The present disclosure is generally directed to vehicle systems, in particular, toward electric and/or hybrid-electric vehicles.
In recent years, transportation methods have changed substantially. This change is due in part to a concern over the limited availability of natural resources, a proliferation in personal technology, and a societal shift to adopt more environmentally friendly transportation solutions. These considerations have encouraged the development of a number of new flexible-fuel vehicles, hybrid-electric vehicles, and electric vehicles.
While these vehicles appear to be new they are generally implemented as a number of traditional subsystems that are merely tied to an alternative power source. In fact, the design and construction of the vehicles is limited to standard frame sizes, shapes, materials, and transportation concepts. Among other things, these limitations fail to take advantage of the benefits of new technology, power sources, and support infrastructure.
Embodiments of the present disclosure will be described in connection with a vehicle, and in some embodiments, an electric vehicle, rechargeable electric vehicle, and/or hybrid-electric vehicle and associated systems.
Although shown in the form of a car, it should be appreciated that the vehicle 100 described herein may include any conveyance or model of a conveyance, where the conveyance was designed for the purpose of moving one or more tangible objects, such as people, animals, cargo, and the like. The term “vehicle” does not require that a conveyance moves or is capable of movement. Typical vehicles may include but are in no way limited to cars, trucks, motorcycles, busses, automobiles, trains, railed conveyances, boats, ships, marine conveyances, submarine conveyances, airplanes, space craft, flying machines, human-powered conveyances, and the like.
Referring now to
The structural subsystem includes the frame 104 of the vehicle 100. The frame 104 may comprise a separate frame and body construction (i.e., body-on-frame construction), a unitary frame and body construction (i.e., a unibody construction), or any other construction defining the structure of the vehicle 100. The frame 104 may be made from one or more materials including, but in no way limited to steel, titanium, aluminum, carbon fiber, plastic, polymers, etc., and/or combinations thereof. In some embodiments, the frame 104 may be formed, welded, fused, fastened, pressed, etc., combinations thereof, or otherwise shaped to define a physical structure and strength of the vehicle 100. In any event, the frame 104 may comprise one or more surfaces, connections, protrusions, cavities, mounting points, tabs, slots, or other features that are configured to receive other components that make up the vehicle 100. For example, the body panels 108, powertrain subsystem, controls systems, interior components, communications subsystem, and safety subsystem may interconnect with, or attach to, the frame 104 of the vehicle 100.
The frame 104 may include one or more modular system and/or subsystem connection mechanisms. These mechanisms may include features that are configured to provide a selectively interchangeable interface for one or more of the systems and/or subsystems described herein. The mechanisms may provide for a quick exchange, or swapping, of components while providing enhanced security and adaptability over conventional manufacturing or attachment. For instance, the ability to selectively interchange systems and/or subsystems in the vehicle 100 allow the vehicle 100 to adapt to the ever-changing technological demands of society and advances in safety. Among other things, the mechanisms may provide for the quick exchange of batteries, capacitors, power sources 208A, 208B, motors 212, engines, safety equipment, controllers, user interfaces, interiors exterior components, body panels 108, bumpers 216, sensors, etc., and/or combinations thereof. Additionally or alternatively, the mechanisms may provide unique security hardware and/or software embedded therein that, among other things, can prevent fraudulent or low quality construction replacements from being used in the vehicle 100. Similarly, the mechanisms, subsystems, and/or receiving features in the vehicle 100 may employ poka-yoke, or mistake-proofing, features that ensure a particular mechanism is always interconnected with the vehicle 100 in a correct position, function, etc.
By way of example, complete systems or subsystems may be removed and/or replaced from a vehicle 100 utilizing a single-minute exchange (“SME”) principle. In some embodiments, the frame 104 may include slides, receptacles, cavities, protrusions, and/or a number of other features that allow for quick exchange of system components. In one embodiment, the frame 104 may include tray or ledge features, mechanical interconnection features, locking mechanisms, retaining mechanisms, etc., and/or combinations thereof. In some embodiments, it may be beneficial to quickly remove a used power source 208A, 208B (e.g., battery unit, capacitor unit, etc.) from the vehicle 100 and replace the used power source 208A, 208B with a charged or new power source. Continuing this example, the power source 208A, 208B may include selectively interchangeable features that interconnect with the frame 104 or other portion of the vehicle 100. For instance, in a power source 208A, 208B replacement, the quick release features may be configured to release the power source 208A, 208B from an engaged position and slide or move in a direction away from the frame 104 of a vehicle 100. Once removed, or separated from, the vehicle, the power source 208A, 208B may be replaced (e.g., with a new power source, a charged power source, etc.) by engaging the replacement power source into a system receiving position adjacent to the vehicle 100. In some embodiments, the vehicle 100 may include one or more actuators configured to position, lift, slide, or otherwise engage the replacement power source with the vehicle 100. In one embodiment, the replacement power source may be inserted into the vehicle 100 or vehicle frame 104 with mechanisms and/or machines that are external and/or separate from the vehicle 100.
In some embodiments, the frame 104 may include one or more features configured to selectively interconnect with other vehicles and/or portions of vehicles. These selectively interconnecting features can allow for one or more vehicles to selectively couple together and decouple for a variety of purposes. For example, it is an aspect of the present disclosure that a number of vehicles may be selectively coupled together to share energy, increase power output, provide security, decrease power consumption, provide towing services, and/or provide a range of other benefits. Continuing this example, the vehicles may be coupled together based on travel route, destination, preferences, settings, sensor information, and/or some other data. The coupling may be initiated by at least one controller of the vehicle and/or traffic control system upon determining that a coupling is beneficial to one or more vehicles in a group of vehicles or a traffic system. As can be appreciated, the power consumption for a group of vehicles traveling in a same direction may be reduced or decreased by removing any aerodynamic separation between vehicles. In this case, the vehicles may be coupled together to subject only the foremost vehicle in the coupling to air and/or wind resistance during travel. In one embodiment, the power output by the group of vehicles may be proportionally or selectively controlled to provide a specific output from each of the one or more of the vehicles in the group.
The interconnecting, or coupling, features may be configured as electromagnetic mechanisms, mechanical couplings, electromechanical coupling mechanisms, etc., and/or combinations thereof. The features may be selectively deployed from a portion of the frame 104 and/or body of the vehicle 100. In some cases, the features may be built into the frame 104 and/or body of the vehicle 100. In any event, the features may deploy from an unexposed position to an exposed position or may be configured to selectively engage/disengage without requiring an exposure or deployment of the mechanism from the frame 104 and/or body of the vehicle 100. In some embodiments, the interconnecting features may be configured to interconnect one or more of power, communications, electrical energy, fuel, and/or the like. One or more of the power, mechanical, and/or communications connections between vehicles may be part of a single interconnection mechanism. In some embodiments, the interconnection mechanism may include multiple connection mechanisms. In any event, the single interconnection mechanism or the interconnection mechanism may employ the poka-yoke features as described above.
The power system of the vehicle 100 may include the powertrain, power distribution system, accessory power system, and/or any other components that store power, provide power, convert power, and/or distribute power to one or more portions of the vehicle 100. The powertrain may include the one or more electric motors 212 of the vehicle 100. The electric motors 212 are configured to convert electrical energy provided by a power source into mechanical energy. This mechanical energy may be in the form of a rotational or other output force that is configured to propel or otherwise provide a motive force for the vehicle 100.
In some embodiments, the vehicle 100 may include one or more drive wheels 220 that are driven by the one or more electric motors 212 and motor controllers 214. In some cases, the vehicle 100 may include an electric motor 212 configured to provide a driving force for each drive wheel 220. In other cases, a single electric motor 212 may be configured to share an output force between two or more drive wheels 220 via one or more power transmission components. It is an aspect of the present disclosure that the powertrain may include one or more power transmission components, motor controllers 214, and/or power controllers that can provide a controlled output of power to one or more of the drive wheels 220 of the vehicle 100. The power transmission components, power controllers, or motor controllers 214 may be controlled by at least one other vehicle controller or computer system as described herein.
As provided above, the powertrain of the vehicle 100 may include one or more power sources 208A, 208B. These one or more power sources 208A, 208B may be configured to provide drive power, system and/or subsystem power, accessory power, etc. While described herein as a single power source 208 for sake of clarity, embodiments of the present disclosure are not so limited. For example, it should be appreciated that independent, different, or separate power sources 208A, 208B may provide power to various systems of the vehicle 100. For instance, a drive power source may be configured to provide the power for the one or more electric motors 212 of the vehicle 100, while a system power source may be configured to provide the power for one or more other systems and/or subsystems of the vehicle 100. Other power sources may include an accessory power source, a backup power source, a critical system power source, and/or other separate power sources. Separating the power sources 208A, 208B in this manner may provide a number of benefits over conventional vehicle systems. For example, separating the power sources 208A, 208B allow one power source 208 to be removed and/or replaced independently without requiring that power be removed from all systems and/or subsystems of the vehicle 100 during a power source 208 removal/replacement. For instance, one or more of the accessories, communications, safety equipment, and/or backup power systems, etc., may be maintained even when a particular power source 208A, 208B is depleted, removed, or becomes otherwise inoperable.
In some embodiments, the drive power source may be separated into two or more cells, units, sources, and/or systems. By way of example, a vehicle 100 may include a first drive power source 208A and a second drive power source 208B. The first drive power source 208A may be operated independently from or in conjunction with the second drive power source 208B and vice versa. Continuing this example, the first drive power source 208A may be removed from a vehicle while a second drive power source 208B can be maintained in the vehicle 100 to provide drive power. This approach allows the vehicle 100 to significantly reduce weight (e.g., of the first drive power source 208A, etc.) and improve power consumption, even if only for a temporary period of time. In some cases, a vehicle 100 running low on power may automatically determine that pulling over to a rest area, emergency lane, and removing, or “dropping off,” at least one power source 208A, 208B may reduce enough weight of the vehicle 100 to allow the vehicle 100 to navigate to the closest power source replacement and/or charging area. In some embodiments, the removed, or “dropped off,” power source 208A may be collected by a collection service, vehicle mechanic, tow truck, or even another vehicle or individual.
The power source 208 may include a GPS or other geographical location system that may be configured to emit a location signal to one or more receiving entities. For instance, the signal may be broadcast or targeted to a specific receiving party. Additionally or alternatively, the power source 208 may include a unique identifier that may be used to associate the power source 208 with a particular vehicle 100 or vehicle user. This unique identifier may allow an efficient recovery of the power source 208 dropped off. In some embodiments, the unique identifier may provide information for the particular vehicle 100 or vehicle user to be billed or charged with a cost of recovery for the power source 208.
The power source 208 may include a charge controller 224 that may be configured to determine charge levels of the power source 208, control a rate at which charge is drawn from the power source 208, control a rate at which charge is added to the power source 208, and/or monitor a health of the power source 208 (e.g., one or more cells, portions, etc.). In some embodiments, the charge controller 224 or the power source 208 may include a communication interface. The communication interface can allow the charge controller 224 to report a state of the power source 208 to one or more other controllers of the vehicle 100 or even communicate with a communication device separate and/or apart from the vehicle 100. Additionally or alternatively, the communication interface may be configured to receive instructions (e.g., control instructions, charge instructions, communication instructions, etc.) from one or more other controllers or computers of the vehicle 100 or a communication device that is separate and/or apart from the vehicle 100.
The powertrain includes one or more power distribution systems configured to transmit power from the power source 208 to one or more electric motors 212 in the vehicle 100. The power distribution system may include electrical interconnections 228 in the form of cables, wires, traces, wireless power transmission systems, etc., and/or combinations thereof. It is an aspect of the present disclosure that the vehicle 100 include one or more redundant electrical interconnections 232 of the power distribution system. The redundant electrical interconnections 232 can allow power to be distributed to one or more systems and/or subsystems of the vehicle 100 even in the event of a failure of an electrical interconnection portion of the vehicle 100 (e.g., due to an accident, mishap, tampering, or other harm to a particular electrical interconnection, etc.). In some embodiments, a user of a vehicle 100 may be alerted via a user interface associated with the vehicle 100 that a redundant electrical interconnection 232 is being used and/or damage has occurred to a particular area of the vehicle electrical system. In any event, the one or more redundant electrical interconnections 232 may be configured along completely different routes than the electrical interconnections 228 and/or include different modes of failure than the electrical interconnections 228 to, among other things, prevent a total interruption power distribution in the event of a failure.
In some embodiments, the power distribution system may include an energy recovery system 236. This energy recovery system 236, or kinetic energy recovery system, may be configured to recover energy produced by the movement of a vehicle 100. The recovered energy may be stored as electrical and/or mechanical energy. For instance, as a vehicle 100 travels or moves, a certain amount of energy is required to accelerate, maintain a speed, stop, or slow the vehicle 100. In any event, a moving vehicle has a certain amount of kinetic energy. When brakes are applied in a typical moving vehicle, most of the kinetic energy of the vehicle is lost as the generation of heat in the braking mechanism. In an energy recovery system 236, when a vehicle 100 brakes, at least a portion of the kinetic energy is converted into electrical and/or mechanical energy for storage. Mechanical energy may be stored as mechanical movement (e.g., in a flywheel, etc.) and electrical energy may be stored in batteries, capacitors, and/or some other electrical storage system. In some embodiments, electrical energy recovered may be stored in the power source 208. For example, the recovered electrical energy may be used to charge the power source 208 of the vehicle 100.
The vehicle 100 may include one or more safety systems. Vehicle safety systems can include a variety of mechanical and/or electrical components including, but in no way limited to, low impact or energy-absorbing bumpers 216A, 216B, crumple zones, reinforced body panels, reinforced frame components, impact bars, power source containment zones, safety glass, seatbelts, supplemental restraint systems, air bags, escape hatches, removable access panels, impact sensors, accelerometers, vision systems, radar systems, etc., and/or the like. In some embodiments, the one or more of the safety components may include a safety sensor or group of safety sensors associated with the one or more of the safety components. For example, a crumple zone may include one or more strain gages, impact sensors, pressure transducers, etc. These sensors may be configured to detect or determine whether a portion of the vehicle 100 has been subjected to a particular force, deformation, or other impact. Once detected, the information collected by the sensors may be transmitted or sent to one or more of a controller of the vehicle 100 (e.g., a safety controller, vehicle controller, etc.) or a communication device associated with the vehicle 100 (e.g., across a communication network, etc.).
In some embodiments, the vehicle 100 may include an inductive charging system and inductive charger 312. The inductive charger 312 may be configured to receive electrical energy from an inductive power source external to the vehicle 100. In one embodiment, when the vehicle 100 and/or the inductive charger 312 is positioned over an inductive power source external to the vehicle 100, electrical energy can be transferred from the inductive power source to the vehicle 100. For example, the inductive charger 312 may receive the charge and transfer the charge via at least one power transmission interconnection 308 to the charge controller 324 and/or the power source 208 of the vehicle 100. The inductive charger 312 may be concealed in a portion of the vehicle 100 (e.g., at least partially protected by the frame 104, one or more body panels 108, a shroud, a shield, a protective cover, etc., and/or combinations thereof) and/or may be deployed from the vehicle 100. In some embodiments, the inductive charger 312 may be configured to receive charge only when the inductive charger 312 is deployed from the vehicle 100. In other embodiments, the inductive charger 312 may be configured to receive charge while concealed in the portion of the vehicle 100.
