffel et al. | Jan 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120085831 | Kopp | Apr 2012 | A1 |
20120101637 | Imes et al. | Apr 2012 | A1 |
20120158350 | Steinberg et al. | Jun 2012 | A1 |
20120221151 | Steinberg | Aug 2012 | A1 |
20120252430 | Imes et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2202008 | Feb 2000 | CA |
196069 | Dec 1991 | EP |
59106311 | Jun 1984 | JP |
01252850 | Oct 1989 | JP |
09298780 | Nov 1997 | JP |
Entry |
---|
Aprilaire Electronic Thermostats Model 8355 User's Manual, Research Products Corporation, Dec. 2000, 16 pages. |
Braeburn 5300 Installer Guide, Braeburn Systems, LLC, Dec. 9, 2009, 10 pages. |
Braeburn Model 5200, Braeburn Systems, LLC, Jul. 20, 2011, 11 pages. |
Ecobee Smart Si Thermostat Installation Manual, Ecobee, Apr. 3, 2012, 40 pages. |
Ecobee Smart Si Thermostat User Manual, Ecobee, Apr. 3, 2012, 44 pages. |
Ecobee Smart Thermostat Installation Manual, Jun. 29, 2011, 20 pages. |
Ecobee Smart Thermostat User Manual, May 11, 2010, 20 pages. |
Electric Heat Lock Out on Heat Pumps, Washington State University Extension Energy Program, Apr. 2010, pp. 1-3. |
Honeywell Installation Guide FocusPRO TH6000 Series, Honeywell International, Inc., Jan. 5, 2012, 24 pages. |
Honeywell Operating Manual FocusPRO TH6000 Series, Honeywell International, Inc., Mar. 25, 2011, 80 pages. |
Honeywell Prestige IAQ Product Data 2, Honeywell International, Inc., Jan. 12, 2012, 126 pages. |
Honeywell Prestige THX9321 and TXH9421 Product Data, Honeywell International, Inc., 68/0311, Jan. 2012, 126 pages. |
Honeywell Prestige THX9321-9421 Operating Manual, Honeywell International, Inc., Jul. 6, 2011, 120 pages. |
Hunter Internet Thermostat Installation Guide, Hunter Fan Co., Aug. 14, 2012, 8 pages. |
Introducing the New Smart Si Thermostat, Datasheet [online]. Ecobee, Mar. 2012 [retrieved on Feb. 25, 2013]. Retrieved from the Internet: <URL: https://www.ecobee.com/solutions/home/smart-si/>, Mar. 12, 2012, 4 pages. |
Lennox ComfortSense 5000 Owners Guide, Lennox Industries, Inc., Feb. 2008, 32 pages. |
Lennox ComfortSense 7000 Owners Guide, Lennox Industries, Inc., May 2009, 15 pages. |
Lennox iComfort Manual, Lennox Industries, Inc., Dec. 2010, 20 pages. |
Lux PSPU732T Manual, Lux Products Corporation, Jan. 6, 2009, 48 pages. |
NetX RP32-WiFi Network Thermostat Consumer Brochure, Network Thermostat, May 2011, 2 pages. |
NetX RP32-WiFi Network Thermostat Specification Sheet, Network Thermostat, Feb. 28, 2012, 2 pages. |
RobertShaw Product Manual 9620, Maple Chase Company, Jun. 12, 2001, 14 pages. |
RobertShaw Product Manual 9825i2, Maple Chase Company, Jul. 17, 2006, 36 pages. |
SA720 Smoke Alarm User Manual, First Alert, Aug. 2007, 6 pages. |
Smoke Alarm User Manual, Kidde, i9060, Dec. 1, 2009, 2 pages. |
SYSTXCCUIZ01-V Infinity Control Installation Instructions, Carrier Corp, May 31, 2012, 20 pages. |
T8611G Chronotherm IV Deluxe Programmable Heat Pump Thermostat Product Data, Honeywell International Inc., Oct. 1997, 24 pages. |
TB-PAC, TB-PHP, Base Series Programmable Thermostats, Carrier Corp, May 14, 2012, 8 pages. |
The Perfect Climate Comfort Center PC8900A W8900A-C Product Data Sheet, Honeywell International Inc, Apr. 2001, 44 pages. |
TP-PAC, TP-PHP, TP-NAC, TP-NHP Performance Series AC/HP Thermostat Installation Instructions, Carrier Corp, Sep. 2007, 56 pages. |
Trane Communicating Thermostats for Fan Coil, Trane, May 2011, 32 pages. |
Trane Communicating Thermostats for Heat Pump Control, Trane, May 2011, 32 pages. |
Trane Install XL600 Installation Manual, Trane, Mar. 2006, 16 pages. |
Trane XL950 Installation Guide, Trane, Mar. 2011, 20 pages. |
Venstar T2900 Manual, Venstar, Inc., Apr. 2008, 113 pages. |
Venstar T5800 Manual, Venstar, Inc., Sep. 7, 2011, 63 pages. |
VisionPRO TH8000 Series Installation Guide, Honeywell International, Inc., Jan. 2012, 12 pages. |
VisionPRO TH8000 Series Operating Manual, Honeywell International, Inc., Mar. 2011, 96 pages. |
VisionPRO Wi-Fi Programmable Thermostat, Honeywell International, Inc. Operating Manual, Aug. 2012, 48 pages. |
White Rodgers (Emerson) Model 1F81-261 Installation and Operating Instructions, White Rodgers, Apr. 15, 2010, 8 pages. |
White Rodgers (Emerson) Model IF98EZ-1621 Homeowner's User Guide, White Rodgers, Jan. 25, 2012, 28 pages. |
Allen et al., “Real-Time Earthquake Detection and Hazard Assessment by ElarmS Across California”, Geophysical Research Letters, vol. 36, L00B08, 2009, pp. 1-6. |
Deleeuw, “Ecobee WiFi Enabled Smart Thermostat Part 2: The Features Review”, Retrieved from <URL: http://www.homenetworkenabled.com/content.php?136-ecobee-WiFi-enabled-Smart-Thermostat-Part-2-The-Features-review>, Dec. 2, 2011, 5 pages. |
Gao et al., “The Self-Programming Thermostat: Optimizing Setback Schedules Based on Home Occupancy Patterns”, In Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Nov. 3, 2009, 6 pages. |
Loisos et al., “Buildings End-Use Energy Efficiency: Alternatives to Compressor Cooling”, California Energy Commission, Public Interest Energy Research, Jan. 2000, 80 pages. |
Lu et al., “The Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes”, In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Nov. 3-5, 2010, pp. 211-224. |
Mozer, “The Neural Network House: An Environmental that Adapts to its Inhabitants”, AAAI Technical Report SS-98-02, 1998, pp. 110-114. |
Rauchwarnmelder, Installation and User Manual [online]. GIRA [retrieved on Mar. 8, 2013]. Retrieved from the Internet: <URL: http://download.gira.de/data2/23301210.pdf>. |
Rauchwarnmelder, Datasheet [online]. GIRA [retrieved on Mar. 7, 2013]. Retrieved from the Internet: <URL: http://www.gira.de/gebaeudetechnik/produkte/sicherheit/rauchmelder/rauchwarnmelderdualvds.html>, 14 pages. |
Rauchwarnmelder, Design [online]. GIRA [retrieved on Mar. 7, 2013]. Retrieved from the Internet: <URL: http://www.gira.de/gebaeudetechnik/produkte/sicherheit/rauchmelder/rauchwarnmelderdualvds.html?vid=1145>, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20100238036 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
61162193 | Mar 2009 | US |