In addition to the mechanical components described herein, the vehicle 100 may include a number of user interface devices. The user interface devices receive and translate human input into a mechanical movement or electrical signal or stimulus. The human input may be one or more of motion (e.g., body movement, body part movement, in two-dimensional or three-dimensional space, etc.), voice, touch, and/or physical interaction with the components of the vehicle 100. In some embodiments, the human input may be configured to control one or more functions of the vehicle 100 and/or systems of the vehicle 100 described herein. User interfaces may include, but are in no way limited to, at least one graphical user interface of a display device, steering wheel or mechanism, transmission lever or button (e.g., including park, neutral, reverse, and/or drive positions, etc.), throttle control pedal or mechanism, brake control pedal or mechanism, power control switch, communications equipment, etc.
While one or more of displays of instrument panel 400 may be touch-screen displays, it should be appreciated that the vehicle operational display may be a display incapable of receiving touch input. For instance, the operational display 420 that spans across an interior space centerline 404 and across both a first zone 408A and a second zone 408B may be isolated from receiving input from touch, especially from a passenger. In some cases, a display that provides vehicle operation or critical systems information and interface may be restricted from receiving touch input and/or be configured as a non-touch display. This type of configuration can prevent dangerous mistakes in providing touch input where such input may cause an accident or unwanted control.
In some embodiments, one or more displays of the instrument panel 400 may be mobile devices and/or applications residing on a mobile device such as a smart phone. Additionally or alternatively, any of the information described herein may be presented to one or more portions 420A-N of the operational display 420 or other display 424, 428, 434. In one embodiment, one or more displays of the instrument panel 400 may be physically separated or detached from the instrument panel 400. In some cases, a detachable display may remain tethered to the instrument panel.
The portions 420A-N of the operational display 420 may be dynamically reconfigured and/or resized to suit any display of information as described. Additionally or alternatively, the number of portions 420A-N used to visually present information via the operational display 420 may be dynamically increased or decreased as required, and are not limited to the configurations shown.
An embodiment of the electrical system 500 associated with the vehicle 100 may be as shown in
The power generation unit 504 may be as described in conjunction with
The billing and cost control unit 512 may interface with the power management controller 224 to determine the amount of charge or power provided to the power storage 208 through the power generation unit 504. The billing and cost control unit 512 can then provide information for billing the vehicle owner. Thus, the billing and cost control unit 512 can receive and/or send power information to third party system(s) regarding the received charge from an external source. The information provided can help determine an amount of money required, from the owner of the vehicle, as payment for the provided power. Alternatively, or in addition, if the owner of the vehicle provided power to another vehicle (or another device/system), that owner may be owed compensation for the provided power or energy, e.g., a credit.
The power management controller 224 can be a computer or computing system(s) and/or electrical system with associated components, as described herein, capable of managing the power generation unit 504 to receive power, routing the power to the power storage 208, and then providing the power from either the power generation unit 504 and/or the power storage 208 to the loads 508. Thus, the power management controller 224 may execute programming that controls switches, devices, components, etc. involved in the reception, storage, and provision of the power in the electrical system 500.
An embodiment of the power generation unit 504 may be as shown in
Another power source 208 may include wired or wireless charging 608. The wireless charging system 608 may include inductive and/or resonant frequency inductive charging systems that can include coils, frequency generators, controllers, etc. Wired charging may be any kind of grid-connected charging that has a physical connection, although, the wireless charging may be grid connected through a wireless interface. The wired charging system can include connectors, wired interconnections, the controllers, etc. The wired and wireless charging systems 608 can provide power to the power generation unit 504 from external power sources 208.
Internal sources for power may include a regenerative braking system 612. The regenerative braking system 612 can convert the kinetic energy of the moving car into electrical energy through a generation system mounted within the wheels, axle, and/or braking system of the vehicle 100. The regenerative braking system 612 can include any coils, magnets, electrical interconnections, converters, controllers, etc. required to convert the kinetic energy into electrical energy.
Another source of power 208, internal to or associated with the vehicle 100, may be a solar array 616. The solar array 616 may include any system or device of one or more solar cells mounted on the exterior of the vehicle 100 or integrated within the body panels of the vehicle 100 that provides or converts solar energy into electrical energy to provide to the power generation unit 504.
The power sources 208 may be connected to the power generation unit 504 through an electrical interconnection 618. The electrical interconnection 618 can include any wire, interface, bus, etc. between the one or more power sources 208 and the power generation unit 504.
The power generation unit 504 can also include a power source interface 620. The power source interface 620 can be any type of physical and/or electrical interface used to receive the electrical energy from the one or more power sources 208; thus, the power source interface 620 can include an electrical interface 624 that receives the electrical energy and a mechanical interface 628 which may include wires, connectors, or other types of devices or physical connections. The mechanical interface 608 can also include a physical/electrical connection 634 to the power generation unit 504.
The electrical energy from the power source 208 can be processed through the power source interface 624 to an electric converter 632. The electric converter 632 may convert the characteristics of the power from one of the power sources into a useable form that may be used either by the power storage 208 or one or more loads 508 within the vehicle 100. The electrical converter 624 may include any electronics or electrical devices and/or component that can change electrical characteristics, e.g., AC frequency, amplitude, phase, etc. associated with the electrical energy provided by the power source 208. The converted electrical energy may then be provided to an optional conditioner 1638. The conditioner 1638 may include any electronics or electrical devices and/or component that may further condition the converted electrical energy by removing harmonics, noise, etc. from the electrical energy to provide a more stable and effective form of power to the vehicle 100.
An embodiment of the power storage 208 may be as shown in
The battery 704 can be any type of battery for storing electrical energy, for example, a lithium ion battery, a lead acid battery, a nickel cadmium battery, etc. Further, the battery 704 may include different types of power storage systems, such as, ionic fluids or other types of fuel cell systems. The energy storage 704 may also include one or more high-capacity capacitors 704. The capacitors 704 may be used for long-term or short-term storage of electrical energy. The input into the battery or capacitor 704 may be different from the output, and thus, the capacitor 704 may be charged quickly but drain slowly. The functioning of the converter 632 and battery capacitor 704 may be monitored or managed by a charge management unit 708.
The charge management unit 708 can include any hardware (e.g., any electronics or electrical devices and/or components), software, or firmware operable to adjust the operations of the converter 632 or batteries/capacitors 704. The charge management unit 708 can receive inputs or periodically monitor the converter 632 and/or battery/capacitor 704 from this information; the charge management unit 708 may then adjust settings or inputs into the converter 632 or battery/capacitor 704 to control the operation of the power storage system 208.
An embodiment of one or more loads 508 associated with the vehicle 100 may be as shown in
The electric motor 804 can be any type of DC or AC electric motor. The electric motor may be a direct drive or induction motor using permanent magnets and/or winding either on the stator or rotor. The electric motor 804 may also be wireless or include brush contacts. The electric motor 804 may be capable of providing a torque and enough kinetic energy to move the vehicle 100 in traffic. In some embodiments, the electric motor 804 may be similar, if not identical, to the electric motor 212 described in conjunction with
The different loads 508 may also include environmental loads 812, sensor loads 816, safety loads 820, user interaction loads 808, etc. User interaction loads 808 can be any energy used by user interfaces or systems that interact with the driver and/or passenger(s) of the vehicle 100. These loads 808 may include, for example, the heads up display 434, the dash display 420, 424, 428, the radio, user interfaces on the head unit, lights, radio, and/or other types of loads that provide or receive information from the occupants of the vehicle 100. The environmental loads 812 can be any loads used to control the environment within the vehicle 100. For example, the air conditioning or heating unit of the vehicle 100 can be environmental loads 812. Other environmental loads can include lights, fans, and/or defrosting units, etc. that may control the environment within, and/or outside of, the vehicle 100. The sensor loads 816 can be any loads used by sensors, for example, air bag sensors, GPS, and other such sensors used to either manage or control the vehicle 100 and/or provide information or feedback to the vehicle occupants. The safety loads 820 can include any safety equipment, for example, seat belt alarms, airbags, headlights, blinkers, etc. that may be used to manage the safety of the occupants of the vehicle 100. There may be more or fewer loads than those described herein, although they may not be shown in
The communications componentry can include one or more wired or wireless devices such as a transceiver(s) and/or modem that allows communications not only between the various systems disclosed herein but also with other devices, such as devices on a network, and/or on a distributed network such as the Internet and/or in the cloud and/or with other vehicle(s).
The communications subsystem can also include inter- and intra-vehicle communications capabilities such as hotspot and/or access point connectivity for any one or more of the vehicle occupants and/or vehicle-to-vehicle communications.
Additionally, and while not specifically illustrated, the communications subsystem can include one or more communications links (that can be wired or wireless) and/or communications busses (managed by the bus manager 974), including one or more of CANbus, OBD-II, ARCINC 429, Byteflight, CAN (Controller Area Network), D2B (Domestic Digital Bus), FlexRay, DC-BUS, IDB-1394, IEBus, I2C, ISO 9141-1/-2, J1708, J1587, J1850, J1939, ISO 11783, Keyword Protocol 2000, LIN (Local Interconnect Network), MOST (Media Oriented Systems Transport), Multifunction Vehicle Bus, SMARTwireX, SPI, VAN (Vehicle Area Network), and the like or in general any communications protocol and/or standard(s).
The various protocols and communications can be communicated one or more of wirelessly and/or over transmission media such as single wire, twisted pair, fiber optic, IEEE 1394, MIL-STD-1553, MIL-STD-1773, power-line communication, or the like. (All of the above standards and protocols are incorporated herein by reference in their entirety).
As discussed, the communications subsystem enables communications between any if the inter-vehicle systems and subsystems as well as communications with non-collocated resources, such as those reachable over a network such as the Internet.
The communications subsystem 900, in addition to well-known componentry (which has been omitted for clarity), includes interconnected elements including one or more of: one or more antennas 904, an interleaver/deinterleaver 908, an analog front end (AFE) 912, memory/storage/cache 916, controller/microprocessor 920, MAC circuitry 922, modulator/demodulator 924, encoder/decoder 928, a plurality of connectivity managers 934-966, GPU 940, accelerator 944, a multiplexer/demultiplexer 952, transmitter 970, receiver 972 and wireless radio 978 components such as a Wi-Fi PHY/Bluetooth® module 980, a Wi-Fi/BT MAC module 984, transmitter 988 and receiver 992. The various elements in the device 900 are connected by one or more links/busses 5 (not shown, again for sake of clarity).
The device 400 can have one more antennas 904, for use in wireless communications such as multi-input multi-output (MIMO) communications, multi-user multi-input multi-output (MU-MIMO) communications Bluetooth®, LTE, 4G, 5G, Near-Field Communication (NFC), etc., and in general for any type of wireless communications. The antenna(s) 904 can include, but are not limited to one or more of directional antennas, omnidirectional antennas, monopoles, patch antennas, loop antennas, microstrip antennas, dipoles, and any other antenna(s) suitable for communication transmission/reception. In an exemplary embodiment, transmission/reception using MIMO may require particular antenna spacing. In another exemplary embodiment, MIMO transmission/reception can enable spatial diversity allowing for different channel characteristics at each of the antennas. In yet another embodiment, MIMO transmission/reception can be used to distribute resources to multiple users for example within the vehicle 100 and/or in another vehicle.
Antenna(s) 904 generally interact with the Analog Front End (AFE) 912, which is needed to enable the correct processing of the received modulated signal and signal conditioning for a transmitted signal. The AFE 912 can be functionally located between the antenna and a digital baseband system in order to convert the analog signal into a digital signal for processing and vice-versa.
The subsystem 900 can also include a controller/microprocessor 920 and a memory/storage/cache 916. The subsystem 900 can interact with the memory/storage/cache 916 which may store information and operations necessary for configuring and transmitting or receiving the information described herein. The memory/storage/cache 916 may also be used in connection with the execution of application programming or instructions by the controller/microprocessor 920, and for temporary or long term storage of program instructions and/or data. As examples, the memory/storage/cache 920 may comprise a computer-readable device, RAM, ROM, DRAM, SDRAM, and/or other storage device(s) and media.
The controller/microprocessor 920 may comprise a general purpose programmable processor or controller for executing application programming or instructions related to the subsystem 900. Furthermore, the controller/microprocessor 920 can perform operations for configuring and transmitting/receiving information as described herein. The controller/microprocessor 920 may include multiple processor cores, and/or implement multiple virtual processors. Optionally, the controller/microprocessor 920 may include multiple physical processors. By way of example, the controller/microprocessor 920 may comprise a specially configured Application Specific Integrated Circuit (ASIC) or other integrated circuit, a digital signal processor(s), a controller, a hardwired electronic or logic circuit, a programmable logic device or gate array, a special purpose computer, or the like.
The subsystem 900 can further include a transmitter 970 and receiver 972 which can transmit and receive signals, respectively, to and from other devices, subsystems and/or other destinations using the one or more antennas 904 and/or links/busses. Included in the subsystem 900 circuitry is the medium access control or MAC Circuitry 922. MAC circuitry 922 provides for controlling access to the wireless medium. In an exemplary embodiment, the MAC circuitry 922 may be arranged to contend for the wireless medium and configure frames or packets for communicating over the wired/wireless medium.
The subsystem 900 can also optionally contain a security module (not shown). This security module can contain information regarding but not limited to, security parameters required to connect the device to one or more other devices or other available network(s), and can include WEP or WPA/WPA-2 (optionally+AES and/or TKIP) security access keys, network keys, etc. The WEP security access key is a security password used by Wi-Fi networks. Knowledge of this code can enable a wireless device to exchange information with an access point and/or another device. The information exchange can occur through encoded messages with the WEP access code often being chosen by the network administrator. WPA is an added security standard that is also used in conjunction with network connectivity with stronger encryption than WEP.
In some embodiments, the communications subsystem 900 also includes a GPU 940, an accelerator 944, a Wi-Fi/BT/BLE PHY module 980 and a Wi-Fi/BT/BLE MAC module 984 and wireless transmitter 988 and receiver 992. In some embodiments, the GPU 940 may be a graphics processing unit, or visual processing unit, comprising at least one circuit and/or chip that manipulates and changes memory to accelerate the creation of images in a frame buffer for output to at least one display device. The GPU 940 may include one or more of a display device connection port, printed circuit board (PCB), a GPU chip, a metal-oxide-semiconductor field-effect transistor (MOSFET), memory (e.g., single data rate random-access memory (SDRAM), double data rate random-access memory (DDR) RAM, etc., and/or combinations thereof), a secondary processing chip (e.g., handling video out capabilities, processing, and/or other functions in addition to the GPU chip, etc.), a capacitor, heatsink, temperature control or cooling fan, motherboard connection, shielding, and the like.
The various connectivity managers 934-966 (even) manage and/or coordinate communications between the subsystem 900 and one or more of the systems disclosed herein and one or more other devices/systems. The connectivity managers include an emergency charging connectivity manager 934, an aerial charging connectivity manager 938, a roadway charging connectivity manager 942, an overhead charging connectivity manager 946, a robotic charging connectivity manager 950, a static charging connectivity manager 954, a vehicle database connectivity manager 958, a remote operating system connectivity manager 962 and a sensor connectivity manager 966.
The emergency charging connectivity manager 934 can coordinate not only the physical connectivity between the vehicle 100 and the emergency charging device/vehicle, but can also communicate with one or more of the power management controller, one or more third parties and optionally a billing system(s). As an example, the vehicle 100 can establish communications with the emergency charging device/vehicle to one or more of coordinate interconnectivity between the two (e.g., by spatially aligning the charging receptacle on the vehicle with the charger on the emergency charging vehicle) and optionally share navigation information. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. In addition to being able to manage connectivity for the exchange of power, the emergency charging connectivity manager 934 can also communicate information, such as billing information to the emergency charging vehicle and/or a third party. This billing information could be, for example, the owner of the vehicle, the driver/occupant(s) of the vehicle, company information, or in general any information usable to charge the appropriate entity for the power received.
The aerial charging connectivity manager 938 can coordinate not only the physical connectivity between the vehicle 100 and the aerial charging device/vehicle, but can also communicate with one or more of the power management controller, one or more third parties and optionally a billing system(s). As an example, the vehicle 100 can establish communications with the aerial charging device/vehicle to one or more of coordinate interconnectivity between the two (e.g., by spatially aligning the charging receptacle on the vehicle with the charger on the emergency charging vehicle) and optionally share navigation information. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. In addition to being able to manage connectivity for the exchange of power, the aerial charging connectivity manager 938 can similarly communicate information, such as billing information to the aerial charging vehicle and/or a third party. This billing information could be, for example, the owner of the vehicle 100, the driver/occupant(s) of the vehicle 100, company information, or in general any information usable to charge the appropriate entity for the power received etc., as discussed.
The roadway charging connectivity manager 942 and overhead charging connectivity manager 946 can coordinate not only the physical connectivity between the vehicle 100 and the charging device/system, but can also communicate with one or more of the power management controller, one or more third parties and optionally a billing system(s). As one example, the vehicle 100 can request a charge from the charging system when, for example, the vehicle 100 needs or is predicted to need power. As an example, the vehicle 100 can establish communications with the charging device/vehicle to one or more of coordinate interconnectivity between the two for charging and share information for billing. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. This billing information could be, for example, the owner of the vehicle 100, the driver/occupant(s) of the vehicle 100, company information, or in general any information usable to charge the appropriate entity for the power received etc., as discussed. The person responsible for paying for the charge could also receive a copy of the billing information as is customary. The robotic charging connectivity manager 950 and static charging connectivity manager 954 can operate in a similar manner to that described herein.
The vehicle database connectivity manager 958 allows the subsystem to receive and/or share information stored in the vehicle database. This information can be shared with other vehicle components/subsystems and/or other entities, such as third parties and/or charging systems. The information can also be shared with one or more vehicle occupant devices, such as an app (application) on a mobile device the driver uses to track information about the vehicle 100 and/or a dealer or service/maintenance provider. In general any information stored in the vehicle database can optionally be shared with any one or more other devices optionally subject to any privacy or confidentially restrictions.
The remote operating system connectivity manager 962 facilitates communications between the vehicle 100 and any one or more autonomous vehicle systems. These communications can include one or more of navigation information, vehicle information, other vehicle information, weather information, occupant information, or in general any information related to the remote operation of the vehicle 100.
The sensor connectivity manager 966 facilitates communications between any one or more of the vehicle sensors and any one or more of the other vehicle systems. The sensor connectivity manager 966 can also facilitate communications between any one or more of the sensors and/or vehicle systems and any other destination, such as a service company, app, or in general to any destination where sensor data is needed.
In accordance with one exemplary embodiment, any of the communications discussed herein can be communicated via the conductor(s) used for charging. One exemplary protocol usable for these communications is Power-line communication (PLC). PLC is a communication protocol that uses electrical wiring to simultaneously carry both data, and Alternating Current (AC) electric power transmission or electric power distribution. It is also known as power-line carrier, power-line digital subscriber line (PDSL), mains communication, power-line telecommunications, or power-line networking (PLN). For DC environments in vehicles PLC can be used in conjunction with CAN-bus, LIN-bus over power line (DC-LIN) and DC-BUS.
The communications subsystem can also optionally manage one or more identifiers, such as an IP (internet protocol) address(es), associated with the vehicle and one or other system or subsystems or components therein. These identifiers can be used in conjunction with any one or more of the connectivity managers as discussed herein.
Environment 1000 further includes a network 1010. The network 1010 may can be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially-available protocols, including without limitation SIP, TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by way of example, the network 1010 maybe a local area network (“LAN”), such as an Ethernet network, a Token-Ring network and/or the like; a wide-area network; a virtual network, including without limitation a virtual private network (“VPN”); the Internet; an intranet; an extranet; a public switched telephone network (“PSTN”); an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.9 suite of protocols, the Bluetooth® protocol known in the art, and/or any other wireless protocol); and/or any combination of these and/or other networks.
The system may also include one or more servers 1014, 1016. In this example, server 1014 is shown as a web server and server 1016 is shown as an application server. The web server 1014, which may be used to process requests for web pages or other electronic documents from computing devices 1004, 1008, 1012. The web server 1014 can be running an operating system including any of those discussed above, as well as any commercially-available server operating systems. The web server 1014 can also run a variety of server applications, including SIP (Session Initiation Protocol) servers, HTTP(s) servers, FTP servers, CGI servers, database servers, Java servers, and the like. In some instances, the web server 1014 may publish operations available operations as one or more web services.
The environment 1000 may also include one or more file and or/application servers 1016, which can, in addition to an operating system, include one or more applications accessible by a client running on one or more of the computing devices 1004, 1008, 1012. The server(s) 1016 and/or 1014 may be one or more general purpose computers capable of executing programs or scripts in response to the computing devices 1004, 1008, 1012. As one example, the server 1016, 1014 may execute one or more web applications. The web application may be implemented as one or more scripts or programs written in any programming language, such as Java™, C, C#®, or C++, and/or any scripting language, such as Perl, Python, or TCL, as well as combinations of any programming/scripting languages. The application server(s) 1016 may also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase®, IBM® and the like, which can process requests from database clients running on a computing device 1004, 1008, 1012.
The web pages created by the server 1014 and/or 1016 may be forwarded to a computing device 1004, 1008, 1012 via a web (file) server 1014, 1016. Similarly, the web server 1014 may be able to receive web page requests, web services invocations, and/or input data from a computing device 1004, 1008, 1012 (e.g., a user computer, etc.) and can forward the web page requests and/or input data to the web (application) server 1016. In further embodiments, the server 1016 may function as a file server. Although for ease of description,
The environment 1000 may also include a database 1018. The database 1018 may reside in a variety of locations. By way of example, database 1018 may reside on a storage medium local to (and/or resident in) one or more of the computers 1004, 1008, 1012, 1014, 1016. Alternatively, it may be remote from any or all of the computers 1004, 1008, 1012, 1014, 1016, and in communication (e.g., via the network 1010) with one or more of these. The database 1018 may reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers 1004, 1008, 1012, 1014, 1016 may be stored locally on the respective computer and/or remotely, as appropriate. The database 1018 may be a relational database, such as Oracle 20i®, that is adapted to store, update, and retrieve data in response to SQL-formatted commands.
The computer system 1100 may additionally include a computer-readable storage media reader 1124; a communications system 1128 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.); and working memory 1136, which may include RAM and ROM devices as described above. The computer system 1100 may also include a processing acceleration unit 1132, which can include a DSP, a special-purpose processor, and/or the like.
The computer-readable storage media reader 1124 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s) 1120) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system 1128 may permit data to be exchanged with a network and/or any other computer described above with respect to the computer environments described herein. Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.
The computer system 1100 may also comprise software elements, shown as being currently located within a working memory 1136, including an operating system 1140 and/or other code 1144. It should be appreciated that alternate embodiments of a computer system 1100 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Examples of the processors 1108 as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon® 800 and 801, Qualcomm® Snapdragon® 620 and 615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMD® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
Referring to
In some embodiments, the vehicle 100 may be configured to receive charge via one or more compatible vehicle charging interfaces, such as one or more charging panels and/or interconnections. These compatible vehicle charging interfaces may be configured at one or more locations on, in, or about a vehicle 100. For instance, the locations may include locations on the vehicle 100 wherein charging may be received, via a vehicle roof 130, vehicle side 160 and vehicle lower or undercarriage 140.
The sensors 1300 are part of the sensor loads 816 discussed with respect to
In one embodiment, the sensors 1300 monitor conditions of the occupants of the vehicle 100. Thus, each sensor 1300 may include one or more types of devices to assist with monitoring the condition of the occupants. For example, the sensors 1300 may include one or more cameras, such as infrared/near-infrared cameras (or depth cameras) used for eye tracking and/or gesture tracking. Such cameras may operate according to time-of-flight principles to achieve pupil detection and/or gesture detection. For example, a light source of the sensor 1300 (or associated with the sensor 1300) emits light (e.g., infrared light) toward an interior of the vehicle 100. Light emitted from the light source is then reflected by objects (including occupants) within the interior vehicle and the reflected light is sensed by individual pixels of a camera of the sensor 1300. Based on time-of-flight principles (i.e., a time taken for the light emitted from the light source to reflect off on an object and then be sensed by the pixels of the camera), the controller/microprocessor 920 generates a depth map (where each pixel is assigned a depth value based on the elapsed time between the light source emitting light and the camera receiving thee reflected light), which is a three-dimensional representation of the interior of the vehicle 100 that is within the camera's range. For gesture tracking, the ongoing generation of the depth map is analyzed by the controller/microprocessor 920 to track the gestures of the occupants. For eye tracking, the controller/microprocessor 920 analyzes the reflected light from pupils of the eyes (e.g., light reflected from the corneas) to detect eye rotations. It should be understood that example embodiments are not limited to the above described method for gesture and eye tracking, and that other known methods may be used.
Other types and locations of sensors 1300 for monitoring conditions of occupants include vibration sensors (e.g., accelerometers built in to the seats of the vehicle 100) for monitoring occupant movement, temperature sensors for monitoring skin and/or ambient temperature, ultrasonic sensors configured to detect movement in an interior 150 of the vehicle 100, pressure sensors configured to detect ambient pressure conditions in the interior 150 of the vehicle 100, etc., and/or combinations thereof. It should be understood that a number, type, and location of the sensors 1300 are not limited to the options shown in
Further, the controller/microprocessor 920 may associate a presentation of the information with a particular occupant, such as the driver, and store the association as a user profile in the memory/storage/cache 916. Upon determining that an occupant has an associated user profile indicating a preferred presentation of the information (e.g., based on output from at least one sensor 1300), the controller/microprocessor 920 may automatically switch to the presentation of the information indicated by the user profile. The sensors 1300 may include a biometric sensor (e.g., retina scanner, fingerprint scanner, etc.) to assist with identifying the occupant to select an associated user profile.
The controller/microprocessor 920 may render the second presentation of the information shown in
In operation 1400, the controller/microprocessor 920 receives output from at least one sensor 1300 monitoring an interior space 150 of a vehicle 100.
In operation 1405, the controller/microprocessor 920 determines, based on the received output, a condition of an occupant in the interior space 150 of the vehicle 100. For example, the controller/microprocessor 920 may use the output from the sensor 1300 as well as information from other vehicle sensors in sensor loads 816 to determine the condition of the occupant.
In operation 1410, the controller/microprocessor 920 determines, based on the determined condition of the occupant, to alter a first presentation of information displayed to a display device (i.e., one or more of displays 420, 424, 434, 428, 432) of the vehicle 100 to a second presentation of the information displayed to the display device. As discussed with reference to
In operation 1415, the controller/microprocessor 920 renders the second presentation of the information to the display device of the vehicle 100 to replace the first presentation of the information displayed to the display device of the vehicle 100. The controller/microprocessor 920 may render the second presentation based on at least one of one or more preferences of the occupant, a recurrence frequency of the condition (e.g., a number of times the condition occurs over a desired time interval, for example, 5 minutes), and a priority level associated with the condition determined in operation 1405. The one or more preferences may include a size, a color, a brightness, a location, and/or other occupant defined visual settings for the information to be displayed. The condition may have an associated recurrence frequency threshold that should be met within a threshold amount of time before the controller/microprocessor 920 renders the second presentation to include information about the condition. Specific examples of operations 1405-1415 are described in more detail below with reference to
The priority level is based on at least a safety score associated with the condition. Thus, the priority level may be representative of how relevant the information to be displayed is to passenger safety (e.g., a drowsy driver). The safety score may be represented as a number that has an associated weight that assists with determining the priority level. For example, each condition detectable by the controller/microprocessor 920 may have an initial (or default) priority level that is assigned in advance or determined with the assistance of a raw priority score (RPS) in Equation 1. Additionally or alternatively, the controller/microprocessor 920 may continuously update the raw priority score for each condition using Equation 1.
RPS=βS Equation 1
In Equation 1, S is a value that represents the safety score associated with the condition and β is the weight associated with the safety score. Value S and weight β may be fixed and/or changeable design parameters based on user input and/or empirical evidence. The controller/microprocessor 920 may assign a priority level to a condition based on the raw priority score by evaluating the raw priority score against one or more thresholds associated with each priority level. The controller/microprocessor 920 may store the priority level in the memory/storage/cache 916. According to one embodiment, the controller/microprocessor 920 may store the priority level as part of a look-up-table (LUT) to assist with determining effects for rendering for the second presentation based on the priority level, one or more occupant preferences, and/or a recurrence frequency of the condition.
Still referring to
In operation 1500, the controller/microprocessor 920 determines whether the condition is determined to include that the occupant has low-vision. If so, the controller/microprocessor 920 performs operation 1505 to render the second presentation by at least one of i) increasing a size of the information on the display device, and ii) altering at least one of a color and a brightness of the information on the display device. For example, in
If the controller/microprocessor 920 does not determine a low-vision condition in operation 1500, the controller/microprocessor 920 performs operation 1510 to determine whether the condition includes that at least one of i) a gaze of the occupant is repeatedly toward a certain item of the information in the first presentation, and ii) repeated hand motions of the occupant are toward the certain item in the first presentation. If so, the controller/microprocessor 920 performs operation 1515 to render the second presentation by moving the certain item closer to the occupant on the display device. For example, if the occupant being monitored is the driver of the vehicle 100 and the controller/microprocessor determines that the driver is repeatedly gazing at the stereo display/controls represented by item I4,
If the controller/microprocessor 920 does not determine that the condition includes a repeated gaze or hand gesture in operation 1510 and the occupant being monitored is the driver of the vehicle 100, the controller/microprocessor 920 performs operation 1520 to determine whether the condition includes that the driver has impaired driving ability. If so, the controller/microprocessor 920 performs operation 1525 to render the second presentation by including a visual warning in the information. For example, item I7 in
If the controller/microprocessor 920 does not determine impaired driving ability in operation 1520, the controller/microprocessor 920 returns to operation 1500.
In
The LUT includes a raw priority score (RPS) for each condition and an associated priority level that is determined based on the RPS. In
It should be understood that example embodiments contemplate the possibility for updating safety scores, weights, and/or presentation effects based on user input and/or empirical evidence. For example, if the controller/microprocessor 920 determines, based on output from sensor 1300, that the occupant's skin temperature is particularly high or low (i.e., over or above a safety threshold) for the current ambient temperature so as to indicate a possibility of heat-exhaustion or hypothermia, then the controller/microprocessor 920 may increase (e.g., temporarily increase) one of the safety score and the weight for that condition so that a priority level of the condition also increases. The sudden increase in priority level may trigger additional presentation effects such as a visual warning in a primary viewing location to indicate that increased or decreased skin temperature has been detected. This may be particularly useful for monitoring the body temperature of occupants that are infants or pets.
It should be understood that every condition does not necessarily have an associated safety score, associated preferences, and/or an associated recurrence frequency, in which case the LUT includes only an initial or default values for those categories. It should be further understood that example embodiments are not limited to the conditions and presentations described with respect to
In view of the above description, it should be understood that one or more sensors 1300 can observe or monitor the driver and/or passengers (or occupants) in a vehicle 100. From the observations and/or other information, a display device (e.g., the vehicle operational display 420, the one or more auxiliary displays 424, the heads-up display 434, the power management display 428, and/or the input device 432) may be adjusted automatically to assist the driver/passenger(s). For example, if the user is viewed as wearing glasses, one or more of the widgets forming the display may be increased in size or may change color or brightness. If the user is seen as changing the radio frequently, the radio controls may be positioned temporarily in a HUD to add in finding a radio station. Further, new widgets may be added when needed, such as, a temperature gauge for body temperature, etc.
Any of the steps, functions, and operations discussed herein can be performed continuously and automatically.
The exemplary systems and methods of this disclosure have been described in relation to vehicle systems and electric vehicles. However, to avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scope of the claimed disclosure. Specific details are set forth to provide an understanding of the present disclosure. It should, however, be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.
Furthermore, while the exemplary embodiments illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined into one or more devices, such as a server, communication device, or collocated on a particular node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switched network, or a circuit-switched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire, and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
While the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.
A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the present disclosure includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.
In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as a program embedded on a personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.
Although the present disclosure describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.
The present disclosure, in various embodiments, configurations, and aspects, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the systems and methods disclosed herein after understanding the present disclosure. The present disclosure, in various embodiments, configurations, and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease, and/or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description of the disclosure has included description of one or more embodiments, configurations, or aspects and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights, which include alternative embodiments, configurations, or aspects to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges, or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
Embodiments include a device comprising a microprocessor and a computer readable medium coupled to the microprocessor. The computer readable medium comprises instructions stored thereon that cause the microprocessor to receive output from at least one sensor monitoring an interior space of a vehicle, and determine, based on the received output, a condition of an occupant in the interior space of the vehicle. The instructions cause the microprocessor to determine, based on the determined condition of the occupant, to alter a first presentation of information displayed to a display device of the vehicle to a second presentation of the information displayed to the display device. The instructions cause the microprocessor to render the second presentation of the information to the display device of the vehicle to replace the first presentation of the information displayed to the display device of the vehicle.
Aspects of the above device include that the information includes at least one of vehicle information about the vehicle and occupant information about the occupant of the vehicle.
Aspects of the above device include instructions to cause the microprocessor to render the second presentation based on at least one of one or more preferences of the occupant, a recurrence frequency of the condition, and a priority level associated with the condition.
Aspects of the above device include that the priority level is based on at least a safety score associated with the condition.
Aspects of the above device include instructions that cause the microprocessor to render the second presentation based on at least one of the one or more preferences of the occupant, the recurrence frequency of the condition, and the priority level associated with the condition by changing at least one of a location, a size, a brightness, and a color of at least one item of the information on the display device.
Aspects of the above device include that if the condition is determined to include that the occupant has low-vision, the instructions cause the microprocessor to render the second presentation by at least one of i) increasing a size of the information on the display device, and ii) altering at least one of a color and a brightness of the information on the display device.
Aspects of the above device include that if the condition is determined to include that at least one of i) a gaze of the occupant is repeatedly toward a certain item of the information in the first presentation, and ii) repeated hand motions of the occupant are toward the certain item in the first presentation, the instructions cause the microprocessor to render the second presentation by moving the certain item closer to the occupant on the display device.
Aspects of the above device include that if the occupant is a driver of the vehicle and the condition is determined to include that the driver has impaired driving ability, the instructions cause the microprocessor to render the second presentation by including a visual warning in the information.
Aspects of the above device include instructions that cause the microprocessor to re-render the first presentation to the display device to replace the second presentation in response to a trigger event.
Aspects of the above device include that the first presentation is a default presentation of the information.
Aspects of the above device include instructions that cause the microprocessor to render the information in the first presentation and the second presentation via at least one widget.
Aspects of the above device include the at least one sensor.
Embodiments include a method that comprises receiving output from at least one sensor monitoring an interior space of a vehicle, and determining, based on the received output, a condition of an occupant in the interior space of the vehicle. The method includes determining, based on the determined condition of the occupant, to alter a first presentation of information displayed to a display device of the vehicle to a second presentation of the information displayed to the display device. The method includes rendering the second presentation of the information to the display device of the vehicle to replace the first presentation of the information displayed to the display device of the vehicle.
Aspects of the above method include that the information includes at least one of vehicle information about the vehicle and occupant information about the occupant of the vehicle.
Aspects of the above method include that the second presentation is based on at least one of one or more preferences of the occupant, a recurrence frequency of the condition, and a priority level associated with the condition by changing at least one of a location, a size, a brightness, and a color of at least one item of the information on the display device.
Aspects of the above method include that if the condition is determined to include that the occupant has low-vision, the rendering renders the second presentation by at least one of i) increasing a size of the information on the display device, and ii) altering at least one of a color and a brightness of the information on the display device.
Aspects of the above method include that if the condition is determined to include that at least one of i) a gaze of the occupant is repeatedly toward a certain item of the information in the first presentation, and ii) repeated hand motions of the occupant are toward the certain item in the first presentation, the rendering renders the second presentation by moving the certain item closer to the occupant on the display device.
Aspects of the above method include that if the occupant is a driver of the vehicle and the condition is determined to include that the driver has impaired driving ability, the rendering renders the second presentation by including a visual warning in the information.
Embodiments include a vehicle that comprises at least one sensor, a microprocessor coupled to the at least one sensor, and a computer readable medium coupled to the microprocessor. The computer readable medium comprises instructions stored thereon that cause the microprocessor to receive output from at least one sensor monitoring an interior space of a vehicle, and determine, based on the received output, a condition of an occupant in the interior space of the vehicle. The instructions case the microprocessor to determine, based on the determined condition of the occupant, to alter a first presentation of information displayed to a display device of the vehicle to a second presentation of the information displayed to the display device. The instructions cause the microprocessor to render the second presentation of the information to the display device of the vehicle to replace the first presentation of the information displayed to the display device of the vehicle.
Aspects of the vehicle include that if the instructions cause the microprocessor to render the second presentation based on at least one of one or more preferences of the occupant, a recurrence frequency of the condition, and a priority level associated with the condition by changing at least one of a location, a size, a brightness, and a color of at least one item of the information on the display device.
Any one or more of the aspects/embodiments as substantially disclosed herein.
Any one or more of the aspects/embodiments as substantially disclosed herein optionally in combination with any one or more other aspects/embodiments as substantially disclosed herein.
One or means adapted to perform any one or more of the above aspects/embodiments as substantially disclosed herein.
The phrases “at least one,” “one or more,” “or,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” “A, B, and/or C,” and “A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
The term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material.”
Aspects of the present disclosure may take the form of an embodiment that is entirely hardware, an embodiment that is entirely software (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module,” or “system.” Any combination of one or more computer-readable medium(s) may be utilized. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
A computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer-readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The terms “determine,” “calculate,” “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The term “electric vehicle” (EV), also referred to herein as an electric drive vehicle, may use one or more electric motors or traction motors for propulsion. An electric vehicle may be powered through a collector system by electricity from off-vehicle sources, or may be self-contained with a battery or generator to convert fuel to electricity. An electric vehicle generally includes a rechargeable electricity storage system (RESS) (also called Full Electric Vehicles (FEV)). Power storage methods may include: chemical energy stored on the vehicle in on-board batteries (e.g., battery electric vehicle or BEV), on board kinetic energy storage (e.g., flywheels), and/or static energy (e.g., by on-board double-layer capacitors). Batteries, electric double-layer capacitors, and flywheel energy storage may be forms of rechargeable on-board electrical storage.
The term “hybrid electric vehicle” refers to a vehicle that may combine a conventional (usually fossil fuel-powered) powertrain with some form of electric propulsion. Most hybrid electric vehicles combine a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system (hybrid vehicle drivetrain). In parallel hybrids, the ICE and the electric motor are both connected to the mechanical transmission and can simultaneously transmit power to drive the wheels, usually through a conventional transmission. In series hybrids, only the electric motor drives the drivetrain, and a smaller ICE works as a generator to power the electric motor or to recharge the batteries. Power-split hybrids combine series and parallel characteristics. A full hybrid, sometimes also called a strong hybrid, is a vehicle that can run on just the engine, just the batteries, or a combination of both. A mid hybrid is a vehicle that cannot be driven solely on its electric motor, because the electric motor does not have enough power to propel the vehicle on its own.
The term “rechargeable electric vehicle” or “REV” refers to a vehicle with on board rechargeable energy storage, including electric vehicles and hybrid electric vehicles.
The present application claims the benefits of and priority, under 35 U.S.C. § 119(e), to U.S. Provisional Application Ser. Nos. 62/359,563, filed on Jul. 7, 2016, entitled “Next Generation Vehicle”; and 62/378,348, filed Aug. 23, 2016, entitled “Next Generation Vehicle.” The entire disclosures of the applications listed above are hereby incorporated by reference, in their entirety, for all that they teach and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4361202 | Minovitch | Nov 1982 | A |
4476954 | Johnson et al. | Oct 1984 | A |
4754255 | Sanders et al. | Jun 1988 | A |
4875391 | Leising et al. | Oct 1989 | A |
5136498 | McLaughlin et al. | Aug 1992 | A |
5204817 | Yoshida | Apr 1993 | A |
5363306 | Kuwahara et al. | Nov 1994 | A |
5508689 | Rado et al. | Apr 1996 | A |
5521815 | Rose | May 1996 | A |
5529138 | Shaw et al. | Jun 1996 | A |
5531122 | Chatham et al. | Jul 1996 | A |
5572450 | Worthy | Nov 1996 | A |
5610821 | Gazis et al. | Mar 1997 | A |
5648769 | Sato et al. | Jul 1997 | A |
5710702 | Hayashi et al. | Jan 1998 | A |
5794164 | Beckert et al. | Aug 1998 | A |
5797134 | McMillan et al. | Aug 1998 | A |
5812067 | Bergholz et al. | Sep 1998 | A |
5825283 | Camhi | Oct 1998 | A |
5838251 | Brinkmeyer et al. | Nov 1998 | A |
5847661 | Ricci | Dec 1998 | A |
5890080 | Coverdill et al. | Mar 1999 | A |
5928294 | Zelinkovsky | Jul 1999 | A |
5949345 | Heckert et al. | Sep 1999 | A |
5983161 | Lemelson et al. | Nov 1999 | A |
5986575 | Jones et al. | Nov 1999 | A |
6038426 | Williams, Jr. | Mar 2000 | A |
6081756 | Mio et al. | Jun 2000 | A |
D429684 | Johnson | Aug 2000 | S |
6128003 | Smith et al. | Oct 2000 | A |
6141620 | Zyburt et al. | Oct 2000 | A |
6148261 | Obradovich et al. | Nov 2000 | A |
6152514 | McLellen | Nov 2000 | A |
6157321 | Ricci | Dec 2000 | A |
6198996 | Berstis | Mar 2001 | B1 |
6199001 | Ohta et al. | Mar 2001 | B1 |
6202008 | Beckert et al. | Mar 2001 | B1 |
6252544 | Hoffberg | Jun 2001 | B1 |
6267428 | Baldas et al. | Jul 2001 | B1 |
6302438 | Stopper, Jr. et al. | Oct 2001 | B1 |
6310542 | Gehlot | Oct 2001 | B1 |
6317058 | Lemelson et al. | Nov 2001 | B1 |
6339826 | Hayes, Jr. et al. | Jan 2002 | B2 |
6356838 | Paul | Mar 2002 | B1 |
6388579 | Adcox et al. | May 2002 | B1 |
6480224 | Brown | Nov 2002 | B1 |
6502022 | Chastain et al. | Dec 2002 | B1 |
6519519 | Stopczynski | Feb 2003 | B1 |
6557752 | Yacoob | May 2003 | B1 |
6563910 | Menard et al. | May 2003 | B2 |
6587739 | Abrams et al. | Jul 2003 | B1 |
6598227 | Berry et al. | Jul 2003 | B1 |
6607212 | Reimer et al. | Aug 2003 | B1 |
6617981 | Basinger | Sep 2003 | B2 |
6661345 | Bevan | Dec 2003 | B1 |
6662077 | Haag | Dec 2003 | B2 |
6675081 | Shuman et al. | Jan 2004 | B2 |
6678747 | Goossen et al. | Jan 2004 | B2 |
6681176 | Funk et al. | Jan 2004 | B2 |
6690260 | Ashihara | Feb 2004 | B1 |
6690940 | Brown et al. | Feb 2004 | B1 |
6724920 | Berenz et al. | Apr 2004 | B1 |
6754580 | Ask et al. | Jun 2004 | B1 |
6757593 | Mori et al. | Jun 2004 | B2 |
6762684 | Camhi | Jul 2004 | B1 |
6765495 | Dunning et al. | Jul 2004 | B1 |
6778888 | Cataldo et al. | Aug 2004 | B2 |
6782240 | Tabe | Aug 2004 | B1 |
6785531 | Lepley et al. | Aug 2004 | B2 |
6816783 | Hashima et al. | Nov 2004 | B2 |
6820259 | Kawamata et al. | Nov 2004 | B1 |
6944533 | Obradovich et al. | Sep 2005 | B2 |
6950022 | Breed | Sep 2005 | B2 |
6958707 | Siegel | Oct 2005 | B1 |
6992580 | Kotzin et al. | Jan 2006 | B2 |
7019641 | Lakshmanan et al. | Mar 2006 | B1 |
7020544 | Shinada et al. | Mar 2006 | B2 |
7021691 | Schmidt et al. | Apr 2006 | B1 |
7042345 | Ellis | May 2006 | B2 |
7047129 | Uotani | May 2006 | B2 |
7058898 | McWalter et al. | Jun 2006 | B2 |
7096431 | Tambata et al. | Aug 2006 | B2 |
7142696 | Engelsberg et al. | Nov 2006 | B1 |
7164117 | Breed et al. | Jan 2007 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7203598 | Whitsell | Apr 2007 | B1 |
7233861 | Van Buer et al. | Jun 2007 | B2 |
7239960 | Yokota et al. | Jul 2007 | B2 |
7277454 | Mocek et al. | Oct 2007 | B2 |
7284769 | Breed | Oct 2007 | B2 |
7289645 | Yamamoto et al. | Oct 2007 | B2 |
7295921 | Spencer et al. | Nov 2007 | B2 |
7313547 | Mocek et al. | Dec 2007 | B2 |
7333012 | Nguyen | Feb 2008 | B1 |
7343148 | O'Neil | Mar 2008 | B1 |
7386376 | Basir et al. | Jun 2008 | B2 |
7386799 | Clanton et al. | Jun 2008 | B1 |
7432829 | Poltorak | Oct 2008 | B2 |
7474264 | Bolduc et al. | Jan 2009 | B2 |
7493140 | Michmerhuizen et al. | Feb 2009 | B2 |
7526539 | Hsu | Apr 2009 | B1 |
7548815 | Watkins et al. | Jun 2009 | B2 |
7566083 | Vitito | Jul 2009 | B2 |
7606660 | Diaz et al. | Oct 2009 | B2 |
7606867 | Singhal et al. | Oct 2009 | B1 |
7643913 | Taki et al. | Jan 2010 | B2 |
7650234 | Obradovich et al. | Jan 2010 | B2 |
7671764 | Uyeki et al. | Mar 2010 | B2 |
7680596 | Uyeki et al. | Mar 2010 | B2 |
7683771 | Loeb | Mar 2010 | B1 |
7711468 | Levy | May 2010 | B1 |
7734315 | Rathus et al. | Jun 2010 | B2 |
7748021 | Obradovich et al. | Jun 2010 | B2 |
RE41449 | Krahnstoever et al. | Jul 2010 | E |
7791499 | Mohan et al. | Sep 2010 | B2 |
7796190 | Basso et al. | Sep 2010 | B2 |
7802832 | Carnevali | Sep 2010 | B2 |
7821421 | Tamir et al. | Oct 2010 | B2 |
7832762 | Breed | Nov 2010 | B2 |
7864073 | Lee et al. | Jan 2011 | B2 |
7872591 | Kane et al. | Jan 2011 | B2 |
7873471 | Gieseke | Jan 2011 | B2 |
7881703 | Roundtree et al. | Feb 2011 | B2 |
7891004 | Gelvin et al. | Feb 2011 | B1 |
7891719 | Carnevali | Feb 2011 | B2 |
7899610 | McClellan | Mar 2011 | B2 |
7966678 | Ten Eyck et al. | Jun 2011 | B2 |
7969290 | Waeller et al. | Jun 2011 | B2 |
7969324 | Chevion et al. | Jun 2011 | B2 |
8060631 | Collart et al. | Nov 2011 | B2 |
8064925 | Sun et al. | Nov 2011 | B1 |
8066313 | Carnevali | Nov 2011 | B2 |
8098170 | Szczerba et al. | Jan 2012 | B1 |
8113564 | Carnevali | Feb 2012 | B2 |
8131419 | Ampunan et al. | Mar 2012 | B2 |
8157310 | Carnevali | Apr 2012 | B2 |
8162368 | Carnevali | Apr 2012 | B2 |
8175802 | Forstall et al. | May 2012 | B2 |
8233919 | Haag et al. | Jul 2012 | B2 |
8245609 | Greenwald et al. | Aug 2012 | B1 |
8306514 | Nunally | Nov 2012 | B1 |
8334847 | Tomkins | Dec 2012 | B2 |
8346233 | Aaron et al. | Jan 2013 | B2 |
8346432 | Van Wiemeersch et al. | Jan 2013 | B2 |
8350721 | Carr | Jan 2013 | B2 |
8352282 | Jensen et al. | Jan 2013 | B2 |
8369263 | Dowling et al. | Feb 2013 | B2 |
8417449 | Denise | Apr 2013 | B1 |
8432260 | Talty et al. | Apr 2013 | B2 |
8442389 | Kashima et al. | May 2013 | B2 |
8442758 | Rovik et al. | May 2013 | B1 |
8467965 | Chang | Jun 2013 | B2 |
8497842 | Tomkins et al. | Jul 2013 | B2 |
8498809 | Bill | Jul 2013 | B2 |
8509982 | Montemerlo et al. | Aug 2013 | B2 |
8521410 | Mizuno et al. | Aug 2013 | B2 |
8527143 | Tan | Sep 2013 | B2 |
8527146 | Jackson et al. | Sep 2013 | B1 |
8532574 | Kirsch | Sep 2013 | B2 |
8543330 | Taylor et al. | Sep 2013 | B2 |
8547340 | Sizelove et al. | Oct 2013 | B2 |
8548669 | Naylor | Oct 2013 | B2 |
8559183 | Davis | Oct 2013 | B1 |
8577600 | Pierfelice | Nov 2013 | B1 |
8578279 | Chen et al. | Nov 2013 | B2 |
8583292 | Preston et al. | Nov 2013 | B2 |
8589073 | Guha et al. | Nov 2013 | B2 |
8600611 | Seize | Dec 2013 | B2 |
8613385 | Hulet et al. | Dec 2013 | B1 |
8621645 | Spackman | Dec 2013 | B1 |
8624727 | Saigh et al. | Jan 2014 | B2 |
8634984 | Sumizawa | Jan 2014 | B2 |
8644165 | Saarimaki et al. | Feb 2014 | B2 |
8660735 | Tengler et al. | Feb 2014 | B2 |
8671068 | Harter et al. | Mar 2014 | B2 |
8688372 | Bhogal et al. | Apr 2014 | B2 |
8705527 | Addepalli et al. | Apr 2014 | B1 |
8706143 | Elias | Apr 2014 | B1 |
8718797 | Addepalli et al. | May 2014 | B1 |
8725311 | Breed | May 2014 | B1 |
8730033 | Yarnold et al. | May 2014 | B2 |
8737986 | Rhoads et al. | May 2014 | B2 |
8761673 | Sakata | Jun 2014 | B2 |
8774842 | Jones et al. | Jul 2014 | B2 |
8779947 | Tengler et al. | Jul 2014 | B2 |
8782262 | Collart et al. | Jul 2014 | B2 |
8793065 | Seltzer et al. | Jul 2014 | B2 |
8798918 | Onishi et al. | Aug 2014 | B2 |
8805110 | Rhoads et al. | Aug 2014 | B2 |
8812171 | Fillev et al. | Aug 2014 | B2 |
8817761 | Gruberman et al. | Aug 2014 | B2 |
8825031 | Aaron et al. | Sep 2014 | B2 |
8825277 | McClellan et al. | Sep 2014 | B2 |
8825382 | Liu | Sep 2014 | B2 |
8826261 | Anand et al. | Sep 2014 | B1 |
8838088 | Henn et al. | Sep 2014 | B1 |
8862317 | Shin et al. | Oct 2014 | B2 |
8965460 | Rao | Feb 2015 | B1 |
8977408 | Cazanas et al. | Mar 2015 | B1 |
8994718 | Latta | Mar 2015 | B2 |
9043016 | Filippov et al. | May 2015 | B2 |
9229905 | Penilla et al. | Jan 2016 | B1 |
20010010516 | Roh et al. | Aug 2001 | A1 |
20010015888 | Shaler et al. | Aug 2001 | A1 |
20020009978 | Dukach et al. | Jan 2002 | A1 |
20020023010 | Rittmaster et al. | Feb 2002 | A1 |
20020026278 | Feldman et al. | Feb 2002 | A1 |
20020045484 | Eck et al. | Apr 2002 | A1 |
20020065046 | Mankins et al. | May 2002 | A1 |
20020077985 | Kobata et al. | Jun 2002 | A1 |
20020095249 | Lang | Jul 2002 | A1 |
20020097145 | Tumey et al. | Jul 2002 | A1 |
20020103622 | Burge | Aug 2002 | A1 |
20020105968 | Pruzan et al. | Aug 2002 | A1 |
20020126876 | Paul et al. | Sep 2002 | A1 |
20020128774 | Takezaki et al. | Sep 2002 | A1 |
20020143461 | Burns et al. | Oct 2002 | A1 |
20020143643 | Catan | Oct 2002 | A1 |
20020152010 | Colmenarez et al. | Oct 2002 | A1 |
20020154217 | Ikeda | Oct 2002 | A1 |
20020169551 | Inoue et al. | Nov 2002 | A1 |
20020174021 | Chu et al. | Nov 2002 | A1 |
20030004624 | Wilson et al. | Jan 2003 | A1 |
20030007227 | Ogino | Jan 2003 | A1 |
20030055557 | Dutta et al. | Mar 2003 | A1 |
20030060937 | Shinada et al. | Mar 2003 | A1 |
20030065432 | Shuman et al. | Apr 2003 | A1 |
20030101451 | Bentolila et al. | May 2003 | A1 |
20030109972 | Tak | Jun 2003 | A1 |
20030125846 | Yu et al. | Jul 2003 | A1 |
20030132666 | Bond et al. | Jul 2003 | A1 |
20030149530 | Stopczynski | Aug 2003 | A1 |
20030158638 | Yakes et al. | Aug 2003 | A1 |
20030182435 | Redlich et al. | Sep 2003 | A1 |
20030202683 | Ma et al. | Oct 2003 | A1 |
20030204290 | Sadler et al. | Oct 2003 | A1 |
20030230443 | Cramer et al. | Dec 2003 | A1 |
20040017292 | Reese et al. | Jan 2004 | A1 |
20040024502 | Squires et al. | Feb 2004 | A1 |
20040036622 | Dukach et al. | Feb 2004 | A1 |
20040039500 | Amendola et al. | Feb 2004 | A1 |
20040039504 | Coffee et al. | Feb 2004 | A1 |
20040068364 | Zhao et al. | Apr 2004 | A1 |
20040070920 | Flueli | Apr 2004 | A1 |
20040093155 | Simonds et al. | May 2004 | A1 |
20040117494 | Mitchell et al. | Jun 2004 | A1 |
20040128062 | Ogino et al. | Jul 2004 | A1 |
20040153356 | Lockwood et al. | Aug 2004 | A1 |
20040162019 | Horita et al. | Aug 2004 | A1 |
20040180653 | Royalty | Sep 2004 | A1 |
20040182574 | Adnan et al. | Sep 2004 | A1 |
20040193347 | Harumoto et al. | Sep 2004 | A1 |
20040203974 | Seibel | Oct 2004 | A1 |
20040204837 | Singleton | Oct 2004 | A1 |
20040209594 | Naboulsi | Oct 2004 | A1 |
20040217850 | Perttunen et al. | Nov 2004 | A1 |
20040225557 | Phelan et al. | Nov 2004 | A1 |
20040255123 | Noyama et al. | Dec 2004 | A1 |
20040257208 | Huang et al. | Dec 2004 | A1 |
20040260470 | Rast | Dec 2004 | A1 |
20050012599 | DeMatteo | Jan 2005 | A1 |
20050031100 | Iggulden et al. | Feb 2005 | A1 |
20050038598 | Oesterling et al. | Feb 2005 | A1 |
20050042999 | Rappaport | Feb 2005 | A1 |
20050058337 | Fujimura | Mar 2005 | A1 |
20050065678 | Smith et al. | Mar 2005 | A1 |
20050065711 | Dahlgren et al. | Mar 2005 | A1 |
20050086051 | Brulle-Drews | Apr 2005 | A1 |
20050093717 | Lilja | May 2005 | A1 |
20050097541 | Holland | May 2005 | A1 |
20050100192 | Fujimura et al. | May 2005 | A1 |
20050114864 | Surace | May 2005 | A1 |
20050122235 | Teffer et al. | Jun 2005 | A1 |
20050124211 | Diessner et al. | Jun 2005 | A1 |
20050130744 | Eck et al. | Jun 2005 | A1 |
20050144156 | Barber | Jun 2005 | A1 |
20050149752 | Johnson et al. | Jul 2005 | A1 |
20050153760 | Varley | Jul 2005 | A1 |
20050159853 | Takahashi et al. | Jul 2005 | A1 |
20050159892 | Chung | Jul 2005 | A1 |
20050192727 | Shostak et al. | Sep 2005 | A1 |
20050197748 | Holst et al. | Sep 2005 | A1 |
20050197767 | Nortrup | Sep 2005 | A1 |
20050251324 | Wiener et al. | Nov 2005 | A1 |
20050261815 | Cowelchuk et al. | Nov 2005 | A1 |
20050278093 | Kameyama | Dec 2005 | A1 |
20050283284 | Grenier et al. | Dec 2005 | A1 |
20060015819 | Hawkins et al. | Jan 2006 | A1 |
20060036358 | Hale et al. | Feb 2006 | A1 |
20060044119 | Egelhaaf | Mar 2006 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060058948 | Blass et al. | Mar 2006 | A1 |
20060059229 | Bain et al. | Mar 2006 | A1 |
20060125631 | Sharony | Jun 2006 | A1 |
20060130033 | Stoffels et al. | Jun 2006 | A1 |
20060142933 | Feng | Jun 2006 | A1 |
20060173841 | Bill | Aug 2006 | A1 |
20060175403 | McConnell et al. | Aug 2006 | A1 |
20060184319 | Seick et al. | Aug 2006 | A1 |
20060212909 | Girard et al. | Sep 2006 | A1 |
20060241836 | Kachouh et al. | Oct 2006 | A1 |
20060243056 | Sundermeyer et al. | Nov 2006 | A1 |
20060250272 | Puamau | Nov 2006 | A1 |
20060253307 | Warren et al. | Nov 2006 | A1 |
20060259210 | Tanaka et al. | Nov 2006 | A1 |
20060274829 | Siemens et al. | Dec 2006 | A1 |
20060282204 | Breed | Dec 2006 | A1 |
20060287807 | Teffer | Dec 2006 | A1 |
20060287865 | Cross et al. | Dec 2006 | A1 |
20060288382 | Vitito | Dec 2006 | A1 |
20060290516 | Muehlsteff et al. | Dec 2006 | A1 |
20070001831 | Raz et al. | Jan 2007 | A1 |
20070002032 | Powers et al. | Jan 2007 | A1 |
20070010942 | Bill | Jan 2007 | A1 |
20070015485 | DeBiasio et al. | Jan 2007 | A1 |
20070028370 | Seng | Feb 2007 | A1 |
20070032225 | Konicek et al. | Feb 2007 | A1 |
20070057781 | Breed | Mar 2007 | A1 |
20070061057 | Huang et al. | Mar 2007 | A1 |
20070067614 | Berry et al. | Mar 2007 | A1 |
20070069880 | Best et al. | Mar 2007 | A1 |
20070083298 | Pierce et al. | Apr 2007 | A1 |
20070088488 | Reeves et al. | Apr 2007 | A1 |
20070103328 | Lakshmanan et al. | May 2007 | A1 |
20070115101 | Creekbaum et al. | May 2007 | A1 |
20070118301 | Andarawis et al. | May 2007 | A1 |
20070120697 | Ayoub et al. | May 2007 | A1 |
20070135995 | Kikuchi et al. | Jun 2007 | A1 |
20070156317 | Breed | Jul 2007 | A1 |
20070182625 | Kerai et al. | Aug 2007 | A1 |
20070182816 | Fox | Aug 2007 | A1 |
20070185969 | Davis | Aug 2007 | A1 |
20070192486 | Wilson et al. | Aug 2007 | A1 |
20070194902 | Blanco et al. | Aug 2007 | A1 |
20070194944 | Galera et al. | Aug 2007 | A1 |
20070195997 | Paul et al. | Aug 2007 | A1 |
20070200663 | White et al. | Aug 2007 | A1 |
20070208860 | Zellner et al. | Sep 2007 | A1 |
20070213090 | Holmberg | Sep 2007 | A1 |
20070228826 | Jordan et al. | Oct 2007 | A1 |
20070233341 | Logsdon | Oct 2007 | A1 |
20070250228 | Reddy et al. | Oct 2007 | A1 |
20070257815 | Gunderson et al. | Nov 2007 | A1 |
20070276596 | Solomon et al. | Nov 2007 | A1 |
20070280505 | Breed | Dec 2007 | A1 |
20080005974 | Delgado Vazquez et al. | Jan 2008 | A1 |
20080023253 | Prost-Fin et al. | Jan 2008 | A1 |
20080027337 | Dugan et al. | Jan 2008 | A1 |
20080033635 | Obradovich et al. | Feb 2008 | A1 |
20080042824 | Kates | Feb 2008 | A1 |
20080051957 | Breed et al. | Feb 2008 | A1 |
20080052627 | Oguchi | Feb 2008 | A1 |
20080071465 | Chapman et al. | Mar 2008 | A1 |
20080082237 | Breed | Apr 2008 | A1 |
20080086455 | Meisels et al. | Apr 2008 | A1 |
20080090522 | Oyama | Apr 2008 | A1 |
20080104227 | Birnie et al. | May 2008 | A1 |
20080119994 | Kameyama | May 2008 | A1 |
20080129475 | Breed et al. | Jun 2008 | A1 |
20080143085 | Breed et al. | Jun 2008 | A1 |
20080147280 | Breed | Jun 2008 | A1 |
20080148374 | Spaur et al. | Jun 2008 | A1 |
20080154712 | Wellman | Jun 2008 | A1 |
20080154957 | Taylor et al. | Jun 2008 | A1 |
20080161986 | Breed | Jul 2008 | A1 |
20080164985 | Iketani et al. | Jul 2008 | A1 |
20080169940 | Lee et al. | Jul 2008 | A1 |
20080174451 | Harrington et al. | Jul 2008 | A1 |
20080212215 | Schofield et al. | Sep 2008 | A1 |
20080216067 | Villing | Sep 2008 | A1 |
20080228358 | Wang et al. | Sep 2008 | A1 |
20080234919 | Ritter et al. | Sep 2008 | A1 |
20080252487 | McClellan et al. | Oct 2008 | A1 |
20080253613 | Jones et al. | Oct 2008 | A1 |
20080255721 | Yamada | Oct 2008 | A1 |
20080255722 | McClellan et al. | Oct 2008 | A1 |
20080269958 | Filev et al. | Oct 2008 | A1 |
20080281508 | Fu | Nov 2008 | A1 |
20080300778 | Kuznetsov | Dec 2008 | A1 |
20080305780 | Williams et al. | Dec 2008 | A1 |
20080319602 | McClellan et al. | Dec 2008 | A1 |
20090006525 | Moore | Jan 2009 | A1 |
20090024419 | McClellan et al. | Jan 2009 | A1 |
20090037719 | Sakthikumar et al. | Feb 2009 | A1 |
20090040026 | Tanaka | Feb 2009 | A1 |
20090055178 | Coon | Feb 2009 | A1 |
20090082951 | Graessley | Mar 2009 | A1 |
20090096597 | Avery, Jr. | Apr 2009 | A1 |
20090099720 | Elgali | Apr 2009 | A1 |
20090112393 | Maten et al. | Apr 2009 | A1 |
20090112452 | Buck et al. | Apr 2009 | A1 |
20090119657 | Link, II | May 2009 | A1 |
20090125174 | Delean | May 2009 | A1 |
20090132294 | Haines | May 2009 | A1 |
20090138336 | Ashley et al. | May 2009 | A1 |
20090144622 | Evans et al. | Jun 2009 | A1 |
20090157312 | Black et al. | Jun 2009 | A1 |
20090158200 | Palahnuk et al. | Jun 2009 | A1 |
20090180668 | Jones et al. | Jul 2009 | A1 |
20090189373 | Schramm et al. | Jul 2009 | A1 |
20090189979 | Smyth | Jul 2009 | A1 |
20090195370 | Huffman et al. | Aug 2009 | A1 |
20090210257 | Chalfant et al. | Aug 2009 | A1 |
20090216935 | Flick | Aug 2009 | A1 |
20090222200 | Link et al. | Sep 2009 | A1 |
20090224931 | Dietz et al. | Sep 2009 | A1 |
20090224942 | Goudy et al. | Sep 2009 | A1 |
20090234578 | Newby et al. | Sep 2009 | A1 |
20090241883 | Nagoshi et al. | Oct 2009 | A1 |
20090254446 | Chernyak | Oct 2009 | A1 |
20090264849 | La Croix | Oct 2009 | A1 |
20090275321 | Crowe | Nov 2009 | A1 |
20090278750 | Man et al. | Nov 2009 | A1 |
20090278915 | Kramer et al. | Nov 2009 | A1 |
20090279839 | Nakamura et al. | Nov 2009 | A1 |
20090284359 | Huang et al. | Nov 2009 | A1 |
20090287405 | Liu et al. | Nov 2009 | A1 |
20090299572 | Fujikawa et al. | Dec 2009 | A1 |
20090312998 | Berckmans et al. | Dec 2009 | A1 |
20090319181 | Khosravy et al. | Dec 2009 | A1 |
20100008053 | Osternack et al. | Jan 2010 | A1 |
20100023204 | Basir et al. | Jan 2010 | A1 |
20100035620 | Naden et al. | Feb 2010 | A1 |
20100036560 | Wright et al. | Feb 2010 | A1 |
20100042498 | Schalk | Feb 2010 | A1 |
20100052945 | Breed | Mar 2010 | A1 |
20100057337 | Fuchs | Mar 2010 | A1 |
20100066498 | Fenton | Mar 2010 | A1 |
20100069115 | Liu | Mar 2010 | A1 |
20100070338 | Siotia et al. | Mar 2010 | A1 |
20100077094 | Howarter et al. | Mar 2010 | A1 |
20100087987 | Huang et al. | Apr 2010 | A1 |
20100090817 | Yamaguchi et al. | Apr 2010 | A1 |
20100097178 | Pisz et al. | Apr 2010 | A1 |
20100097239 | Campbell et al. | Apr 2010 | A1 |
20100097458 | Zhang et al. | Apr 2010 | A1 |
20100106344 | Edwards et al. | Apr 2010 | A1 |
20100106418 | Kindo et al. | Apr 2010 | A1 |
20100118025 | Smith et al. | May 2010 | A1 |
20100121570 | Tokue et al. | May 2010 | A1 |
20100121645 | Seitz et al. | May 2010 | A1 |
20100125387 | Sehyun et al. | May 2010 | A1 |
20100125405 | Chae et al. | May 2010 | A1 |
20100125811 | Moore et al. | May 2010 | A1 |
20100127847 | Evans et al. | May 2010 | A1 |
20100131300 | Collopy et al. | May 2010 | A1 |
20100134958 | Disaverio et al. | Jun 2010 | A1 |
20100136944 | Taylor et al. | Jun 2010 | A1 |
20100137037 | Basir | Jun 2010 | A1 |
20100144284 | Chutorash et al. | Jun 2010 | A1 |
20100145700 | Kennewick et al. | Jun 2010 | A1 |
20100145987 | Harper et al. | Jun 2010 | A1 |
20100152976 | White et al. | Jun 2010 | A1 |
20100169432 | Santori et al. | Jul 2010 | A1 |
20100174474 | Nagase | Jul 2010 | A1 |
20100179712 | Pepitone et al. | Jul 2010 | A1 |
20100185341 | Wilson et al. | Jul 2010 | A1 |
20100188831 | Ortel | Jul 2010 | A1 |
20100197359 | Harris | Aug 2010 | A1 |
20100202346 | Sitzes et al. | Aug 2010 | A1 |
20100211259 | McClellan | Aug 2010 | A1 |
20100211282 | Nakata et al. | Aug 2010 | A1 |
20100211300 | Jaffe et al. | Aug 2010 | A1 |
20100211304 | Hwang et al. | Aug 2010 | A1 |
20100211441 | Sprigg et al. | Aug 2010 | A1 |
20100217458 | Schweiger et al. | Aug 2010 | A1 |
20100222939 | Namburu et al. | Sep 2010 | A1 |
20100228404 | Link et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100235042 | Ying | Sep 2010 | A1 |
20100235744 | Schultz | Sep 2010 | A1 |
20100235891 | Oglesbee et al. | Sep 2010 | A1 |
20100250071 | Pala et al. | Sep 2010 | A1 |
20100253493 | Szczerba et al. | Oct 2010 | A1 |
20100253526 | Szczerba | Oct 2010 | A1 |
20100256836 | Mudalige | Oct 2010 | A1 |
20100265104 | Zlojutro | Oct 2010 | A1 |
20100268426 | Pathak et al. | Oct 2010 | A1 |
20100274410 | Tsien et al. | Oct 2010 | A1 |
20100280751 | Breed | Nov 2010 | A1 |
20100287303 | Smith et al. | Nov 2010 | A1 |
20100289632 | Seder et al. | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100291427 | Zhou | Nov 2010 | A1 |
20100295676 | Khachaturov et al. | Nov 2010 | A1 |
20100304640 | Sofman et al. | Dec 2010 | A1 |
20100305807 | Basir et al. | Dec 2010 | A1 |
20100306080 | Trandal et al. | Dec 2010 | A1 |
20100306309 | Santori et al. | Dec 2010 | A1 |
20100306435 | Nigoghosian et al. | Dec 2010 | A1 |
20100315218 | Cades et al. | Dec 2010 | A1 |
20100321151 | Matsuura et al. | Dec 2010 | A1 |
20100325626 | Greschler et al. | Dec 2010 | A1 |
20100332130 | Shimizu et al. | Dec 2010 | A1 |
20110015853 | DeKock et al. | Jan 2011 | A1 |
20110018736 | Carr | Jan 2011 | A1 |
20110021213 | Carr | Jan 2011 | A1 |
20110021234 | Tibbits et al. | Jan 2011 | A1 |
20110028138 | Davies-Moore et al. | Feb 2011 | A1 |
20110035098 | Goto et al. | Feb 2011 | A1 |
20110035141 | Barker et al. | Feb 2011 | A1 |
20110040438 | Kluge et al. | Feb 2011 | A1 |
20110050589 | Yan et al. | Mar 2011 | A1 |
20110053506 | Lemke et al. | Mar 2011 | A1 |
20110077808 | Hyde et al. | Mar 2011 | A1 |
20110078024 | Messier et al. | Mar 2011 | A1 |
20110080282 | Kleve et al. | Apr 2011 | A1 |
20110082615 | Small et al. | Apr 2011 | A1 |
20110084824 | Tewari et al. | Apr 2011 | A1 |
20110090078 | Kim et al. | Apr 2011 | A1 |
20110092159 | Park et al. | Apr 2011 | A1 |
20110093154 | Moinzadeh et al. | Apr 2011 | A1 |
20110093158 | Theisen et al. | Apr 2011 | A1 |
20110093438 | Poulsen | Apr 2011 | A1 |
20110093846 | Moinzadeh et al. | Apr 2011 | A1 |
20110105097 | Tadayon et al. | May 2011 | A1 |
20110106375 | Sundaram et al. | May 2011 | A1 |
20110112717 | Resner | May 2011 | A1 |
20110112969 | Zaid et al. | May 2011 | A1 |
20110117933 | Andersson | May 2011 | A1 |
20110119344 | Eustis | May 2011 | A1 |
20110130915 | Wright et al. | Jun 2011 | A1 |
20110134749 | Speks et al. | Jun 2011 | A1 |
20110137520 | Rector et al. | Jun 2011 | A1 |
20110145331 | Christie et al. | Jun 2011 | A1 |
20110172873 | Szwabowski et al. | Jul 2011 | A1 |
20110175754 | Karpinsky | Jul 2011 | A1 |
20110183658 | Zellner | Jul 2011 | A1 |
20110187520 | Filev et al. | Aug 2011 | A1 |
20110193707 | Ngo | Aug 2011 | A1 |
20110193726 | Szwabowski et al. | Aug 2011 | A1 |
20110195699 | Tadayon et al. | Aug 2011 | A1 |
20110197187 | Roh | Aug 2011 | A1 |
20110205047 | Patel et al. | Aug 2011 | A1 |
20110209079 | Tarte et al. | Aug 2011 | A1 |
20110210867 | Benedikt | Sep 2011 | A1 |
20110212717 | Rhoads et al. | Sep 2011 | A1 |
20110221656 | Haddick et al. | Sep 2011 | A1 |
20110224865 | Gordon et al. | Sep 2011 | A1 |
20110224898 | Scofield et al. | Sep 2011 | A1 |
20110225527 | Law et al. | Sep 2011 | A1 |
20110227757 | Chen et al. | Sep 2011 | A1 |
20110231091 | Gourlay et al. | Sep 2011 | A1 |
20110234369 | Cai et al. | Sep 2011 | A1 |
20110245999 | Kordonowy | Oct 2011 | A1 |
20110246210 | Matsur | Oct 2011 | A1 |
20110247013 | Feller et al. | Oct 2011 | A1 |
20110251734 | Schepp et al. | Oct 2011 | A1 |
20110257973 | Chutorash et al. | Oct 2011 | A1 |
20110267204 | Chuang et al. | Nov 2011 | A1 |
20110267205 | McClellan et al. | Nov 2011 | A1 |
20110286676 | El Dokor | Nov 2011 | A1 |
20110291886 | Krieter | Dec 2011 | A1 |
20110291926 | Gokturk et al. | Dec 2011 | A1 |
20110298808 | Rovik | Dec 2011 | A1 |
20110301844 | Aono | Dec 2011 | A1 |
20110307354 | Erman et al. | Dec 2011 | A1 |
20110307570 | Speks | Dec 2011 | A1 |
20110309926 | Eikelenberg et al. | Dec 2011 | A1 |
20110309953 | Petite et al. | Dec 2011 | A1 |
20110313653 | Lindner | Dec 2011 | A1 |
20110320089 | Lewis | Dec 2011 | A1 |
20120006610 | Wallace et al. | Jan 2012 | A1 |
20120010807 | Zhou | Jan 2012 | A1 |
20120016581 | Mochizuki et al. | Jan 2012 | A1 |
20120029852 | Goff et al. | Feb 2012 | A1 |
20120030002 | Bous et al. | Feb 2012 | A1 |
20120030512 | Wadhwa et al. | Feb 2012 | A1 |
20120038489 | Goldshmidt | Feb 2012 | A1 |
20120046822 | Anderson | Feb 2012 | A1 |
20120047530 | Shkedi | Feb 2012 | A1 |
20120053793 | Sala et al. | Mar 2012 | A1 |
20120053888 | Stahlin et al. | Mar 2012 | A1 |
20120059789 | Sakai et al. | Mar 2012 | A1 |
20120065815 | Hess | Mar 2012 | A1 |
20120065834 | Senart | Mar 2012 | A1 |
20120068956 | Jira et al. | Mar 2012 | A1 |
20120071097 | Matsushita et al. | Mar 2012 | A1 |
20120072244 | Collins et al. | Mar 2012 | A1 |
20120074770 | Lee | Mar 2012 | A1 |
20120083960 | Zhu et al. | Apr 2012 | A1 |
20120083971 | Preston | Apr 2012 | A1 |
20120084773 | Lee et al. | Apr 2012 | A1 |
20120089299 | Breed | Apr 2012 | A1 |
20120092251 | Hashimoto et al. | Apr 2012 | A1 |
20120101876 | Truvey et al. | Apr 2012 | A1 |
20120101914 | Kumar et al. | Apr 2012 | A1 |
20120105613 | Weng et al. | May 2012 | A1 |
20120106114 | Caron et al. | May 2012 | A1 |
20120109446 | Yousefi et al. | May 2012 | A1 |
20120109451 | Tan | May 2012 | A1 |
20120110356 | Yousefi et al. | May 2012 | A1 |
20120113822 | Letner | May 2012 | A1 |
20120115446 | Guatama et al. | May 2012 | A1 |
20120116609 | Jung et al. | May 2012 | A1 |
20120116678 | Witmer | May 2012 | A1 |
20120116696 | Wank | May 2012 | A1 |
20120146766 | Geisler et al. | Jun 2012 | A1 |
20120146809 | Oh et al. | Jun 2012 | A1 |
20120149341 | Tadayon et al. | Jun 2012 | A1 |
20120150651 | Hoffberg et al. | Jun 2012 | A1 |
20120155636 | Muthaiah | Jun 2012 | A1 |
20120158436 | Bauer et al. | Jun 2012 | A1 |
20120173900 | Diab et al. | Jul 2012 | A1 |
20120173905 | Diab et al. | Jul 2012 | A1 |
20120179325 | Faenger | Jul 2012 | A1 |
20120179547 | Besore et al. | Jul 2012 | A1 |
20120188876 | Chow et al. | Jul 2012 | A1 |
20120197523 | Kirsch | Aug 2012 | A1 |
20120197669 | Kote et al. | Aug 2012 | A1 |
20120204166 | Ichihara | Aug 2012 | A1 |
20120210160 | Fuhrman | Aug 2012 | A1 |
20120215375 | Chang | Aug 2012 | A1 |
20120215403 | Tengler | Aug 2012 | A1 |
20120217928 | Kulidjian | Aug 2012 | A1 |
20120218125 | Demirdjian et al. | Aug 2012 | A1 |
20120226413 | Chen et al. | Sep 2012 | A1 |
20120238286 | Mallavarapu et al. | Sep 2012 | A1 |
20120239242 | Uehara | Sep 2012 | A1 |
20120242510 | Choi et al. | Sep 2012 | A1 |
20120254763 | Protopapas et al. | Oct 2012 | A1 |
20120254804 | Shema et al. | Oct 2012 | A1 |
20120259951 | Schalk et al. | Oct 2012 | A1 |
20120265359 | Das | Oct 2012 | A1 |
20120274459 | Jaisimha et al. | Nov 2012 | A1 |
20120274481 | Ginsberg et al. | Nov 2012 | A1 |
20120284292 | Rechsteiner et al. | Nov 2012 | A1 |
20120289217 | Reimer et al. | Nov 2012 | A1 |
20120289253 | Haag et al. | Nov 2012 | A1 |
20120296567 | Breed | Nov 2012 | A1 |
20120313771 | Wottlifff, III | Dec 2012 | A1 |
20120316720 | Hyde et al. | Dec 2012 | A1 |
20120317561 | Aslam et al. | Dec 2012 | A1 |
20120323413 | Kedar-Dongarkar et al. | Dec 2012 | A1 |
20120327231 | Cochran et al. | Dec 2012 | A1 |
20130005263 | Sakata | Jan 2013 | A1 |
20130005414 | Bindra et al. | Jan 2013 | A1 |
20130013157 | Kim et al. | Jan 2013 | A1 |
20130019252 | Haase et al. | Jan 2013 | A1 |
20130024060 | Sukkarie et al. | Jan 2013 | A1 |
20130030645 | Divine et al. | Jan 2013 | A1 |
20130030811 | Olleon et al. | Jan 2013 | A1 |
20130031540 | Throop et al. | Jan 2013 | A1 |
20130031541 | Wilks et al. | Jan 2013 | A1 |
20130035063 | Fisk et al. | Feb 2013 | A1 |
20130046624 | Calman | Feb 2013 | A1 |
20130050069 | Ota | Feb 2013 | A1 |
20130055096 | Kim et al. | Feb 2013 | A1 |
20130059607 | Herz et al. | Mar 2013 | A1 |
20130063336 | Sugimoto et al. | Mar 2013 | A1 |
20130066512 | Willard et al. | Mar 2013 | A1 |
20130067599 | Raje et al. | Mar 2013 | A1 |
20130075530 | Shander et al. | Mar 2013 | A1 |
20130079964 | Sukkarie et al. | Mar 2013 | A1 |
20130083805 | Lu et al. | Apr 2013 | A1 |
20130085787 | Gore et al. | Apr 2013 | A1 |
20130086164 | Wheeler et al. | Apr 2013 | A1 |
20130099915 | Prasad et al. | Apr 2013 | A1 |
20130103196 | Monceaux et al. | Apr 2013 | A1 |
20130105264 | Ruth et al. | May 2013 | A1 |
20130116882 | Link et al. | May 2013 | A1 |
20130116915 | Ferreira et al. | May 2013 | A1 |
20130134730 | Ricci | May 2013 | A1 |
20130135118 | Ricci | May 2013 | A1 |
20130138591 | Ricci | May 2013 | A1 |
20130138714 | Ricci | May 2013 | A1 |
20130139140 | Rao et al. | May 2013 | A1 |
20130141247 | Ricci | Jun 2013 | A1 |
20130141252 | Ricci | Jun 2013 | A1 |
20130143495 | Ricci | Jun 2013 | A1 |
20130143546 | Ricci | Jun 2013 | A1 |
20130143601 | Ricci | Jun 2013 | A1 |
20130144459 | Ricci | Jun 2013 | A1 |
20130144460 | Ricci | Jun 2013 | A1 |
20130144461 | Ricci | Jun 2013 | A1 |
20130144462 | Ricci | Jun 2013 | A1 |
20130144463 | Ricci et al. | Jun 2013 | A1 |
20130144469 | Ricci | Jun 2013 | A1 |
20130144470 | Ricci | Jun 2013 | A1 |
20130144474 | Ricci | Jun 2013 | A1 |
20130144486 | Ricci | Jun 2013 | A1 |
20130144520 | Ricci | Jun 2013 | A1 |
20130144657 | Ricci | Jun 2013 | A1 |
20130145065 | Ricci | Jun 2013 | A1 |
20130145279 | Ricci | Jun 2013 | A1 |
20130145297 | Ricci et al. | Jun 2013 | A1 |
20130145360 | Ricci | Jun 2013 | A1 |
20130145401 | Ricci | Jun 2013 | A1 |
20130145482 | Ricci et al. | Jun 2013 | A1 |
20130147638 | Ricci | Jun 2013 | A1 |
20130151031 | Ricci | Jun 2013 | A1 |
20130151065 | Ricci | Jun 2013 | A1 |
20130151088 | Ricci | Jun 2013 | A1 |
20130151288 | Bowne et al. | Jun 2013 | A1 |
20130152003 | Ricci et al. | Jun 2013 | A1 |
20130154298 | Ricci | Jun 2013 | A1 |
20130157640 | Aycock | Jun 2013 | A1 |
20130157647 | Kolodziej | Jun 2013 | A1 |
20130158778 | Tengler et al. | Jun 2013 | A1 |
20130158821 | Ricci | Jun 2013 | A1 |
20130166096 | Jotanovic | Jun 2013 | A1 |
20130166097 | Ricci | Jun 2013 | A1 |
20130166098 | Lavie et al. | Jun 2013 | A1 |
20130166152 | Butterworth | Jun 2013 | A1 |
20130166208 | Forstall et al. | Jun 2013 | A1 |
20130167159 | Ricci et al. | Jun 2013 | A1 |
20130173531 | Rinearson et al. | Jul 2013 | A1 |
20130179689 | Matsumoto et al. | Jul 2013 | A1 |
20130190978 | Kato et al. | Jul 2013 | A1 |
20130194108 | Lapiotis et al. | Aug 2013 | A1 |
20130197753 | Daly | Aug 2013 | A1 |
20130197796 | Obradovich et al. | Aug 2013 | A1 |
20130198031 | Mitchell et al. | Aug 2013 | A1 |
20130198737 | Ricci | Aug 2013 | A1 |
20130198802 | Ricci | Aug 2013 | A1 |
20130200991 | Ricci et al. | Aug 2013 | A1 |
20130203400 | Ricci | Aug 2013 | A1 |
20130204455 | Chia et al. | Aug 2013 | A1 |
20130204457 | King | Aug 2013 | A1 |
20130204466 | Ricci | Aug 2013 | A1 |
20130204484 | Ricci | Aug 2013 | A1 |
20130204493 | Ricci et al. | Aug 2013 | A1 |
20130204943 | Ricci | Aug 2013 | A1 |
20130205026 | Ricci | Aug 2013 | A1 |
20130205412 | Ricci | Aug 2013 | A1 |
20130207794 | Patel et al. | Aug 2013 | A1 |
20130212065 | Rahnama | Aug 2013 | A1 |
20130212659 | Maher et al. | Aug 2013 | A1 |
20130215116 | Siddique et al. | Aug 2013 | A1 |
20130218412 | Ricci | Aug 2013 | A1 |
20130218445 | Basir | Aug 2013 | A1 |
20130219039 | Ricci | Aug 2013 | A1 |
20130226365 | Brozovich | Aug 2013 | A1 |
20130226371 | Rovik et al. | Aug 2013 | A1 |
20130226392 | Schneider et al. | Aug 2013 | A1 |
20130226449 | Rovik et al. | Aug 2013 | A1 |
20130226622 | Adamson et al. | Aug 2013 | A1 |
20130227648 | Ricci | Aug 2013 | A1 |
20130231784 | Rovik et al. | Sep 2013 | A1 |
20130231800 | Ricci | Sep 2013 | A1 |
20130232142 | Nielsen et al. | Sep 2013 | A1 |
20130238165 | Garrett et al. | Sep 2013 | A1 |
20130241720 | Ricci et al. | Sep 2013 | A1 |
20130245882 | Ricci | Sep 2013 | A1 |
20130250933 | Yousefi et al. | Sep 2013 | A1 |
20130261871 | Hobbs et al. | Oct 2013 | A1 |
20130261966 | Wang et al. | Oct 2013 | A1 |
20130265178 | Tengler et al. | Oct 2013 | A1 |
20130274997 | Chien | Oct 2013 | A1 |
20130279111 | Lee | Oct 2013 | A1 |
20130279491 | Rubin et al. | Oct 2013 | A1 |
20130282238 | Ricci et al. | Oct 2013 | A1 |
20130282357 | Rubin et al. | Oct 2013 | A1 |
20130282946 | Ricci | Oct 2013 | A1 |
20130288606 | Kirsch | Oct 2013 | A1 |
20130293364 | Ricci et al. | Nov 2013 | A1 |
20130293452 | Ricci et al. | Nov 2013 | A1 |
20130293480 | Kritt et al. | Nov 2013 | A1 |
20130295901 | Abramson et al. | Nov 2013 | A1 |
20130295908 | Zeinstra et al. | Nov 2013 | A1 |
20130295913 | Matthews et al. | Nov 2013 | A1 |
20130300554 | Braden | Nov 2013 | A1 |
20130301584 | Addepalli et al. | Nov 2013 | A1 |
20130304371 | Kitatani et al. | Nov 2013 | A1 |
20130308265 | Arnouse | Nov 2013 | A1 |
20130309977 | Heines et al. | Nov 2013 | A1 |
20130311038 | Kim et al. | Nov 2013 | A1 |
20130325453 | Levien et al. | Dec 2013 | A1 |
20130325568 | Mangalvedkar et al. | Dec 2013 | A1 |
20130329372 | Wilkins | Dec 2013 | A1 |
20130332023 | Bertosa et al. | Dec 2013 | A1 |
20130338914 | Weiss | Dec 2013 | A1 |
20130339027 | Dokor et al. | Dec 2013 | A1 |
20130345929 | Bowden et al. | Dec 2013 | A1 |
20140028542 | Lovitt et al. | Jan 2014 | A1 |
20140032014 | DeBiasio et al. | Jan 2014 | A1 |
20140054957 | Bellis | Feb 2014 | A1 |
20140058672 | Wansley et al. | Feb 2014 | A1 |
20140066014 | Nicholson et al. | Mar 2014 | A1 |
20140067201 | Visintainer et al. | Mar 2014 | A1 |
20140067564 | Yuan | Mar 2014 | A1 |
20140070917 | Protopapas | Mar 2014 | A1 |
20140081544 | Fry | Mar 2014 | A1 |
20140088798 | Himmelstein | Mar 2014 | A1 |
20140096068 | Dewan et al. | Apr 2014 | A1 |
20140097955 | Lovitt et al. | Apr 2014 | A1 |
20140104051 | Breed | Apr 2014 | A1 |
20140109075 | Hoffman et al. | Apr 2014 | A1 |
20140109080 | Ricci | Apr 2014 | A1 |
20140120829 | Bhamidipati et al. | May 2014 | A1 |
20140121862 | Zarrella et al. | May 2014 | A1 |
20140125802 | Heckert et al. | May 2014 | A1 |
20140143839 | Ricci | May 2014 | A1 |
20140164611 | Molettiere et al. | Jun 2014 | A1 |
20140168062 | Katz et al. | Jun 2014 | A1 |
20140168436 | Pedicino | Jun 2014 | A1 |
20140169621 | Burr | Jun 2014 | A1 |
20140171752 | Park et al. | Jun 2014 | A1 |
20140172727 | Abhyanker et al. | Jun 2014 | A1 |
20140188533 | Davidson | Jul 2014 | A1 |
20140195272 | Sadiq et al. | Jul 2014 | A1 |
20140198216 | Zhai et al. | Jul 2014 | A1 |
20140200737 | Lortz et al. | Jul 2014 | A1 |
20140207328 | Wolf et al. | Jul 2014 | A1 |
20140220966 | Muetzel et al. | Aug 2014 | A1 |
20140222298 | Gurin | Aug 2014 | A1 |
20140223384 | Graumann | Aug 2014 | A1 |
20140240089 | Chang | Aug 2014 | A1 |
20140244078 | Downey et al. | Aug 2014 | A1 |
20140244111 | Gross et al. | Aug 2014 | A1 |
20140244156 | Magnusson et al. | Aug 2014 | A1 |
20140245277 | Petro et al. | Aug 2014 | A1 |
20140245278 | Zellen | Aug 2014 | A1 |
20140245284 | Alrabady et al. | Aug 2014 | A1 |
20140252091 | Morse et al. | Sep 2014 | A1 |
20140257627 | Hagan, Jr. | Sep 2014 | A1 |
20140267035 | Schalk et al. | Sep 2014 | A1 |
20140277936 | El Dokor et al. | Sep 2014 | A1 |
20140278070 | McGavran et al. | Sep 2014 | A1 |
20140278071 | San Filippo et al. | Sep 2014 | A1 |
20140281971 | Isbell, III et al. | Sep 2014 | A1 |
20140282161 | Cash | Sep 2014 | A1 |
20140282278 | Anderson et al. | Sep 2014 | A1 |
20140282470 | Buga et al. | Sep 2014 | A1 |
20140282931 | Protopapas | Sep 2014 | A1 |
20140292545 | Nemoto | Oct 2014 | A1 |
20140292665 | Lathrop et al. | Oct 2014 | A1 |
20140303899 | Fung | Oct 2014 | A1 |
20140306799 | Ricci | Oct 2014 | A1 |
20140306814 | Ricci | Oct 2014 | A1 |
20140306817 | Ricci | Oct 2014 | A1 |
20140306826 | Ricci | Oct 2014 | A1 |
20140306833 | Ricci | Oct 2014 | A1 |
20140306834 | Ricci | Oct 2014 | A1 |
20140306835 | Ricci | Oct 2014 | A1 |
20140307655 | Ricci | Oct 2014 | A1 |
20140307724 | Ricci | Oct 2014 | A1 |
20140308902 | Ricci | Oct 2014 | A1 |
20140309789 | Ricci | Oct 2014 | A1 |
20140309790 | Ricci | Oct 2014 | A1 |
20140309804 | Ricci | Oct 2014 | A1 |
20140309805 | Ricci | Oct 2014 | A1 |
20140309806 | Ricci | Oct 2014 | A1 |
20140309813 | Ricci | Oct 2014 | A1 |
20140309814 | Ricci et al. | Oct 2014 | A1 |
20140309815 | Ricci et al. | Oct 2014 | A1 |
20140309838 | Ricci | Oct 2014 | A1 |
20140309839 | Ricci et al. | Oct 2014 | A1 |
20140309847 | Ricci | Oct 2014 | A1 |
20140309849 | Ricci | Oct 2014 | A1 |
20140309852 | Ricci | Oct 2014 | A1 |
20140309853 | Ricci | Oct 2014 | A1 |
20140309862 | Ricci | Oct 2014 | A1 |
20140309863 | Ricci | Oct 2014 | A1 |
20140309864 | Ricci | Oct 2014 | A1 |
20140309865 | Ricci | Oct 2014 | A1 |
20140309866 | Ricci | Oct 2014 | A1 |
20140309867 | Ricci | Oct 2014 | A1 |
20140309868 | Ricci | Oct 2014 | A1 |
20140309869 | Ricci | Oct 2014 | A1 |
20140309870 | Ricci et al. | Oct 2014 | A1 |
20140309871 | Ricci | Oct 2014 | A1 |
20140309872 | Ricci | Oct 2014 | A1 |
20140309873 | Ricci | Oct 2014 | A1 |
20140309874 | Ricci | Oct 2014 | A1 |
20140309875 | Ricci | Oct 2014 | A1 |
20140309876 | Ricci | Oct 2014 | A1 |
20140309877 | Ricci | Oct 2014 | A1 |
20140309878 | Ricci | Oct 2014 | A1 |
20140309879 | Ricci | Oct 2014 | A1 |
20140309880 | Ricci | Oct 2014 | A1 |
20140309885 | Ricci | Oct 2014 | A1 |
20140309886 | Ricci | Oct 2014 | A1 |
20140309891 | Ricci | Oct 2014 | A1 |
20140309892 | Ricci | Oct 2014 | A1 |
20140309893 | Ricci | Oct 2014 | A1 |
20140309913 | Ricci et al. | Oct 2014 | A1 |
20140309919 | Ricci | Oct 2014 | A1 |
20140309920 | Ricci | Oct 2014 | A1 |
20140309921 | Ricci et al. | Oct 2014 | A1 |
20140309922 | Ricci | Oct 2014 | A1 |
20140309923 | Ricci | Oct 2014 | A1 |
20140309927 | Ricci | Oct 2014 | A1 |
20140309929 | Ricci | Oct 2014 | A1 |
20140309930 | Ricci | Oct 2014 | A1 |
20140309934 | Ricci | Oct 2014 | A1 |
20140309935 | Ricci | Oct 2014 | A1 |
20140309982 | Ricci | Oct 2014 | A1 |
20140310031 | Ricci | Oct 2014 | A1 |
20140310075 | Ricci | Oct 2014 | A1 |
20140310103 | Ricci | Oct 2014 | A1 |
20140310186 | Ricci | Oct 2014 | A1 |
20140310277 | Ricci | Oct 2014 | A1 |
20140310379 | Ricci et al. | Oct 2014 | A1 |
20140310594 | Ricci et al. | Oct 2014 | A1 |
20140310610 | Ricci | Oct 2014 | A1 |
20140310702 | Ricci et al. | Oct 2014 | A1 |
20140310739 | Ricci et al. | Oct 2014 | A1 |
20140310788 | Ricci | Oct 2014 | A1 |
20140322676 | Raman | Oct 2014 | A1 |
20140347207 | Zeng et al. | Nov 2014 | A1 |
20140347265 | Allen et al. | Nov 2014 | A1 |
20150007155 | Hoffman et al. | Jan 2015 | A1 |
20150012186 | Horseman | Jan 2015 | A1 |
20150032366 | Man et al. | Jan 2015 | A1 |
20150032670 | Brazell | Jan 2015 | A1 |
20150057839 | Chang et al. | Feb 2015 | A1 |
20150061895 | Ricci | Mar 2015 | A1 |
20150081133 | Schulz | Mar 2015 | A1 |
20150081167 | Pisz et al. | Mar 2015 | A1 |
20150088423 | Tuukkanen | Mar 2015 | A1 |
20150088515 | Beaumont et al. | Mar 2015 | A1 |
20150094544 | Spolin | Apr 2015 | A1 |
20150116200 | Kurosawa et al. | Apr 2015 | A1 |
20150158499 | Koravadi | Jun 2015 | A1 |
20150178034 | Penilla et al. | Jun 2015 | A1 |
20150178985 | Di Censo | Jun 2015 | A1 |
20150360617 | Schulz | Dec 2015 | A1 |
20160008985 | Kim et al. | Jan 2016 | A1 |
20160070527 | Ricci | Mar 2016 | A1 |
20160086391 | Ricci | Mar 2016 | A1 |
20160269456 | Ricci | Sep 2016 | A1 |
20160269469 | Ricci | Sep 2016 | A1 |
20180012091 | Ricci | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
1417755 | May 2003 | CN |
1847817 | Oct 2006 | CN |
101303878 | Nov 2008 | CN |
102467827 | May 2012 | CN |
1223567 | Jul 2002 | EP |
1484729 | Dec 2004 | EP |
2192015 | Jun 2010 | EP |
2004-284450 | Oct 2004 | JP |
2006-0128484 | Dec 2006 | KR |
WO 2007126204 | Nov 2007 | WO |
WO 2012102879 | Aug 2012 | WO |
WO 2013074866 | May 2013 | WO |
WO 2013074867 | May 2013 | WO |
WO 2013074868 | May 2013 | WO |
WO 2013074897 | May 2013 | WO |
WO 2013074899 | May 2013 | WO |
WO 2013074901 | May 2013 | WO |
WO 2013074919 | May 2013 | WO |
WO 2013074981 | May 2013 | WO |
WO 2013074983 | May 2013 | WO |
WO 2013075005 | May 2013 | WO |
WO 2013181310 | Dec 2013 | WO |
WO 2014014862 | Jan 2014 | WO |
WO 2014143563 | Sep 2014 | WO |
WO 2014158667 | Oct 2014 | WO |
WO 2014158672 | Oct 2014 | WO |
WO 2014158766 | Oct 2014 | WO |
WO 2014172312 | Oct 2014 | WO |
WO 2014172313 | Oct 2014 | WO |
WO 2014172316 | Oct 2014 | WO |
WO 2014172320 | Oct 2014 | WO |
WO 2014172322 | Oct 2014 | WO |
WO 2014172323 | Oct 2014 | WO |
WO 2014172327 | Oct 2014 | WO |
WO 2016145073 | Sep 2016 | WO |
WO 2016145100 | Sep 2016 | WO |
Entry |
---|
U.S. Appl. No. 61/567,962, filed Dec. 7, 2011, Baarman et al. |
“Nexus 10 Guidebook for Android,” Google Inc., © 2012, Edition 1.2, 166 pages. |
“Self-Driving: Self-Driving Autonomous Cars,” available at http://www.automotivetechnologies.com/autonomous-self-driving-cars, accessed Dec. 2016, 9 pages. |
Amor-Segan et al., “Towards the Self Healing Vehicle,” Automotive Electronics, Jun. 2007, 2007 3rd Institution of Engineering and Technology Conference, 7 pages. |
Bennett, “Meet Samsung's Version of Apple AirPlay,” CNET.com, Oct. 10, 2012, 11 pages. |
Cairnie et al., “Using Finger-Pointing to Operate Secondary Controls in Automobiles,” Proceedings of the IEEE Intelligent Vehicles Symposium 2000, Oct. 3-5, 2000, 6 pages. |
Clark, “How Self-Driving Cars Work: The Nuts and Bolts Behind Google's Autonomous Car Program,” Feb. 21, 2015, available at http://www.makeuseof.com/tag/how-self-driving-cars-work-the-nuts-and-bolts-behind-googles-autonomous-car-program/, 9 pages. |
Deaton et al., “How Driverless Cars Will Work,” Jul. 1, 2008, HowStuffWorks.com. <http://auto.howstuffworks.com/under-the-hood/trends-innovations/driverless-car.htm> Sep. 18, 2017, 10 pages. |
Dumbaugh, “Safe Streets, Livable Streets: A Positive Approach to urban Roadside Design,” Ph.D. dissertation for School of Civil & Environ. Engr., Georgia Inst. of Technology, Dec. 2005, 235 pages. |
Fei et al., “A QoS-aware Dynamic Bandwidth Allocation Algorithm for Relay Stations in IEEE 802.16j-based Vehicular Networks,” Proceedings of the 2010 IEEE Global Telecommunications Conference, Dec. 10, 2010, 10 pages. |
Ge et al., “Optimal Relay Selection in IEEE 802.16j Multihop Relay Vehicular Networks,” IEEE Transactions on Vehicular Technology, 2010, vol. 59(5), pp. 2198-2206. |
Guizzo, Erico, “How Google's Self-Driving Car Works,” Oct. 18, 2011, available at https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works, 5 pages. |
Heer et al., “ALPHA: An Adaptive and Lightweight Protocol for Hop-by-hop Authentication,” Proceedings of CoNEXT 2008, Dec. 2008, pp. 1-12. |
Jahnich et al., “Towards a Middleware Approach for a Self-Configurable Automotive Embedded System,” International Federation for Information Processing, 2008, pp. 55-65. |
Persson “Adaptive Middleware for Self-Configurable Embedded Real-Time Systems,” KTH Industrial Engineering and Management, 2009, pp. iii-71 and references. |
Raychaudhuri et al., “Emerging Wireless Technologies and the Future Mobile Internet,” p. 48, Cambridge Press, 2011, 3 pages. |
Siephens, Leah, “How Driverless Cars Work,” Interesting Engineering, Apr. 28, 2016, available at https://interestingengineering.com/driverless-cars-work/, 7 pages. |
Stoller, “Leader Election in Distributed Systems with Crash Failures,” Indiana University, 1997, pp. 1-15. |
Strunk et al., “The Elements of Style,” 3d ed., Macmillan Publishing Co., 1979, 3 pages. |
Suwatthikul, “Fault detection and diagnosis for in-vehicle networks,” Intech, 2010, pp. 283-286 [retrieved from: www.intechopen.com/books/fault-detection-and-diagnosis-for-in-vehicle-networks]. |
Walter et al., “The smart car seat: personalized monitoring of vital signs in automotive applications.” Personal and Ubiquitous Computing, Oct. 2011, vol. 15, No. 7, pp. 707-715. |
Wolf et al., “Design, Implementation, and Evaluation of a Vehicular Hardware Security Module,” ICISC'11 Proceedings of the 14th Int'l Conf. Information Security & Cryptology, Springer-Verlag Berlin, Heidelberg, 2011, pp. 302-318. |
Official Action for U.S. Appl. No. 15/393,114, dated Sep. 6, 2018 17 pages. |
Final Action for U.S. Appl. No. 15/393,114, dated Jan. 11, 2019 18 pages. |
Final Action for U.S. Appl. No. 15/393,114, dated Apr. 24, 2019 21 pages. |
Final Action for U.S. Appl. No. 15/393,114, dated Oct. 81, 2019 18 pages. |
Number | Date | Country | |
---|---|---|---|
20180012089 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62359563 | Jul 2016 | US | |
62378348 | Aug 2016 | US |